1
|
Suleymanova L, Bayram H, Dönmez Çakıl Y, Selam B, Cincik M. Pregnancy outcomes in patients with non-obstructive azoospermia undergoing micro-TESE: comparison of fresh vs. frozen-thawed testicular sperm. J Assist Reprod Genet 2024:10.1007/s10815-024-03291-7. [PMID: 39432191 DOI: 10.1007/s10815-024-03291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND The relative merits of fresh or frozen testicular sperm in ICSI remain a matter of contention. This study aims to compare the reproductive outcomes of non-obstructive azoospermia patients undergoing ICSI using fresh and frozen-thawed microdissection testicular sperm extraction (micro-TESE) sperm. METHODS A total of 223 men with non-obstructive azoospermia underwent micro-TESE to collect testicular spermatozoa. ICSI cycles were performed using fresh and frozen-thawed spermatozoa. The cleavage states and grading of embryos, fertilization, and pregnancy outcomes were compared between the groups to assess the impact of cryopreservation of testicular spermatozoa on embryo quality and ICSI outcomes. RESULTS A total of 223 cases were evaluated, with fertilization observed in 208 cases and no fertilization observed in 15 cases. The number of day 3 total embryos and the number of cleavage embryos differed between the fresh and frozen micro-TESE groups, whereas the number of two-pronuclei oocytes, grading of embryos, fertilization, pregnancy, and live birth rates were found to be similar between the two groups. CONCLUSION The cryopreservation of spermatozoa obtained by micro-TESE does not affect the fertilization rate or pregnancy outcome in cases of non-obstructive azoospermia. The present findings, when considered in conjunction with the extant evidence, may serve to alleviate concerns regarding the utilization of frozen-thawed micro-TESE sperm in patients with non-obstructive azoospermia.
Collapse
Affiliation(s)
- Lala Suleymanova
- Institute of Graduate Studies Clinical Embryology Master Program, Maltepe University, Istanbul, Turkey
| | - Hale Bayram
- Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Istanbul, Turkey.
| | - Yaprak Dönmez Çakıl
- Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Belgin Selam
- Department of Obstetrics and Gynecology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Mehmet Cincik
- Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| |
Collapse
|
2
|
Moustakli E, Gkountis A, Dafopoulos S, Zikopoulos A, Sotiriou S, Zachariou A, Dafopoulos K. Comparative Analysis of Fluorescence In Situ Hybridization and Next-Generation Sequencing in Sperm Evaluation: Implications for Preimplantation Genetic Testing and Male Infertility. Int J Mol Sci 2024; 25:11296. [PMID: 39457078 PMCID: PMC11508275 DOI: 10.3390/ijms252011296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Pre-implantation genetic testing (PGT) is a crucial process for selecting embryos created through assisted reproductive technology (ART). Couples with chromosomal rearrangements, infertility, recurrent miscarriages, advanced maternal age, known single-gene disorders, a family history of genetic conditions, previously affected pregnancies, poor embryo quality, or congenital anomalies may be candidates for PGT. Preimplantation genetic testing for aneuploidies (PGT-A) enables the selection and transfer of euploid embryos, significantly enhancing implantation rates in assisted reproduction. Fluorescence in situ hybridization (FISH) is the preferred method for analyzing biopsied cells to identify these abnormalities. While FISH is a well-established method for identifying sperm aneuploidy, NGS offers a more comprehensive assessment of genetic material, potentially enhancing our understanding of male infertility. Chromosomal abnormalities, arising during meiosis, can lead to aneuploid sperm, which may hinder embryo implantation and increase miscarriage rates. This review provides a comparative analysis of fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS) in sperm evaluations, focusing on their implications for preimplantation genetic testing. This analysis explores the strengths and limitations of FISH and NGS, aiming to elucidate their roles in improving ART outcomes and reducing the risk of genetic disorders in offspring. Ultimately, the findings will inform best practices in sperm evaluations and preimplantation genetic testing strategies.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Antonios Gkountis
- Genesis Athens Thessaly, Centre for Human Reproduction, 41335 Larissa, Greece;
| | - Stefanos Dafopoulos
- Department of Health Sciences, European University Cyprus, 2404 Nicosia, Cyprus;
| | | | - Sotirios Sotiriou
- Department of Embryology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece;
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, Ioannina University, 45110 Ioannina, Greece;
| | - Konstantinos Dafopoulos
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
3
|
Yi Zhou B, Ting Fu W, Gu H, Zhen Li M, Bin Zhong X, Tang J. A retrospective analysis of 1600 infertility patients with azoospermia and severe oligozoospermia. Clin Chim Acta 2024; 565:119973. [PMID: 39307333 DOI: 10.1016/j.cca.2024.119973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE This study aimed to investigate the genetic etiology of male infertility patients. METHOD A total of 1600 male patients with infertility, including 1300 cases of azoospermia and 300 cases of severe oligozoospermia, underwent routine semen analysis, chromosomal karyotype analysis and sex hormone level testing. The Azoospermia factor (AZF) on the Y chromosome was detected using the multiple fluorescence quantitative PCR technique. Additionally, copy number variation (CNV) analysis was performed on patients with Sertoli-cell-only syndrome who had a normal karyotype and AZF. RESULT Chromosomal abnormalities were found in 334 cases (20.88 %) of the 1600 male infertility patients. The most common type of abnormality was sex chromosome abnormalities (18.94 %), with 47, XXY being the most frequent abnormal karyotype. The rates of chromosomal abnormalities were significantly different between the azoospermia group and the severe oligospermia group (23.69 % and 8.67 %, respectively; P<0.05). AZF microdeletions were detected in 155 cases (9.69 %), with various deletion types and AZFc region microdeletion being the most prevalent. The rates of AZF microdeletions were not significantly different between the azoospermia group and the severe oligospermia group (9.15 % and 12 %, respectively; P=0.133). In 92 patients with Sertoli-cell-only syndrome who had a normal karyotype and AZF, the detection rate of CNV was 16.3 %. Compared to the severe oligospermia group, the azoospermia group had higher levels of FSH and LH and lower levels of T and E2, and the differences were statistically significant (P<0.05). CONCLUSIONS Male infertility is a complex multifactorial disease, with chromosomal abnormalities and Y chromosome microdeletions being important genetic factors leading to the disease. Initial genetic testing of infertile men should include karyotyping and Y chromosome microdeletions. If necessary, CNV testing should be performed to establish a clinical diagnosis and provide individualized treatment for male infertility.
Collapse
Affiliation(s)
- Bing Yi Zhou
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou 510060, China
| | - Wen Ting Fu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou 510060, China
| | - Heng Gu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou 510060, China
| | - Ming Zhen Li
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou 510060, China
| | - Xiao Bin Zhong
- School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jia Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou 510060, China; School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Severi G, Ambrosini E, Caramanna L, Monti L, Magini P, Innella G. Familial DMRT1-related non-obstructive azoospermia: a case report. J Assist Reprod Genet 2024:10.1007/s10815-024-03250-2. [PMID: 39259317 DOI: 10.1007/s10815-024-03250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024] Open
Abstract
PURPOSE To report an exceptional case of male-to-male transmission of genetically based non-obstructive azoospermia (NOA) and varicocele through a naturally obtained pregnancy. SUBJECTS AND METHODS A father and his son were both diagnosed with NOA after centrifugation and varicocele. The father has no other clinical concerns apart from infertility, detected after many attempts of having another child, but given his urological situation (bilateral varicocele and NOA) assisted reproductive techniques were discouraged. After genetic counseling, several genetic-chromosomal analyses were carried out in the son (karyotype, chromosome Y microdeletions, CFTR screening, NGS infertility panels, and finally array-CGH). RESULTS After a series of inconclusive tests, array-CGH detected a deletion of 224-283 kb (del9p24.3) involving part of the KANK1 and DMRT1 genes, inherited from the father. Haploinsufficiency of DMRT1 was therefore considered the determining factor in the development of azoospermia in the family by a loss of function mechanism. CONCLUSION The confirmation of father-to-son transmission of a deletion including DMRT1 represents an important point for clinicians dealing with male infertility, even when complete azoospermia is repetitively detected, and must be of hope for a relevant portion of men. Inclusion criteria for the access to assisted reproductive techniques may also be reconsidered and worthy of a greater number of clinical insights. Finally, since DMRT1 alterations have been associated with NOA and abnormal testicular development, but not specifically with varicocele, further studies are required to validate this issue, as varicocele may have played a crucial role in this case.
Collapse
Affiliation(s)
- Giulia Severi
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Enrico Ambrosini
- Medical Genetics Unit, University Hospital of Parma, Parma, Italy
| | - Luca Caramanna
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Luigi Monti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Pamela Magini
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Innella
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| |
Collapse
|
5
|
Shi F, Liu Y, Chen Z, Li D, Yao Y, Zhou M, Zhuo Y, Ma X, Cao D. An integrated approach for improving clinical management of non-obstructive azoospermia. Andrology 2024; 12:1312-1323. [PMID: 38221731 DOI: 10.1111/andr.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/06/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Non-obstructive azoospermia is the most severe form of male infertility. A testicular biopsy is required for the diagnosis of non-obstructive azoospermia, and the causal factors for non-obstructive azoospermia remain unknown. OBJECTIVES To reduce the risk of multiple biopsies and identify factors that contribute to non-obstructive azoospermia, we proposed an integrated approach for the preoperative diagnosis and clinical management of non-obstructive azoospermia by applying the chromosome-spreading technique and whole-exome sequencing. MATERIALS AND METHODS Between July 2020 and December 2022, after ruling out definitive obstructive azoospermia and non-obstructive azoospermia patients with testicular volume < 6 mL, 20 patients with non-obstructive azoospermia who underwent preoperative testicular diagnostic biopsy using testicular sperm aspiration were subjected to retrospective analysis. RESULTS Microscopic examination identified four patients with sperm cells, and 16 without sperm cells. Routine pathological analysis classified one patient as normal spermatogenesis, three as hypospermatogenesis, five as maturation arrest, nine as Sertoli cell-only, and two as unable to judge. With chromosome-spreading technology using routine cell suspension samples for microscopic examination, 18 patient diagnoses were validated, and two patients without a definitive diagnosis were supplemented. Detection of the Y chromosome and a well-organized whole-exome sequencing analysis revealed potential genetic factors. DISCUSSION AND CONCLUSION The full use of testicular biopsy is beneficial for the diagnosis of azoospermia, as it avoids the risk of multiple biopsies. Moreover, in combination with whole-exome sequencing, clinicians can obtain more information regarding the pathogenesis of non-obstructive azoospermia, which may guide treatment.
Collapse
Affiliation(s)
- Fu Shi
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Ye Liu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Zheng Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dongliang Li
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuanqing Yao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Meixun Zhou
- Department of Pathology, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Yumin Zhuo
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xin Ma
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Senior Department of Urology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Dandan Cao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
6
|
Etezadi A, Akhtare A, Asadikalameh Z, Aghaei ZH, Panahinia P, Arman M, Abtahian A, Khorasani FF, Hazari V. Linc00513 sponges miR-7 to modulate TGF-β signaling in azoospermia. Eur J Transl Myol 2024; 34:12516. [PMID: 38952199 PMCID: PMC11487652 DOI: 10.4081/ejtm.2024.12516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Azoospermia, or the complete absence of sperm in the ejaculate, affects about 1% of men worldwide and is a significant fertility challenge. This study investigates Linc00513, a long non-coding RNA, and its potential role in regulating the TGF-β signaling pathway, a key player in spermatogenesis, in the context of azoospermia. We show that Linc00513 expression is significantly lower in testicular tissues from azoospermic patients than in HS1 controls. Linc00513 interacts directly with microRNA-7 (miR-7) via complementary base pairing, acting as a competing endogenous RNA (ceRNA). This interaction effectively inhibits miR-7's inhibitory action on the TGF-β receptor 1 (TGFBR1), a critical component of the TGF-β signaling cascade. Downregulating Linc00513 reduces TGFBR1 repression and increases TGF-β signaling in azoospermic testes. Functional assays with spermatogonial cell lines support these findings. Silencing Linc00513 leads to increased cell proliferation and decreased apoptosis, similar to TGF-β inhibition. Overexpression of miR-7 inhibits the effects of Linc00513 on TGF-β signaling. Our study sheds new light on how Linc00513, miR-7, and the TGF-β signaling pathway interact in azoospermia. Linc00513 regulates TGFBR1 expression and thus influences spermatogonial cell fate by acting as a miR-7 ceRNA. These findings identify a potential therapeutic target for azoospermia treatment, paving the way for future research into restoring fertility in affected individuals.
Collapse
Affiliation(s)
- Atoosa Etezadi
- Department of Gynecology, School of Medicine, Alzahra Hospital, Guilan University of Medical Sciences.
| | | | - Zahra Asadikalameh
- Department of Gynecology and Obstetrics, Yasuj University of Medical Sciences, Yasuj.
| | - Zeinab Hashem Aghaei
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran.
| | - Paria Panahinia
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran.
| | | | - Amene Abtahian
- Nical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University Medical Science, Tehran.
| | - Fereshteh Faghih Khorasani
- General Physician in Medicine Program, General Doctorate Degree of Yazd, Shahid Sadoughi University of Medical Sciences, Yazd.
| | - Vajihe Hazari
- Department of Obstetrics and Gynecology, School of Medicine, Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand.
| |
Collapse
|
7
|
Fu W, Cui J, Tang S. The role of testicular stiffness derived from shear wave elastography in the assessment of spermatogenesis in men with varicocele. Quant Imaging Med Surg 2024; 14:4987-4997. [PMID: 39022243 PMCID: PMC11250289 DOI: 10.21037/qims-24-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/24/2024] [Indexed: 07/20/2024]
Abstract
Background Varicocele is a major correctable cause of male infertility. Shear wave elastography (SWE) represents a valuable approach for assessing spermatogenesis in infertile men; however, its application in infertile men with varicocele remains unreported in the literature to date. The objective of this study was to investigate the correlation between testicular stiffness and spermatogenesis in individuals with varicocele. Methods A total of 568 participants with left-side varicocele and 475 age-matched healthy controls were enrolled. The mean, left, and right testicular volumes (Volume-mean, Volume-L, and Volume-R), the mean elastic modulus of bilateral, left, and right testes (Emean, Emean-L, and Emean-R); the maximum elastic modulus of bilateral, left, and right testes (Emax, Emax-L, and Emax-R); the minimum elastic modulus of bilateral, left, and right testes (Emin, Emin-L, and Emin-R) were calculated. Results Receiver operating characteristic (ROC) curves for Volume-R and Emax were constructed to identify participants with sperm concentrations below 5 million/mL. The areas under the ROC curves (AUCs) were 0.801 and 0.775, respectively. Combining these 2 markers improved their diagnostic value with an AUC of 0.820 and sensitivity and specificity of 94.6% and 59.8% [95% confidence interval (CI): 0.772-0.867, P<0.01], respectively. A total of 69 participants underwent microsurgical varicocelectomy (including 42 cases with improved semen results and 27 without). The ROC curves of Emax-L and Volume-L were constructed for the differential diagnosis between the improved and unimproved groups; the AUCs were 0.723 and 0.855, respectively. Combining these 2 markers improved their diagnostic value with an AUC of 0.867 (95% CI: 0.772-0.961, P<0.01) and sensitivity and specificity of 81.5% and 81.0%, respectively. Conclusions Our findings suggest that SWE can be used for varicocele to assess testicular parenchyma damage and Volume-L combined with Emax-L offers a more accurate method for predicting semen parameter improvement after microscopic subinguinal varicocelectomy in men with varicocele.
Collapse
Affiliation(s)
- Wei Fu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Cui
- Second Department of Urology, Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shaoshan Tang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Muranishi Y, Kobori Y, Katoh-Fukui Y, Tamaoka S, Hattori A, Osaka A, Okada H, Nakabayashi K, Hata K, Kawai T, Ogata-Kawata H, Iwahata T, Saito K, Kon M, Shinohara N, Fukami M. Systematic molecular analyses for 115 karyotypically normal men with isolated non-obstructive azoospermia. Hum Reprod 2024; 39:1131-1140. [PMID: 38511217 DOI: 10.1093/humrep/deae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
STUDY QUESTION Do copy-number variations (CNVs) in the azoospermia factor (AZF) regions and monogenic mutations play a major role in the development of isolated (non-syndromic) non-obstructive azoospermia (NOA) in Japanese men with a normal 46, XY karyotype? SUMMARY ANSWER Deleterious CNVs in the AZF regions and damaging sequence variants in eight genes likely constitute at least 8% and approximately 8% of the genetic causes, respectively, while variants in other genes play only a minor role. WHAT IS KNOWN ALREADY Sex chromosomal abnormalities, AZF-linked microdeletions, and monogenic mutations have been implicated in isolated NOA. More than 160 genes have been reported as causative/susceptibility/candidate genes for NOA. STUDY DESIGN, SIZE, DURATION Systematic molecular analyses were conducted for 115 patients with isolated NOA and a normal 46, XY karyotype, who visited our hospital between 2017 and 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS We studied 115 unrelated Japanese patients. AZF-linked CNVs were examined using sequence-tagged PCR and multiplex ligation-dependent probe amplification, and nucleotide variants were screened using whole exome sequencing (WES). An optimized sequence kernel association test (SKAT-O), a gene-based association study using WES data, was performed to identify novel disease-associated genes in the genome. The results were compared to those of previous studies and our in-house control data. MAIN RESULTS AND THE ROLE OF CHANCE Thirteen types of AZF-linked CNVs, including the hitherto unreported gr/gr triplication and partial AZFb deletion, were identified in 63 (54.8%) cases. When the gr/gr deletion, a common polymorphism in Japan, was excluded from data analyses, the total frequency of CNVs was 23/75 (30.7%). This frequency is higher than that of the reference data in Japan and China (11.1% and 14.7%, respectively). Known NOA-causative AZF-linked CNVs were found in nine (7.8%) cases. Rare damaging variants in known causative genes (DMRT1, PLK4, SYCP2, TEX11, and USP26) and hemizygous/multiple-heterozygous damaging variants in known spermatogenesis-associated genes (TAF7L, DNAH2, and DNAH17) were identified in nine cases (7.8% in total). Some patients carried rare damaging variants in multiple genes. SKAT-O detected no genes whose rare damaging variants were significantly accumulated in the patient group. LIMITATIONS, REASONS FOR CAUTION The number of participants was relatively small, and the clinical information of each patient was fragmentary. Moreover, the pathogenicity of identified variants was assessed only by in silico analyses. WIDER IMPLICATIONS OF THE FINDINGS This study showed that various AZF-linked CNVs are present in more than half of Japanese NOA patients. These results broadened the structural variations of AZF-linked CNVs, which should be considered for the molecular diagnosis of spermatogenic failure. Furthermore, the results of this study highlight the etiological heterogeneity and possible oligogenicity of isolated NOA. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by Grants from the Japan Society for the Promotion of Science (21K19283 and 21H0246), the Japan Agency for Medical Research and Development (22ek0109464h0003), the National Center for Child Health and Development, the Canon Foundation, the Japan Endocrine Society, and the Takeda Science Foundation. The results of this study were based on samples and patient data obtained from the International Center for Reproductive Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan. The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Yuki Muranishi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoshitomo Kobori
- International Center for Reproductive Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Yuko Katoh-Fukui
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Satoshi Tamaoka
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akiyoshi Osaka
- International Center for Reproductive Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Hiroshi Okada
- International Center for Reproductive Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroko Ogata-Kawata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Toshiyuki Iwahata
- International Center for Reproductive Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Kazuki Saito
- Department of Comprehensive Reproductive Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masafumi Kon
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
9
|
Cerván-Martín M, González-Muñoz S, Guzmán-Jiménez A, Higueras-Serrano I, Castilla JA, Garrido N, Luján S, Bassas L, Seixas S, Gonçalves J, Lopes AM, Larriba S, Palomino-Morales RJ, Bossini-Castillo L, Carmona FD. Changes in environmental exposures over decades may influence the genetic architecture of severe spermatogenic failure. Hum Reprod 2024; 39:612-622. [PMID: 38305414 DOI: 10.1093/humrep/deae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
STUDY QUESTION Do the genetic determinants of idiopathic severe spermatogenic failure (SPGF) differ between generations? SUMMARY ANSWER Our data support that the genetic component of idiopathic SPGF is impacted by dynamic changes in environmental exposures over decades. WHAT IS KNOWN ALREADY The idiopathic form of SPGF has a multifactorial etiology wherein an interaction between genetic, epigenetic, and environmental factors leads to the disease onset and progression. At the genetic level, genome-wide association studies (GWASs) allow the analysis of millions of genetic variants across the genome in a hypothesis-free manner, as a valuable tool for identifying susceptibility risk loci. However, little is known about the specific role of non-genetic factors and their influence on the genetic determinants in this type of conditions. STUDY DESIGN, SIZE, DURATION Case-control genetic association analyses were performed including a total of 912 SPGF cases and 1360 unaffected controls. PARTICIPANTS/MATERIALS, SETTING, METHODS All participants had European ancestry (Iberian and German). SPGF cases were diagnosed during the last decade either with idiopathic non-obstructive azoospermia (n = 547) or with idiopathic non-obstructive oligozoospermia (n = 365). Case-control genetic association analyses were performed by logistic regression models considering the generation as a covariate and by in silico functional characterization of the susceptibility genomic regions. MAIN RESULTS AND THE ROLE OF CHANCE This analysis revealed 13 novel genetic association signals with SPGF, with eight of them being independent. The observed associations were mostly explained by the interaction between each lead variant and the age-group. Additionally, we established links between these loci and diverse non-genetic factors, such as toxic or dietary habits, respiratory disorders, and autoimmune diseases, which might potentially influence the genetic architecture of idiopathic SPGF. LARGE SCALE DATA GWAS data are available from the authors upon reasonable request. LIMITATIONS, REASONS FOR CAUTION Additional independent studies involving large cohorts in ethnically diverse populations are warranted to confirm our findings. WIDER IMPLICATIONS OF THE FINDINGS Overall, this study proposes an innovative strategy to achieve a more precise understanding of conditions such as SPGF by considering the interactions between a variable exposome through different generations and genetic predisposition to complex diseases. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the "Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020)" (ref. PY20_00212, P20_00583), the Spanish Ministry of Economy and Competitiveness through the Spanish National Plan for Scientific and Technical Research and Innovation (ref. PID2020-120157RB-I00 funded by MCIN/ AEI/10.13039/501100011033), and the 'Proyectos I+D+i del Programa Operativo FEDER 2020' (ref. B-CTS-584-UGR20). ToxOmics-Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, is also partially supported by the Portuguese Foundation for Science and Technology (Projects: UIDB/00009/2020; UIDP/00009/2020). The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Inmaculada Higueras-Serrano
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - José A Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Nicolás Garrido
- IVI Foundation, Health Research Institute La Fe, Valencia, Spain
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Saturnino Luján
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service, Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
- ToxOmics-Centro de Toxicogenómica e Saúde Humana, Nova Medical School, Lisbon, Portugal
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Center for Predictive and Preventive Genetics, Institute for Cell and Molecular Biology, University of Porto, Porto, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rogelio J Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - F David Carmona
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
10
|
Muranishi Y, Katoh‐Fukui Y, Hattori A, Kobori Y, Osaka A, Okada H, Iwahata T, Kon M, Shinohara N, Fukami M. Compound heterozygous KCTD19 variants in a man with isolated nonobstructive azoospermia. Reprod Med Biol 2024; 23:e12608. [PMID: 39318590 PMCID: PMC11420532 DOI: 10.1002/rmb2.12608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Case A 40-year-old Japanese man with nonobstructive azoospermia (NOA) was found to carry rare variants in KCTD19, a newly identified causative gene for spermatogenic failure. This patient was identified through mutation screening of KCTD19 in 97 men with etiology-unknown isolated NOA. Outcome The patient had two heterozygous variants in KCTD19 that affect consensus sequences of splice-donor sites [c.300+2T>A and c.2667C>T (p.E889E)]. Both variants were predicted to cause exon skipping. Long-read sequencing confirmed the compound heterozygosity of the variants. The patient exhibited small testes and a mildly elevated level of follicle-stimulating hormone but no other phenotypic abnormalities. Testicular histology showed borderline findings between spermatocyte maturation arrest and severe hypospermatogenesis. Conclusion These results provide evidence that biallelic loss-of-function variants of KCTD19 represent rare causes of isolated NOA.
Collapse
Affiliation(s)
- Yuki Muranishi
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
- Department of Renal and Genitourinary SurgeryHokkaido University Graduate School of MedicineSapporoJapan
| | - Yuko Katoh‐Fukui
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Atsushi Hattori
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Yoshitomo Kobori
- International Center for Reproductive MedicineDokkyo Medical University Saitama Medical CenterKoshigayaJapan
| | - Akiyoshi Osaka
- International Center for Reproductive MedicineDokkyo Medical University Saitama Medical CenterKoshigayaJapan
| | - Hiroshi Okada
- International Center for Reproductive MedicineDokkyo Medical University Saitama Medical CenterKoshigayaJapan
| | - Toshiyuki Iwahata
- International Center for Reproductive MedicineDokkyo Medical University Saitama Medical CenterKoshigayaJapan
| | - Masafumi Kon
- Department of Renal and Genitourinary SurgeryHokkaido University Graduate School of MedicineSapporoJapan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary SurgeryHokkaido University Graduate School of MedicineSapporoJapan
| | - Maki Fukami
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| |
Collapse
|
11
|
Khalayli N, Achmeh B, Ali K, Aziz A, Kudsi M. Male infertility with muscle weakness: a point of view. Ann Med Surg (Lond) 2023; 85:5120-5122. [PMID: 37811075 PMCID: PMC10553049 DOI: 10.1097/ms9.0000000000001147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/02/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction and importance The most common causes of infertility are idiopathic spermatogenetic disorders, occurring in multiple reproductive or systemic diseases. The underlying genetic disorders influence the treatment and transmission of the disease to the offspring. Case presentation A 32-year-old Syrian male, married for 6 years, presented with primary infertility. The patient had a history of muscle dystrophy for 12 years. He had no previous medical or drug addiction or family history. He had gynecomastia. Semen analysis revealed oligospermia in the patient. Follicle-stimulating hormone was elevated. Gene analysis could not be done due to funding issues. The percutaneous testicular biopsy revealed hypospermatogenesis, atrophy, and marked hyalinization of the seminiferous tubules. Electromyography of the upper extremities demonstrated myotonic discharges, with a waxing-waning frequency, amplitude, and a characteristic 'engine revving' sound. Clinical discussion Myotonic dystrophy (MD) is an autosomal dominant inheritance disease with adult onset. Muscle weakness is the predominant presenting feature, with early involvement of the distal limbs and neck muscles and a characteristic facial appearance.Systemic clinical manifestations may include cardiac conduction defects, cataracts, insulin resistance and diabetes, testicular atrophy with impaired spermatogenesis, and others. Testicular biopsy findings are specific. To our knowledge, this is the first case of male infertility associated with MD in Syria. However, there are no data on the prevalence of myotonic dystrophy type 1 (MD1) in Syria. Conclusion The practicing physician should keep in mind the frequent association between MD and infertility.
Collapse
Affiliation(s)
| | | | - Khalil Ali
- Rheumatology Department, Faculty of Medicine, Damascus University, Damascus, Syria
| | - Aghiad Aziz
- Rheumatology Department, Faculty of Medicine, Damascus University, Damascus, Syria
| | - Maysoun Kudsi
- Rheumatology Department, Faculty of Medicine, Damascus University, Damascus, Syria
| |
Collapse
|
12
|
Reifarth L, Körber H, Packeiser EM, Goericke-Pesch S. Detection of spermatogonial stem cells in testicular tissue of dogs with chronic asymptomatic orchitis. Front Vet Sci 2023; 10:1205064. [PMID: 37396999 PMCID: PMC10311113 DOI: 10.3389/fvets.2023.1205064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Chronic asymptomatic idiopathic orchitis (CAO) is an important but neglected cause of acquired infertility due to non-obstructive azoospermia (NOA) in male dogs. The similarity of the pathophysiology in infertile dogs and men supports the dog's suitability as a possible animal model for studying human diseases causing disruption of spermatogenesis and evaluating the role of spermatogonial stem cells (SSCs) as a new therapeutic approach to restore or recover fertility in cases of CAO. To investigate the survival of resilient stem cells, the expression of the protein gene product (PGP9.5), deleted in azoospermia like (DAZL), foxo transcription factor 1 (FOXO1) and tyrosine-kinase receptor (C-Kit) were evaluated in healthy and CAO-affected canine testes. Our data confirmed the presence of all investigated germ cell markers at mRNA and protein levels. In addition, we postulate a specific expression pattern of FOXO1 and C-Kit in undifferentiated and differentiating spermatogonia, respectively, whereas DAZL and PGP9.5 expressions were confirmed in the entire spermatogonial population. Furthermore, this is the first study revealing a significant reduction of PGP9.5, DAZL, and FOXO1 in CAO at protein and/or gene expression level indicating a severe disruption of spermatogenesis. This means that chronic asymptomatic inflammatory changes in CAO testis are accompanied by a significant loss of SSCs. Notwithstanding, our data confirm the survival of putative stem cells with the potential of self-renewal and differentiation and lay the groundwork for further research into stem cell-based therapeutic options to reinitialize spermatogenesis in canine CAO-affected patients.
Collapse
Affiliation(s)
| | | | | | - Sandra Goericke-Pesch
- Reproductive Unit – Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
13
|
Qureshi S, Hardy JJ, Pombar C, Berman AJ, Malcher A, Gingrich T, Hvasta R, Kuong J, Munyoki S, Hwang K, Orwig KE, Ahmed J, Olszewska M, Kurpisz M, Conrad DF, Jaseem Khan M, Yatsenko AN. Genomic study of TEX15 variants: prevalence and allelic heterogeneity in men with spermatogenic failure. Front Genet 2023; 14:1134849. [PMID: 37234866 PMCID: PMC10206016 DOI: 10.3389/fgene.2023.1134849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction: Human spermatogenesis is a highly intricate process that requires the input of thousands of testis-specific genes. Defects in any of them at any stage of the process can have detrimental effects on sperm production and/or viability. In particular, the function of many meiotic proteins encoded by germ cell specific genes is critical for maturation of haploid spermatids and viable spermatozoa, necessary for fertilization, and is also extremely sensitive to even the slightest change in coding DNA. Methods: Here, using whole exome and genome approaches, we identified and reported novel, clinically significant variants in testis-expressed gene 15 (TEX15), in unrelated men with spermatogenic failure (SPGF). Results: TEX15 mediates double strand break repair during meiosis. Recessive loss-of-function (LOF) TEX15 mutations are associated with SPGF in humans and knockout male mice are infertile. We expand earlier reports documenting heterogeneous allelic pathogenic TEX15 variants that cause a range of SPGF phenotypes from oligozoospermia (low sperm) to nonobstructive azoospermia (no sperm) with meiotic arrest and report the prevalence of 0.6% of TEX15 variants in our patient cohort. Among identified possible LOF variants, one homozygous missense substitution c.6835G>A (p.Ala2279Thr) co-segregated with cryptozoospermia in a family with SPGF. Additionally, we observed numerous cases of inferred in trans compound heterozygous variants in TEX15 among unrelated individuals with varying degrees of SPGF. Variants included splice site, insertions/deletions (indels), and missense substitutions, many of which resulted in LOF effects (i.e., frameshift, premature stop, alternative splicing, or potentially altered posttranslational modification sites). Conclusion: In conclusion, we performed an extensive genomic study of familial and sporadic SPGF and identified potentially damaging TEX15 variants in 7 of 1097 individuals of our combined cohorts. We hypothesize that SPGF phenotype severity is dictated by individual TEX15 variant's impact on structure and function. Resultant LOFs likely have deleterious effects on crossover/recombination in meiosis. Our findings support the notion of increased gene variant frequency in SPGF and its genetic and allelic heterogeneity as it relates to complex disease such as male infertility.
Collapse
Affiliation(s)
- Sidra Qureshi
- Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Jimmaline J. Hardy
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christopher Pombar
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Andrea J. Berman
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Agnieszka Malcher
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Tara Gingrich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rachel Hvasta
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jannah Kuong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sarah Munyoki
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kathleen Hwang
- Department of Urology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kyle E. Orwig
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jawad Ahmed
- Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Donald F. Conrad
- Department of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Muhammad Jaseem Khan
- Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Alexander N. Yatsenko
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Yu W, Li Y, Chen H, Cui Y, Situ C, Yao L, Zhang X, Lu S, Liu L, Li L, Ren J, Guo Y, Huo Z, Chen Y, Li H, Jiang T, Gu Y, Wang C, Zhu T, Li Y, Hu Z, Guo X. STK33 phosphorylates fibrous sheath protein AKAP3/4 to regulate sperm flagella assembly in spermiogenesis. Mol Cell Proteomics 2023:100564. [PMID: 37146716 DOI: 10.1016/j.mcpro.2023.100564] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
Spermatogenesis defects are important for male infertility; however, the etiology and pathogenesis are still unknown. Herein, we identified two loss of function mutations of STK33 in 7 individuals with non-obstructive azoospermia. Further functional studies of these frameshift and nonsense mutations revealed that Stk33-/KI male mice were sterile, and Stk33-/KI sperm were abnormal with defects in the mitochondrial sheath (MS), fibrous sheath (FS), outer dense fiber (ODF) and axoneme. Stk33KI/KI male mice were subfertile and had oligoasthenozoospermia. Differential phosphoproteomic analysis and in vitro kinase assay identified novel phosphorylation substrates of STK33, fibrous sheath components AKAP3 and AKAP4, whose expression levels decreased in testis after deletion of Stk33. STK33 regulated the phosphorylation of AKAP3/4, affected the assembly of fibrous sheath in the sperm, and played an essential role in spermiogenesis and male infertility.
Collapse
Affiliation(s)
- Weiling Yu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yang Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China; School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Hong Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Liping Yao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Shuai Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China; School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Li Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Laihua Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jie Ren
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zian Huo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yu Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Haojie Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Tao Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China; School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China; School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China; School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Tianyu Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China; School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211100, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
15
|
Soleymani Moud S, Kamal Seraji K, Ramezani M, Piravar Z. Association of Single Nucleotide Polymorphisms in the PYGO2 and PRDM9 Genes with Idiopathic Azoospermia in Iranian Infertile Male Patients. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:77-84. [PMID: 36688188 PMCID: PMC9843457 DOI: 10.30476/ijms.2022.93009.2433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 01/24/2023]
Abstract
Background Azoospermia is a risk factor for infertility affecting approximately 1% of the male population. Genetic factors are associated with non-obstructive azoospermia (NOA). Pygo2 and PRDM9 genes are involved in the spermatogenesis process. The present study aimed to assess the association of single nucleotide polymorphism (SNP) in the Pygo2 (rs61758740 and rs61758741) and PRDM9 (rs2973631 and rs1874165) genes with idiopathic azoospermia (IA). Methods A cross-sectional study was conducted from October 2018 to August 2019 at Rooya Infertility Centre (Qom, Iran). A total of 100 infertile patients with NOA and 100 men with normal fertility were enrolled in the study. Tetra-primer amplification refractory mutation system-PCR method was used to detect SNPs rs61758740, rs61758741, and rs2973631. The restriction fragment length polymorphism method was used for SNP rs1874165. In addition, luteinizing, follicle-stimulating, and testosterone hormone levels were measured. Results The results showed a significant increase in luteinizing and follicle-stimulating hormone levels in the patient group (P<0.001), but a non-significant difference in testosterone levels in both groups. SNP rs61758740 (T>C) was associated with the increased risk of azoospermia (OR: 2.359, 95% Cl: 1.192-4.666, P=0.012). SNP rs2973631 showed a significant difference in genotype frequency between the patient and control groups in the dominant, recessive, and codominant models. However, in the case of SNP rs1874165, the difference was significant in the dominant, codominant, and overdominant models. Conclusion There is an association between azoospermia and SNPs in Pygo2 and PRDM9 genes in Iranian infertile male patients with IA. SNPs can be considered a risk factor for male infertility. It should be noted that this article was published in preprint form on the website of europepmc (https://europepmc.org/article/ppr/ppr416800).
Collapse
Affiliation(s)
- Sanaz Soleymani Moud
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Katayun Kamal Seraji
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mina Ramezani
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zeynab Piravar
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
16
|
Guzmán-Jiménez A, González-Muñoz S, Cerván-Martín M, Rivera-Egea R, Garrido N, Luján S, Santos-Ribeiro S, Castilla JA, Gonzalvo MC, Clavero A, Vicente FJ, Maldonado V, Villegas-Salmerón J, Burgos M, Jiménez R, Pinto MG, Pereira I, Nunes J, Sánchez-Curbelo J, López-Rodrigo O, Pereira-Caetano I, Marques PI, Carvalho F, Barros A, Bassas L, Seixas S, Gonçalves J, Lopes AM, Larriba S, Palomino-Morales RJ, Carmona FD, Bossini-Castillo L. Contribution of TEX15 genetic variants to the risk of developing severe non-obstructive oligozoospermia. Front Cell Dev Biol 2022; 10:1089782. [PMID: 36589743 PMCID: PMC9797780 DOI: 10.3389/fcell.2022.1089782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Severe spermatogenic failure (SPGF) represents one of the most relevant causes of male infertility. This pathological condition can lead to extreme abnormalities in the seminal sperm count, such as severe oligozoospermia (SO) or non-obstructive azoospermia (NOA). Most cases of SPGF have an unknown aetiology, and it is known that this idiopathic form of male infertility represents a complex condition. In this study, we aimed to evaluate whether common genetic variation in TEX15, which encodes a key player in spermatogenesis, is involved in the susceptibility to idiopathic SPGF. Materials and Methods: We designed a genetic association study comprising a total of 727 SPGF cases (including 527 NOA and 200 SO) and 1,058 unaffected men from the Iberian Peninsula. Following a tagging strategy, three tag single-nucleotide polymorphisms (SNPs) of TEX15 (rs1362912, rs323342, and rs323346) were selected for genotyping using TaqMan probes. Case-control association tests were then performed by logistic regression models. In silico analyses were also carried out to shed light into the putative functional implications of the studied variants. Results: A significant increase in TEX15-rs1362912 minor allele frequency (MAF) was observed in the group of SO patients (MAF = 0.0842) compared to either the control cohort (MAF = 0.0468, OR = 1.90, p = 7.47E-03) or the NOA group (MAF = 0.0472, OR = 1.83, p = 1.23E-02). The genotype distribution of the SO population was also different from those of both control (p = 1.14E-02) and NOA groups (p = 4.33-02). The analysis of functional annotations of the human genome suggested that the effect of the SO-associated TEX15 variants is likely exerted by alteration of the binding affinity of crucial transcription factors for spermatogenesis. Conclusion: Our results suggest that common variation in TEX15 is involved in the genetic predisposition to SO, thus supporting the notion of idiopathic SPGF as a complex trait.
Collapse
Affiliation(s)
- Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Rocío Rivera-Egea
- Andrology Laboratory and Sperm Bank, IVIRMA Valencia, Valencia, Spain,IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - Nicolás Garrido
- IVI Foundation, Health Research Institute La Fe, Valencia, Spain,Servicio de Urología. Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Saturnino Luján
- Servicio de Urología. Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Samuel Santos-Ribeiro
- IVI-RMA Lisbon, Lisbon, Portugal,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - José A. Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain,CEIFER Biobanco—GAMETIA, Granada, Spain
| | - M. Carmen Gonzalvo
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain
| | - F. Javier Vicente
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,UGC de Urología, HU Virgen de las Nieves, Granada, Spain
| | - Vicente Maldonado
- UGC de Obstetricia y Ginecología, Complejo Hospitalario de Jaén, Jaén, Spain
| | - Javier Villegas-Salmerón
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Maria Graça Pinto
- Centro de Medicina Reprodutiva, Maternidade Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - Isabel Pereira
- Departamento de Obstetrícia, Ginecologia e Medicina da Reprodução, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisboa, Portugal
| | - Joaquim Nunes
- Departamento de Obstetrícia, Ginecologia e Medicina da Reprodução, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisboa, Portugal
| | - Josvany Sánchez-Curbelo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Olga López-Rodrigo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Iris Pereira-Caetano
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
| | - Patricia Isabel Marques
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Filipa Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Alberto Barros
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,ToxOmics—Centro de Toxicogenómica e Saúde Humana, Nova Medical School, Lisbon, Portugal
| | - Alexandra M. Lopes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,CGPP-IBMC—Centro de Genética Preditiva e Preventiva, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Rogelio J. Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - F. David Carmona
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,*Correspondence: F. David Carmona, ; Lara Bossini-Castillo,
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,*Correspondence: F. David Carmona, ; Lara Bossini-Castillo,
| | | | | |
Collapse
|
17
|
Immune and spermatogenesis-related loci are involved in the development of extreme patterns of male infertility. Commun Biol 2022; 5:1220. [PMID: 36357561 PMCID: PMC9649734 DOI: 10.1038/s42003-022-04192-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022] Open
Abstract
We conducted a genome-wide association study in a large population of infertile men due to unexplained spermatogenic failure (SPGF). More than seven million genetic variants were analysed in 1,274 SPGF cases and 1,951 unaffected controls from two independent European cohorts. Two genomic regions were associated with the most severe histological pattern of SPGF, defined by Sertoli cell-only (SCO) phenotype, namely the MHC class II gene HLA-DRB1 (rs1136759, P = 1.32E-08, OR = 1.80) and an upstream locus of VRK1 (rs115054029, P = 4.24E-08, OR = 3.14), which encodes a protein kinase involved in the regulation of spermatogenesis. The SCO-associated rs1136759 allele (G) determines a serine in the position 13 of the HLA-DRβ1 molecule located in the antigen-binding pocket. Overall, our data support the notion of unexplained SPGF as a complex trait influenced by common variation in the genome, with the SCO phenotype likely representing an immune-mediated condition. A GWAS in a large case-control cohort of European ancestry identifies two genomic regions, the MHC class II gene HLA-DRB1 and an upstream locus of VRK1, that are associated with the most severe phenotype of spermatogenic failure.
Collapse
|
18
|
Sharqawi M, Hantisteanu S, Bilgory A, Aslih N, Shibli Abu Raya Y, Atzmon Y, Estrada D, Limonad O, Meisel-Sharon S, Shalom-Paz E. The Impact of Lifestyle on Sperm Function, Telomere Length, and IVF Outcomes. Am J Mens Health 2022; 16:15579883221119931. [PMID: 36121249 PMCID: PMC9490467 DOI: 10.1177/15579883221119931] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many risk factors can potentially influence sperm quality. Telomeres confer stability on the chromosome and their dysfunction has been implicated in conditions such as cancer, aging, and lifestyle. The impact of lifestyle on sperm cell telomeres is unclear. The objectives of this study were to evaluate the impact of lifestyle behaviors on telomere length in sperm and to follow the correlation with pregnancy outcomes in patients undergoing in vitro fertilization (IVF). In this prospective observational study, sperm was analyzed for telomere length (TL). Men were asked to report lifestyle behaviors including occupation (physical or sedentary), smoking duration and amount, physical activity, dietary habits, and where they keep their cellular phone (bag, pants, or shirt pocket). Correlations among semen analysis, TL, men's habits, and embryo quality and pregnancy outcomes were evaluated. Among 34 patients recruited, 12 had longer TL and 13 shorter TL. Sperm motility was negatively correlated with TL (Pearson correlation = -.588, p = .002). Smoking adversely affected native sperm motility (53% motility in nonsmokers vs. 37% in smokers; p = .006). However, there was no significant impact on TL. The group with longer telomeres demonstrated significant association with healthy diet (10/12 vs. 6/13; p = .05) and a trend toward more sports activity, weekly (16/84 vs. 7/91; p = .04) compared with the shorter telomeres group. This study suggests that lifestyle, healthy diet, and sports activity are associated with long telomeres in sperm. Sperm quality is also influenced by patients' habits. The study strongly recommends maintaining a healthy lifestyle to preserve general health and fertility.
Collapse
Affiliation(s)
- Moamina Sharqawi
- IVF Unit, Department of Obstetrics & Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Shay Hantisteanu
- Gynecological Research Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
| | - Asaf Bilgory
- IVF Unit, Department of Obstetrics & Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Nardin Aslih
- IVF Unit, Department of Obstetrics & Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Yasmin Shibli Abu Raya
- IVF Unit, Department of Obstetrics & Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Yuval Atzmon
- IVF Unit, Department of Obstetrics & Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Daniela Estrada
- IVF Unit, Department of Obstetrics & Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Ofer Limonad
- IVF Unit, Department of Obstetrics & Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| | | | - Einat Shalom-Paz
- IVF Unit, Department of Obstetrics & Gynecology, Hillel Yaffe Medical Center, Hadera, Israel,Ruth and Bruce Rappaport School of Medicine, The Technion Institute of Technology, Haifa, Israel,Einat Shalom-Paz, Director of IVF Unit, Department of Obstetrics & Gynecology, Hillel Yaffe Medical Center, Hashalom St., Hadera 38100, Israel.
| |
Collapse
|
19
|
Liu X, Zang C, Wu Y, Meng R, Chen Y, Jiang T, Wang C, Yang X, Guo Y, Situ C, Hu Z, Zhang J, Guo X. Homeodomain-interacting protein kinase HIPK4 regulates phosphorylation of manchette protein RIMBP3 during spermiogenesis. J Biol Chem 2022; 298:102327. [PMID: 35931115 PMCID: PMC9440445 DOI: 10.1016/j.jbc.2022.102327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Nonobstructive azoospermia (NOA) is the most serious form of spermatogenesis abnormalities in male infertility. Genetic factors are important to consider as elements leading to NOA. Although many pathogenic genes have been reported, the causative genes of NOA for many patients are still unknown. In this study, we found ten point mutations in the gene encoding homeodomain-interacting protein kinase 4 (HIPK4) in patients with NOA, and using in vitro studies, we determined a premature termination point mutation (p. Lys490∗, c.1468A>T) that can cause decreased expression of HIPK4. Our phosphoproteomic analysis of Hipk4−/− testes revealed phosphorylation of multiple proteins regulated by HIPK4 during spermiogenesis. We also confirmed that a substrate of HIPK4 with four downregulated phosphorylation sites matching the xSPx motif is the known manchette-related protein RIMS-binding protein 3, which is required for sperm head morphogenesis. Therefore, we conclude HIPK4 regulates the phosphorylation of manchette protein RIMS-binding protein 3 and plays essential roles in sperm head shaping and male fertility.
Collapse
Affiliation(s)
- Xiaofei Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Chunyan Zang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yifei Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Ru Meng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yu Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Tao Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyu Yang
- Center of Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Jun Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
20
|
Cerván-Martín M, Bossini-Castillo L, Guzmán-Jiménez A, Rivera-Egea R, Garrido N, Lujan S, Romeu G, Santos-Ribeiro S, Group I, Group LC, Castilla JA, Gonzalvo MC, Clavero A, Maldonado V, Vicente FJ, Burgos M, Jiménez R, González-Muñoz S, Sánchez-Curbelo J, López-Rodrigo O, Pereira-Caetano I, Marques PI, Carvalho F, Barros A, Bassas L, Seixas S, Gonçalves J, Larriba S, Lopes AM, Palomino-Morales RJ, Carmona FD. Common genetic variation in KATNAL1 non-coding regions is involved in the susceptibility to severe phenotypes of male infertility. Andrology 2022; 10:1339-1350. [PMID: 35752927 PMCID: PMC9546047 DOI: 10.1111/andr.13221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/23/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022]
Abstract
Background Previous studies in animal models evidenced that genetic mutations of KATNAL1, resulting in dysfunction of its encoded protein, lead to male infertility through disruption of microtubule remodelling and premature germ cell exfoliation. Subsequent studies in humans also suggested a possible role of KATNAL1 single‐nucleotide polymorphisms in the development of male infertility as a consequence of severe spermatogenic failure. Objectives The main objective of the present study is to evaluate the effect of the common genetic variation of KATNAL1 in a large and phenotypically well‐characterised cohort of infertile men because of severe spermatogenic failure. Materials and methods A total of 715 infertile men because of severe spermatogenic failure, including 210 severe oligospermia and 505 non‐obstructive azoospermia patients, as well as 1058 unaffected controls were genotyped for three KATNAL1 single‐nucleotide polymorphism taggers (rs2077011, rs7338931 and rs2149971). Case–control association analyses by logistic regression assuming different models and in silico functional characterisation of risk variants were conducted. Results Genetic associations were observed between the three analysed taggers and different severe spermatogenic failure groups. However, in all cases, the haplotype model (rs2077011*C | rs7338931*T | rs2149971*A) better explained the observed associations than the three risk alleles independently. This haplotype was associated with non‐obstructive azoospermia (adjusted p = 4.96E‐02, odds ratio = 2.97), Sertoli‐cell only syndrome (adjusted p = 2.83E‐02, odds ratio = 5.16) and testicular sperm extraction unsuccessful outcomes (adjusted p = 8.99E‐04, odds ratio = 6.13). The in silico analyses indicated that the effect on severe spermatogenic failure predisposition could be because of an alteration of the KATNAL1 splicing pattern. Conclusions Specific allelic combinations of KATNAL1 genetic polymorphisms may confer a risk of developing severe male infertility phenotypes by favouring the overrepresentation of a short non‐functional transcript isoform in the testis.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain
| | - Rocío Rivera-Egea
- Andrology Laboratory and Sperm Bank, IVIRMA Valencia, Valencia, Spain.,IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Nicolás Garrido
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.,Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Saturnino Lujan
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Gema Romeu
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Samuel Santos-Ribeiro
- IVI-RMA Lisbon, Lisbon, Portugal.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | | | | | - José A Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain.,CEIFER Biobanco - NextClinics, Granada, Spain
| | - M Carmen Gonzalvo
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Vicente Maldonado
- UGC de Obstetricia y Ginecología, Complejo Hospitalario de Jaén, Jaén, Spain
| | - F Javier Vicente
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,UGC de Urología, HU Virgen de las Nieves, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain
| | - Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain
| | - Josvany Sánchez-Curbelo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Olga López-Rodrigo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Iris Pereira-Caetano
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
| | - Patricia I Marques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Filipa Carvalho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Alberto Barros
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal.,ToxOmics - Centro de Toxicogenómica e Saúde Humana, Nova Medical School, Lisbon, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Rogelio J Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - F David Carmona
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
21
|
Common Variation in the PIN1 Locus Increases the Genetic Risk to Suffer from Sertoli Cell-Only Syndrome. J Pers Med 2022; 12:jpm12060932. [PMID: 35743717 PMCID: PMC9225465 DOI: 10.3390/jpm12060932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
We aimed to analyze the role of the common genetic variants located in the PIN1 locus, a relevant prolyl isomerase required to control the proliferation of spermatogonial stem cells and the integrity of the blood–testis barrier, in the genetic risk of developing male infertility due to a severe spermatogenic failure (SPGF). Genotyping was performed using TaqMan genotyping assays for three PIN1 taggers (rs2287839, rs2233678 and rs62105751). The study cohort included 715 males diagnosed with SPGF and classified as suffering from non-obstructive azoospermia (NOA, n = 505) or severe oligospermia (SO, n = 210), and 1058 controls from the Iberian Peninsula. The allelic frequency differences between cases and controls were analyzed by the means of logistic regression models. A subtype specific genetic association with the subset of NOA patients classified as suffering from the Sertoli cell-only (SCO) syndrome was observed with the minor alleles showing strong risk effects for this subset (ORaddrs2287839 = 1.85 (1.17–2.93), ORaddrs2233678 = 1.62 (1.11–2.36), ORaddrs62105751 = 1.43 (1.06–1.93)). The causal variants were predicted to affect the binding of key transcription factors and to produce an altered PIN1 gene expression and isoform balance. In conclusion, common non-coding single-nucleotide polymorphisms located in PIN1 increase the genetic risk to develop SCO.
Collapse
|
22
|
Li L, Yuan Y, Sha J. Potential clinical value of in vitro spermatogenesis. Biol Reprod 2022; 107:95-100. [PMID: 35478246 DOI: 10.1093/biolre/ioac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 11/14/2022] Open
Abstract
Infertility has become the third most common disease threatening human health, immediately after tumors and cardiovascular diseases. Male infertility is primarily caused by spermatogenesis disorders which may be classified as either genetic or non-genetic. For part of non-genetic disorders, in vitro spermatogenesis can be induced by adjusting the microenvironment of the testis culture. Establishing the in vitro spermatogenic induction system helps to clarify the critical molecular mechanisms in spermatogonia self-renewal, spermatocyte meiosis, and sperm formation during spermatogenesis. In this review, we summarize recent advances in the field of in vitro sperm cells induction. Therefore, we hope to provide ideas and solutions for the clinical treatment of male infertility.
Collapse
Affiliation(s)
- Laihua Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China.,Gusu School, Nanjing Medical University, Nanjing 211103, China
| | - Yan Yuan
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
23
|
Adamczewska D, Słowikowska-Hilczer J, Walczak-Jędrzejowska R. The Fate of Leydig Cells in Men with Spermatogenic Failure. Life (Basel) 2022; 12:570. [PMID: 35455061 PMCID: PMC9028943 DOI: 10.3390/life12040570] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
The steroidogenic cells in the testicle, Leydig cells, located in the interstitial compartment, play a vital role in male reproductive tract development, maintenance of proper spermatogenesis, and overall male reproductive function. Therefore, their dysfunction can lead to all sorts of testicular pathologies. Spermatogenesis failure, manifested as azoospermia, is often associated with defective Leydig cell activity. Spermatogenic failure is the most severe form of male infertility, caused by disorders of the testicular parenchyma or testicular hormone imbalance. This review covers current progress in knowledge on Leydig cells origin, structure, and function, and focuses on recent advances in understanding how Leydig cells contribute to the impairment of spermatogenesis.
Collapse
Affiliation(s)
| | | | - Renata Walczak-Jędrzejowska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, 92-213 Lodz, Poland; (D.A.); (J.S.-H.)
| |
Collapse
|
24
|
Goericke-Pesch S, Reifarth L, Behrens Mathiesen C, Schuler G, Umbach AK, Körber H. Chronic Immune-Mediated Orchitis Is the Major Cause of Acquired Non-obstructive Azoospermia in Dogs. Front Vet Sci 2022; 9:865967. [PMID: 35433905 PMCID: PMC9010537 DOI: 10.3389/fvets.2022.865967] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Azoospermia, the lack of spermatozoa in the ejaculate, is the most common finding in infertile but otherwise healthy male dogs and represents an increasing reproductive health issue in men, too. The diagnosis can be further classified as non-obstructive azoospermia and obstructive azoospermia due to an obstruction of the deferent ducts. Although non-obstructive azoospermia comprises more than half of azoospermic cases in men and is a common cause of infertility in the male dog, knowledge of the underlying etiology and pathophysiology is still strongly limited, and much uncertainty exists about the true incidence and possible treatment options. Therefore, this study aims to investigate and characterize infertile canine patients in detail by combining results of andrological examinations (clinical parameters, semen analysis, bacterial examination of semen, and Brucella canis serology), endocrine analysis (luteinizing hormone, testosterone, estradiol-17ß, and thyroid function), analysis of the alkaline phosphatase in seminal plasma, and histological assessment of testicular biopsies of 10 azoospermic dogs. Our results not only verify non-obstructive etiology for 9/10 cases of canine azoospermia but also further identified significant histopathological changes of the testicular tissue with severely disrupted spermatogenesis, including fibrotic remodeling, vacuolization, Sertoli-cell-only syndrome, tubular shadows, and an increase of the interstitial and vascular area. In addition, three dogs showed local and six dogs generalized immune-cell infiltration, indicating chronic immune-mediated orchitis. Only in one case (no. 1) that no immune cells were found, and obstructive azoospermia was suspected due to low alkaline phosphatase activity. Furthermore, the detection of anti-thyroideal antibodies in two dogs indicates an autoimmune thyroid disease and a correlation between the occurrence of thyroidal disorders and azoospermia. Our results confirm previous findings and contribute additional evidence suggesting that chronic immune-mediated orchitis is the major cause of infertility in dogs. Further studies should focus on uncovering underlying inflammatory processes behind spermatogenic failure in these cases and identify possible treatment options to (re-)initialize spermatogenesis.
Collapse
Affiliation(s)
- Sandra Goericke-Pesch
- Department of Veterinary Sciences, Section for Veterinary Reproduction and Obstetrics, Faculty of Health and Medical Sciences, University of Copenhagen, Tåstrup, Denmark
- Reproductive Unit – Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- *Correspondence: Sandra Goericke-Pesch
| | - Larena Reifarth
- Reproductive Unit – Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christina Behrens Mathiesen
- Department of Veterinary Sciences, Section for Veterinary Reproduction and Obstetrics, Faculty of Health and Medical Sciences, University of Copenhagen, Tåstrup, Denmark
| | - Gerhard Schuler
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals, Giessen, Germany
| | | | - Hanna Körber
- Department of Veterinary Sciences, Section for Veterinary Reproduction and Obstetrics, Faculty of Health and Medical Sciences, University of Copenhagen, Tåstrup, Denmark
- Reproductive Unit – Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
25
|
Deng CY, Zhang Z, Tang WH, Jiang H. Microdeletions and vertical transmission of the Y-chromosome azoospermia factor region. Asian J Androl 2022; 25:5-12. [PMID: 35259786 PMCID: PMC9933971 DOI: 10.4103/aja2021130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Spermatogenesis is regulated by several Y chromosome-specific genes located in a specific region of the long arm of the Y chromosome, the azoospermia factor region (AZF). AZF microdeletions are the main structural chromosomal abnormalities that cause male infertility. Assisted reproductive technology (ART) has been used to overcome natural fertilization barriers, allowing infertile couples to have children. However, these techniques increase the risk of vertical transmission of genetic defects. Despite widespread awareness of AZF microdeletions, the occurrence of de novo deletions and overexpression, as well as the expansion of AZF microdeletion vertical transmission, remains unknown. This review summarizes the mechanism of AZF microdeletion and the function of the candidate genes in the AZF region and their corresponding clinical phenotypes. Moreover, vertical transmission cases of AZF microdeletions, the impact of vertical inheritance on male fertility, and the prospective direction of research in this field are also outlined.
Collapse
Affiliation(s)
- Chen-Yao Deng
- Department of Urology, Third Hospital of Peking University, Beijing 100089, China,Department of Andrology, Third Hospital of Peking University, Beijing 100089, China
| | - Zhe Zhang
- Department of Urology, Third Hospital of Peking University, Beijing 100089, China,Department of Andrology, Third Hospital of Peking University, Beijing 100089, China
| | - Wen-Hao Tang
- Department of Urology, Third Hospital of Peking University, Beijing 100089, China,Department of Andrology, Third Hospital of Peking University, Beijing 100089, China,Department of Human Sperm Bank, Third Hospital of Peking University, Beijing 100089, China,
Correspondence: Dr. H Jiang () or Dr. WH Tang ()
| | - Hui Jiang
- Department of Urology, Third Hospital of Peking University, Beijing 100089, China,Department of Andrology, Third Hospital of Peking University, Beijing 100089, China,Department of Human Sperm Bank, Third Hospital of Peking University, Beijing 100089, China,
Correspondence: Dr. H Jiang () or Dr. WH Tang ()
| |
Collapse
|
26
|
Lan KC, Wang HJ, Wang TJ, Lin HJ, Chang YC, Kang HY. Y-chromosome genes associated with sertoli cell-only syndrome identified by array comparative genome hybridization. Biomed J 2022; 46:100524. [PMID: 35358715 DOI: 10.1016/j.bj.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The precise contribution of each chromosome gene or gene family in achieving male fertility is still the subject of debate. Most studies have examined male populations with heterogeneous causes of infertility, and have therefore reached controversial or uncertain conclusions. This study uses Y-chromosome array-based comparative genomic hybridization (aCGH) to examine a population of males with a uniform sertoli cell-only syndrome (SCOS) infertility phenotype. METHODS Initial analysis of gene copy number variations in 8 SCOS patients, with determination of the log-ratio of probe signal intensity against a DNA reference, was performed using the Y-chromosome NimbleGen aCGH. To confirm the role of candidate genes, real-time quantitative RT-PCR was used to compare 19 patients who had SCOS non-obstructive azoospermia with 15 patients who had obstructive azoospermia but normal spermatogenesis. RESULTS Our initial aCGH experiments identified CDY1a and CDY1b double deletions in all 8 patients who had total germ cell depletion. However, 5 patients had DAZ1/2 and DAZ3/4 deletions, 1 patient had a DAZ2 and DAZ3/4 deletion, and 2 patients had no DAZ1/2 or DAZ3/4 deletions. Examination of testicular mRNA expression in another 19 patients with SCOS indicated all patients had no detectable levels of CDY1. CONCLUSIONS Our findings indicate that CDY1 deletion in SCOS patients, and analysis of the expression of DAZ and CDY1 genes using aCGH and quantitative RT-PCR, may be useful to predict the presence of mature spermatozoa.
Collapse
Affiliation(s)
- Kuo-Chung Lan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan; Center for Menopause and Reproductive Medicine Research, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Hung-Jen Wang
- Department of Urology, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Jou Wang
- Department of Pediatrics, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Jung Lin
- Center for Menopause and Reproductive Medicine Research, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Chiao Chang
- Center for Menopause and Reproductive Medicine Research, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hong-Yo Kang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan; Center for Menopause and Reproductive Medicine Research, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
27
|
Barney R, Stalker K, Lutes A, Bayles A, Aston K, Jenkins T. Assessment of seminal cell-free DNA as a potential contaminate in studies of human sperm DNA methylation. Andrology 2022; 10:702-709. [PMID: 35179315 DOI: 10.1111/andr.13163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/10/2022] [Accepted: 01/30/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Human seminal cell-free DNA (cfDNA) methylation patterns have not yet been thoroughly explored, however, recent work in mouse has suggested that some cfDNA encountered in the epididymis may contaminate DNA methylation studies assessing the mature sperm. Such contamination could clearly prove to be a significant confounder, for many reasons, in epigenetic studies of male factor infertility. OBJECTIVES To explore the nature of seminal cfDNA methylation and the likelihood that it would be retained following standard semen sample processing for epigenetic analysis. MATERIALS AND METHODS We assessed 12 semen samples collected at Utah Fertility Center. For each sample, seminal cfDNA was isolated from the sperm pellet. The sperm was split into three aliquots including one exposed to DNase to remove any additional cfDNA (termed "pure sperm"), one not exposed to DNase, and one exposed to DNase but reintroduced to seminal cfDNA. We additionally assessed blood DNA as our benchmark for somatic cell DNA methylation patterns. DNA methylation was measured via Illumina's 850k array and assessed for differential regional methylation. RESULTS 46,352 differentially methylated regions (FDR > 40) were identified between pure sperm and seminal cfDNA. We found at these sites that the average DNA methylation in cfDNA always fell somewhere between the average methylation in sperm and in blood. We also assessed each sperm treatment groups at all 46,352 regions of interest and found no significant differences at any of these sites. DISCUSSION AND CONCLUSION Our data suggest that seminal cfDNA is a clear mixture of both somatic and germline DNA and that cfDNA is not a contaminating feature in sperm DNA methylation studies following standard protocols in human sperm DNA extraction. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ryan Barney
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Kelaney Stalker
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Andrew Lutes
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA.,Utah Fertility Center, Pleasant Grove, UT, USA
| | | | - Kenneth Aston
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Tim Jenkins
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA.,Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
28
|
Cui J, Du Q, Fu W. Application of real-time shear wave elastography in the assessment of male infertility. Quant Imaging Med Surg 2022; 12:1505-1516. [PMID: 35111643 DOI: 10.21037/qims-21-648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/20/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Shear wave elastography (SWE) is recognized as a suitable imaging modality for identifying and characterizing testicular diseases. Recent exploration of SWE has focused on its feasibility in evaluating histopathological changes in the testicular parenchyma, with researchers increasingly focusing on the relationship between testicular stiffness and male fertility. In this study, we aimed to investigate the diagnostic value of SWE for distinguishing the relationship between spermatogenic defects and testicular stiffness in males of reproductive age. METHODS This was a single center, cross-sectional study conducted from July 2017 to December 2019. A total of 1,116 consecutive patients who were voluntarily participating in in-vitro fertilization (IVF)-assisted conception at our hospital were recruited to the study. The cohort included 497 normozoospermia patients (Group I), 335 with normozoospermia and decreased motility and agglutination (Group II), 138 with oligozoospermia (Group III), 105 with non-obstructive azoospermia (Group-NOA), and 41 with obstructive azoospermia (Group-OA). We conducted SWE of each participant's testes and the testicular elastic modulus was calculated. The differences of testicular elastic modulus were compared among groups. Linear regression analysis was conducted to determine the correlation between sperm concentration and either testicular volume or testicular elastic modulus. Receiver operating characteristic (ROC) curves were drawn to evaluate the diagnostic efficiency of the maximum elastic modulus (Emax), mean elastic modulus (Emean), and maximum minus the minimum elastic modulus {E[max-min]}. RESULTS The Emax, Emean, and E[max-min] increased gradually in groups I, II, III, and Group-NOA, with statistical differences between groups (P<0.01). Testicular volume was shown to be positively correlated with sperm concentration (r=0.476; P<0.01), while the Emax, Emean, and E[max-min] were negatively correlated with sperm concentration (r=-0.511, -0.357, and -0.524, respectively; P<0.01). The ROC curves were established based on the Emax, Emean, and E[max-min] and were used to distinguish Group-OA from Group-NOA. The areas under the ROC curve (AUCs) were 0.910, 0.863, and 0.900, respectively. We also used ROC curves to distinguish the severe oligozoospermia subgroup and Group-NOA from other groups, for which the AUCs were 0.877, 0.791, and 0.878, respectively. CONCLUSIONS The SWE is an effective supplement to routine ultrasound examination and can be used to diagnose and differentiate spermatogenetic dysfunction.
Collapse
Affiliation(s)
- Jun Cui
- Second Department of Urology, Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Du
- Andrology Clinic of Reproductive Medical Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Fu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Mutations of MSH5 in nonobstructive azoospermia (NOA) and rescued via in vivo gene editing. Signal Transduct Target Ther 2022; 7:1. [PMID: 34980881 PMCID: PMC8724278 DOI: 10.1038/s41392-021-00710-4] [Citation(s) in RCA: 194] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/20/2021] [Accepted: 07/01/2021] [Indexed: 11/09/2022] Open
|
30
|
Xie C, Wang W, Tu C, Meng L, Lu G, Lin G, Lu LY, Tan YQ. OUP accepted manuscript. Hum Reprod Update 2022; 28:763-797. [PMID: 35613017 DOI: 10.1093/humupd/dmac024] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chunbo Xie
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Weili Wang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaofeng Tu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lanlan Meng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
31
|
Tang Q, Wu W, Lu Y, Zhou Y, Wu W, Li J, Pan L, Ling X, Pan F. Joint analysis of m 6A and mRNA expression profiles in the testes of idiopathic nonobstructive azoospermia patients. Front Endocrinol (Lausanne) 2022; 13:1063929. [PMID: 36589848 PMCID: PMC9798116 DOI: 10.3389/fendo.2022.1063929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Growing evidence has indicated that epigenetic factors might be associated with the pathophysiology of idiopathic nonobstructive azoospermia (iNOA). As the most common RNA modification, N6-methyladenosine (m6A) methylation has recently attracted more attention in the regulation of spermatogenesis; however, its role in the mechanisms of iNOA is still unclear. OBJECTIVE To determine the differential expression of mRNA and m6A methylation status in the testes of iNOA patients. METHODS Testes tissues from diagnosed iNOA and controlled obstructive azoospermia (OA) patients were collected and grouped according to the histological examinations. Total RNA was isolated and quantified by an m6A RNA Methylation Quantification Kit. The expression level of mRNAs was detected by qRT-PCR analysis. Differentially expressed m6A genes were analyzed using the human ArrayStar m6A epitranscriptomic microarray, and bioinformatics analyses were applied. RESULTS A total of 36 iNOA and 8 controlled patients were included. The global expression of m6A in the iNOA group was significantly decreased. A dosage relationship was observed between the m6A decline and the degree of impaired spermatogenesis, with the successive process of normal spermatogeneis, hypospermatogenesis (HP), maturation arrest (MA), and Sertoli cell-only syndrome (SO). Four down-expressed genes (BDNF, TMEM38B, RPL3L, and C22orf42) displayed significantly lower expression of m6A methylation. Additionally, they also showed a gradually down-expressed tendency in the three groups (OA, HP, SO/MA groups). Moreover, m6A reader EIF3A was approved to have differential expression through microarrays analysis, which was consistent with the result from the qRT-PCR test. CONCLUSIONS The m6A expression was gradually downregulated in the testes tissue from iNOA patients in accordance with the degree of spermatogenic dysfunction. The determined differential expression of mRNA and m6A methylation status may represent potentially novel molecular targets for the mechanism study of iNOA in the epigenetic level, which could benefit the understanding of the pathophysiology of iNOA.
Collapse
Affiliation(s)
- Qiuqin Tang
- Department of Obstetrics, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yiwen Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yijie Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wangfei Wu
- Department of Pathology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jinhui Li
- Department of Urology, Stanford University Medical Center, Stanford, CA, United States
| | - Lianjun Pan
- Department of Andrology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiufeng Ling
- Department of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Feng Pan
- Department of Andrology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- Department of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- *Correspondence: Feng Pan,
| |
Collapse
|
32
|
Cazin C, Neirijnck Y, Loeuillet C, Wehrli L, Kühne F, Lordey I, Mustapha SFB, Bouker A, Zouari R, Thierry-Mieg N, Nef S, Arnoult C, Ray PF, Kherraf ZE. Combined Use of Whole Exome Sequencing and CRISPR/Cas9 to Study the Etiology of Non-Obstructive Azoospermia: Demonstration of the Dispensable Role of the Testis-Specific Genes C1orf185 and CCT6B. Cells 2021; 11:cells11010118. [PMID: 35011680 PMCID: PMC8750304 DOI: 10.3390/cells11010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
The genetic landscape of male infertility is highly complex. It is estimated that at least 4000 genes are involved in human spermatogenesis, but only few have so far been extensively studied. In this study, we investigated by whole exome sequencing two cases of idiopathic non-obstructive azoospermia (NOA) due to severe hypospermatogenesis. After variant filtering and prioritizing, we retained for each patient a homozygous loss-of-function (LoF) variant in a testis-specific gene, C1orf185 (c.250C>T; p.Gln84Ter) and CCT6B (c.615-2A>G), respectively. Both variants are rare according to the gnomAD database and absent from our local control cohort (n = 445). To verify the implication of these candidate genes in NOA, we used the CRISPR/Cas9 system to invalidate the mouse orthologs 4930522H14Rik and Cct6b and produced two knockout (KO) mouse lines. Sperm and testis parameters of homozygous KO adult male mice were analyzed and compared with those of wild-type animals. We showed that homozygous KO males were fertile and displayed normal sperm parameters and a functional spermatogenesis. Overall, these results demonstrate that not all genes highly and specifically expressed in the testes are essential for spermatogenesis, and in particular, we conclude that bi-allelic variants of C1orf185 and CCT6B are most likely not to be involved in NOA and male fertility.
Collapse
Affiliation(s)
- Caroline Cazin
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000 Grenoble, France; (C.C.); (C.L.); (C.A.); (P.F.R.)
- UM GI-DPI, CHU Grenoble Alpes, 38000 Grenoble, France;
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Genève 4, Switzerland; (Y.N.); (L.W.); (F.K.); (S.N.)
| | - Corinne Loeuillet
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000 Grenoble, France; (C.C.); (C.L.); (C.A.); (P.F.R.)
| | - Lydia Wehrli
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Genève 4, Switzerland; (Y.N.); (L.W.); (F.K.); (S.N.)
| | - Françoise Kühne
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Genève 4, Switzerland; (Y.N.); (L.W.); (F.K.); (S.N.)
| | | | - Selima Fourati Ben Mustapha
- Centre d’Aide Médicale à la Procréation, Polyclinique les Jasmins, Centre Urbain Nord, Tunis 1003, Tunisia; (S.F.B.M.); (A.B.); (R.Z.)
| | - Amin Bouker
- Centre d’Aide Médicale à la Procréation, Polyclinique les Jasmins, Centre Urbain Nord, Tunis 1003, Tunisia; (S.F.B.M.); (A.B.); (R.Z.)
| | - Raoudha Zouari
- Centre d’Aide Médicale à la Procréation, Polyclinique les Jasmins, Centre Urbain Nord, Tunis 1003, Tunisia; (S.F.B.M.); (A.B.); (R.Z.)
| | | | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Genève 4, Switzerland; (Y.N.); (L.W.); (F.K.); (S.N.)
| | - Christophe Arnoult
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000 Grenoble, France; (C.C.); (C.L.); (C.A.); (P.F.R.)
| | - Pierre F. Ray
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000 Grenoble, France; (C.C.); (C.L.); (C.A.); (P.F.R.)
- UM GI-DPI, CHU Grenoble Alpes, 38000 Grenoble, France;
| | - Zine-Eddine Kherraf
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000 Grenoble, France; (C.C.); (C.L.); (C.A.); (P.F.R.)
- UM GI-DPI, CHU Grenoble Alpes, 38000 Grenoble, France;
- Correspondence: ; Tel.: +33-(0)4-7676-8303
| |
Collapse
|
33
|
Zhou R, Lv X, Chen T, Chen Q, Tian H, Yang C, Guo W, Liu C. Construction and external validation of a 5-gene random forest model to diagnose non-obstructive azoospermia based on the single-cell RNA sequencing of testicular tissue. Aging (Albany NY) 2021; 13:24219-24235. [PMID: 34738918 PMCID: PMC8610122 DOI: 10.18632/aging.203675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 01/02/2023]
Abstract
Non-obstructive azoospermia (NOA) is among the most severe factors for male infertility, but our understandings of the latent biological mechanisms remain insufficient. The single-cell RNA sequencing (scRNA-seq) data of 432 testicular cells isolated from the patient with NOA was analyzed, and the cell samples were grouped into 5 cell clusters. A sum of 455 cell markers was identified and then included in the protein-protein interaction network. The Top 5 most critical genes in the network, including CCT8, CDC6, PSMD1, RPS4X, RPL36A, were selected for the diagnosis model construction through the random forest (RF). The RF model was a strong classifier for NOA and obstructive azoospermia (OA), which was validated in the training cohort (n = 58, AUC = 1) and external validation cohort (n = 20, AUC = 0.9). We collected the seminal plasma samples and testicular biopsy samples from 20 OA and 20 NOA cases from the local hospital, and the gene expression was detected via Real-Time quantitative Polymerase Chain Reaction (RT-qPCR) and Immunohistochemistry. The RF model also exhibited high accuracy (AUC = 0.725) in the local cohort. In summary, a novel gene signature was developed and externally validated based on scRNA-seq analysis, providing some new biomarkers to uncover the underlying mechanisms and a promising clinical tool for diagnosis in NOA.
Collapse
Affiliation(s)
- Ranran Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xianyuan Lv
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Tianle Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qi Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hu Tian
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Cheng Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenbin Guo
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Cundong Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Cao D, Shi F, Guo C, Liu Y, Lin Z, Zhang J, Li RHW, Yao Y, Liu K, Ng EHY, Yeung WSB, Wang T. A pathogenic DMC1 frameshift mutation causes nonobstructive azoospermia but not primary ovarian insufficiency in humans. Mol Hum Reprod 2021; 27:6369522. [PMID: 34515795 DOI: 10.1093/molehr/gaab058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Nonobstructive azoospermia (NOA) and diminished ovarian reserve (DOR) are two disorders that can lead to infertility in males and females. Genetic factors have been identified to contribute to NOA and DOR. However, the same genetic factor that can cause both NOA and DOR remains largely unknown. To explore the candidate pathogenic gene that causes both NOA and DOR, we conducted whole-exome sequencing (WES) in a non-consanguineous family with two daughters with DOR and a son with NOA. We detected one pathogenic frameshift variant (NM_007068:c.28delG, p. Glu10Asnfs*31) following a recessive inheritance mode in a meiosis gene DMC1 (DNA meiotic recombinase 1). Clinical analysis showed reduced antral follicle number in both daughters with DOR, but metaphase II oocytes could be retrieved from one of them. For the son with NOA, no spermatozoa were found after microsurgical testicular sperm extraction. A further homozygous Dmc1 knockout mice study demonstrated total failure of follicle development and spermatogenesis. These results revealed a discrepancy of DMC1 action between mice and humans. In humans, DMC1 is required for spermatogenesis but is dispensable for oogenesis, although the loss of function of this gene may lead to DOR. To our knowledge, this is the first report on the homozygous frameshift mutation as causative for both NOA and DOR and demonstrating that DMC1 is dispensable in human oogenesis.
Collapse
Affiliation(s)
- Dandan Cao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangzhou, China
| | - Fu Shi
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Chenxi Guo
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ye Liu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zexiong Lin
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Juanhui Zhang
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Raymond Hang Wun Li
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanqing Yao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangzhou, China
| | - Kui Liu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangzhou, China.,Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ernest Hung Yu Ng
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - William Shu Biu Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangzhou, China.,Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Tianren Wang
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangzhou, China
| |
Collapse
|
35
|
Tang D, Lv M, Gao Y, Cheng H, Li K, Xu C, Geng H, Li G, Shen Q, Wang C, He X, Cao Y. Novel variants in helicase for meiosis 1 lead to male infertility due to non-obstructive azoospermia. Reprod Biol Endocrinol 2021; 19:129. [PMID: 34429122 PMCID: PMC8383409 DOI: 10.1186/s12958-021-00815-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Non-obstructive azoospermia (NOA) is the most severe form of male infertility; more than half of the NOA patients are idiopathic. Although many NOA risk genes have been detected, the genetic factors for NOA in majority of the patients are unknown. In addition, it is difficult to retrieve sperm from these patients despite using the microsurgical testicular sperm extraction (microTESE) method. Therefore, we conducted this genetic study to identify the potential genetic factors responsible for NOA and investigate the sperm retrieval rate of microTESE for genetically deficient NOA patients. METHODS Semen analyses, sex hormone testing, and testicular biopsy were performed to categorize the patients with NOA. The chromosome karyotypes and Y chromosome microdeletion analyses were used to exclude general genetic factors. Whole exome sequencing and Sanger sequencing were performed to identify potential genetic variants in 51 patients with NOA. Hematoxylin and eosin staining (H&E) and anti-phosphorylated H2AX were used to assess the histopathology of spermatogenesis. Quantitative real time-polymerase chain reaction, western blotting, and immunofluorescence were performed to verify the effects of gene variation on expression. RESULTS We performed whole exome sequencing in 51 NOA patients and identified homozygous helicase for meiosis 1(HFM1) variants (NM_001017975: c.3490C > T: p.Q1164X; c.3470G > A: p.C1157Y) in two patients (3.9%, 2/51). Histopathology of the testis showed that spermatogenesis was completely blocked at metaphase in these two patients carrying the HFM1 homozygous variants. In comparison with unaffected controls, we found a significant reduction in the levels of HFM1 mRNA and protein expression in the testicular tissues from these two patients. The patients were also subjected to microTESE treatment, but the sperms could not be retrieved. CONCLUSIONS This study identified novel homozygous variants of HFM1 that are responsible for spermatogenic failure and NOA, and microTESE did not aid in retrieving sperms from these patients.
Collapse
Affiliation(s)
- Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Huiru Cheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guanjian Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qunshan Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
36
|
Gu L, Liu X, Yang J, Bai J. A new hemizygous missense mutation, c.454T>C (p.S152P), in AKAP4 gene is associated with asthenozoospermia. Mol Reprod Dev 2021; 88:587-597. [PMID: 34409659 DOI: 10.1002/mrd.23529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/07/2022]
Abstract
Asthenozoospermia (ASZ) is a condition characterized by reduced forward motility of spermatozoa affecting approximately 19% of infertile men. A kinase anchor protein 4 (AKAP4) is an X-linked testis-specific gene and plays a major role in sperm motility and flagella formation. However, few studies have reported its association with ASZ. Here, we sequenced for exonic mutations of human AKAP4 gene by high-fidelity PCR/Sanger sequencing in peripheral blood samples from 150 ASZ patients and 150 fertile men. We reported the identification of three novel hemizygous mutations unique to four ASZ patients, including one patient carrying missense mutation c.454T>C (p.S152P), two patient carrying synonymous mutation c.1173T>C (p.H391H), and one patient carrying synonymous mutation c.2007 A>G (p.R669R). The p.S152P mutation was located in a precursor pro-polypeptide domain of AKAP4 protein, which was predicted to be damaging by SIFT and PolyPhen-2 and could cause the protein accumulation in the cytoplasm of COS-7 cells. The mature protein of AKAP4 was absent in spermatozoa of ASZ patient harboring AKAP4 p.S152P mutation. Further in vitro cellular assays showed that reactive oxygen species (ROS), malondialdehyde (MDA), myeloperoxidase (MPO) levels, and apoptotic cells were increased in GC2-spd cells by AKAP4 p.S152P mutant protein, whereas superoxide dismutase (SOD) level was decreased. AKAP4 p.H391H and p.R669R mutant proteins were coimmunoprecipitated with ribonuclease T2 (RNASET2) protein in GC2-spd cells, whereas no interaction between the AKAP4 p.S152P mutant protein and RNASET2 protein was observed. In addition, AKAP4 p.S152P mutant protein could decrease the activity of PKA/PI3K signaling. Overall, our study identifies a novel AKAP4 p.S152P mutation is associated with ASZ probably through affecting oxidative stress and cell apoptosis by regulating the interaction with RNASET2 and the activity of the PKA/PI3K signaling pathway.
Collapse
Affiliation(s)
- Longjie Gu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Bai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
37
|
Altered Gene Expression in the Testis of Infertile Patients with Nonobstructive Azoospermia. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5533483. [PMID: 34221106 PMCID: PMC8211532 DOI: 10.1155/2021/5533483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/14/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022]
Abstract
Background The molecular mechanism of nonobstructive azoospermia (NOA) remains unclear. The aim of this study was to identify gene expression changes in NOA patients and to explore potential biomarkers and therapeutic targets. Methods The gene expression profiles of GSE45885 and GSE145467 were collected from the Gene Expression Omnibus (GEO) database, and the differences between NOA and normal spermatogenesis were analyzed. Enrichment analysis was performed to explore biological functions for common differentially expressed genes (DEGs) in GSE45885 and GSE145467. Coexpression analysis of DEGs in GSE45885 was performed, and two modules with the highest correlation with NOA were screened. Key genes were then screened from the intersection genes of the two modules and common DEGs and PPI network. The expression of key genes was validated by quantitative real-time polymerase chain reaction (qRT-PCR) experiments. Finally, through miRTarBase, miRDB, and RAID, the miRNAs were predicted to regulate key genes, respectively. Results A total of 345 common DEGs were identified and they were mainly related to spermatogenesis, insulin signaling pathway. Coexpression analysis of DEGs in GSE45885 yielded eight modules; MEblack and MEturquoise had the highest correlation with NOA. Six genes in MEturquoise and RNF141 in MEblack were identified as key genes. qRT-PCR experiments validated the differential expression of key genes between NOA and control. Furthermore, RNF141 was regulated by the largest number of miRNAs. Conclusion Our findings suggest that the significant change expression of key genes may be potential markers and therapeutic targets of NOA and may have some impact on the development of NOA.
Collapse
|
38
|
Analysis of STAG3 variants in Chinese non-obstructive azoospermia patients with germ cell maturation arrest. Sci Rep 2021; 11:10077. [PMID: 33980954 PMCID: PMC8115624 DOI: 10.1038/s41598-021-89559-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
STAG3 is essential for male meiosis and testis of male Stag3-/- mice shows the histopathological type of germ cell maturation arrest (MA). Whether variants of the STAG3 gene exist in Chinese idiopathic non-obstructive azoospermia (NOA) patients needs to be determined. We recruited 58 Chinese NOA men with MA who underwent testis biopsy and 192 fertile men as the control group. The 34 exons of the STAG3 gene were amplified using polymerase chain reaction (PCR) and sequenced. We identified eight novel single nucleotide polymorphisms (SNPs), including two missense SNPs (c.433T > C in exon2 and c.553A > G in exon3), three synonymous SNPs (c.539G > A, c.569C > T in exon3, and c.1176C > G in exon8), and three SNPs in introns. The allele and genotype frequencies of the novel and other SNPs have no significant differences between two groups. Our results indicated that variants in the coding sequence of the STAG3 gene were uncommon in NOA patients with MA in Chinese population. Future studies in large cohorts of different ethnic populations will be needed to determine the association between the STAG3 gene and NOA.
Collapse
|
39
|
Barišić A, Buretić Tomljanović A, Starčević Čizmarević N, Ostojić S, Romac P, Vraneković J. A rare Y-autosome translocation found in a patient with nonobstructive azoospermia: Case report. Syst Biol Reprod Med 2021; 67:307-313. [PMID: 33957831 DOI: 10.1080/19396368.2021.1898701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Y‑autosome translocations are relatively uncommon in humans, with t(Y;1) stated to be even rarer. On the contrary, pericentric inversion 9 is the most commonly seen inversion of chromosome . Although considered to have no significant effect on male fertility, the literature reporting on reproductive risks for both aberrations remains controversial. We report here, as far as we know, the first case of a unique combination of balanced reciprocal translocation t(Y;1) with pericentric inversion of chromosome 9 in a patient with nonobstructive azoospermia (NOA) and an otherwise normal phenotype. Our patient was a 37-year-old Caucasian male sent to our Department due to azoospermia reported by semen analysis. The cytogenetic analysis revealed a balanced reciprocal translocation including chromosomes Y and 1 in all observed metaphases: 46, X,t(Y;1)(q12;q21) and a pericentric inversion of chromosome 9: inv(9)(p12q13). By performing metaphase FISH, the t(Y;1) translocation was confirmed. By means of multiplex-PCR, no Y-chromosome microdeletions were detected in the AZF regions. This report demonstrates a unique karyotype showing balanced reciprocal translocation t(Y;1)(q12;q21) with pericentric inversion 9: inv(9)(p12q13), in a patient with NOA, and highlights the importance of appropriate genetic counseling for patients with regard to the medical management of balanced chromosomal aberrations.
Collapse
Affiliation(s)
- Anita Barišić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Alena Buretić Tomljanović
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Nada Starčević Čizmarević
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Saša Ostojić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Pavle Romac
- The Assisted Reproductive Technology (ART) Laboratory, Private Medical Center Cito, Split, Croatia
| | - Jadranka Vraneković
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
40
|
Cerván-Martín M, Bossini-Castillo L, Rivera-Egea R, Garrido N, Luján S, Romeu G, Santos-Ribeiro S, Castilla JA, Gonzalvo MDC, Clavero A, Vicente FJ, Guzmán-Jiménez A, Burgos M, Barrionuevo FJ, Jiménez R, Sánchez-Curbelo J, López-Rodrigo O, Peraza MF, Pereira-Caetano I, Marques PI, Carvalho F, Barros A, Bassas L, Seixas S, Gonçalves J, Larriba S, Lopes AM, Carmona FD, Palomino-Morales RJ. Effect and in silico characterization of genetic variants associated with severe spermatogenic disorders in a large Iberian cohort. Andrology 2021; 9:1151-1165. [PMID: 33784440 DOI: 10.1111/andr.13009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Severe spermatogenic failure (SpF) represents the most extreme manifestation of male infertility, as it decreases drastically the semen quality leading to either severe oligospermia (SO, <5 million spermatozoa/mL semen) or non-obstructive azoospermia (NOA, complete lack of spermatozoa in the ejaculate without obstructive causes). OBJECTIVES The main objective of the present study is to analyze in the Iberian population the effect of 6 single-nucleotide polymorphisms (SNPs) previously associated with NOA in Han Chinese through genome-wide association studies (GWAS) and to establish their possible functional relevance in the development of specific SpF patterns. MATERIALS AND METHODS We genotyped 674 Iberian infertile men (including 480 NOA and 194 SO patients) and 1058 matched unaffected controls for the GWAS-associated variants PRMT6-rs12097821, PEX10-rs2477686, CDC42BPA-rs3000811, IL17A-rs13206743, ABLIM1-rs7099208, and SOX5-rs10842262. Their association with SpF, SO, NOA, and different NOA phenotypes was evaluated by logistic regression models, and their functional relevance was defined by comprehensive interrogation of public resources. RESULTS ABLIM1-rs7099208 was associated with SpF under both additive (OR = 0.86, p = 0.036) and dominant models (OR = 0.78, p = 0.026). The CDC42BPA-rs3000811 minor allele frequency was significantly increased in the subgroup of NOA patients showing maturation arrest (MA) of germ cells compared to the remaining NOA cases under the recessive model (OR = 4.45, p = 0.044). The PEX10-rs2477686 SNP was associated with a negative testicular sperm extraction (TESE) outcome under the additive model (OR = 1.32, p = 0.034). The analysis of functional annotations suggested that these variants affect the testis-specific expression of nearby genes and that lincRNA may play a role in SpF. CONCLUSIONS Our data support the association of three previously reported NOA risk variants in Asians (ABLIM1-rs7099208, CDC42BPA-rs3000811, and PEX10-rs2477686) with different manifestations of SpF in Iberians of European descent, likely by influencing gene expression and lincRNA deregulation.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Rocío Rivera-Egea
- Andrology Laboratory and Sperm Bank, IVIRMA Valencia, Valencia, Spain.,IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - Nicolás Garrido
- IVI Foundation, Health Research Institute La Fe, Valencia, Spain.,Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Saturnino Luján
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Gema Romeu
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Samuel Santos-Ribeiro
- IVI-RMA Lisbon, Lisbon, Portugal.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | | | - José A Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,UGC Obstetricia y Ginecología, Unidad de Reproducción, HU Virgen de las Nieves, Granada, Spain.,CEIFER Biobanco - NextClinics, Granada, Spain
| | - María Del Carmen Gonzalvo
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,UGC Obstetricia y Ginecología, Unidad de Reproducción, HU Virgen de las Nieves, Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,UGC Obstetricia y Ginecología, Unidad de Reproducción, HU Virgen de las Nieves, Granada, Spain
| | - Francisco Javier Vicente
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,UGC de Urología, HU Virgen de las Nieves, Granada, Spain
| | - Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | | | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Josvany Sánchez-Curbelo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Olga López-Rodrigo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - María Fernanda Peraza
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Iris Pereira-Caetano
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
| | - Patrícia Isabel Marques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Filipa Carvalho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Alberto Barros
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal.,Nova Medical School, ToxOmics - Centro de Toxicogenómica e Saúde Humana, Lisbon, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alexandra Manuel Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Francisco David Carmona
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Rogelio Jesús Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| |
Collapse
|
41
|
Omics in Seminal Plasma: An Effective Strategy for Predicting Sperm Retrieval Outcome in Non-obstructive Azoospermia. Mol Diagn Ther 2021; 25:315-325. [PMID: 33860468 DOI: 10.1007/s40291-021-00524-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Non-obstructive azoospermia (NOA) is a severe form of male factor infertility resulting from the impairment of sperm production. Surgical sperm retrieval followed by intracytoplasmic sperm injection (ICSI) is the only alternative for NOA patients to have their own genetic children. Nevertheless, due to an approximately 50% chance of success, harvesting sperm from these patients remains challenging. Thus, discovering noninvasive biomarkers, which are able to reliably predict the probability of sperm acquisition, not only can eliminate the risk of surgery but also can lower the costs of NOA diagnosis and treatment. Seminal plasma is the non-cellular and liquid portion of the ejaculate that consists of the secretions originating from testes and male accessory glands. In past years, a wide range of biomolecules including DNAs, RNAs, proteins, and metabolic intermediates have been identified by omics techniques in human seminal plasma. The current review aimed to briefly describe genomic, transcriptomic, proteomic, and metabolomic profiles of human seminal plasma in an attempt to introduce potential candidate noninvasive biomarkers for sperm-retrieval success in men with NOA.
Collapse
|
42
|
Gentiluomo M, Luddi A, Cingolani A, Fornili M, Governini L, Lucenteforte E, Baglietto L, Piomboni P, Campa D. Telomere Length and Male Fertility. Int J Mol Sci 2021; 22:ijms22083959. [PMID: 33921254 PMCID: PMC8069448 DOI: 10.3390/ijms22083959] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Over the past decade, telomeres have attracted increasing attention due to the role they play in human fertility. However, conflicting results have been reported on the possible association between sperm telomere length (STL) and leukocyte telomere length (LTL) and the quality of the sperm parameters. The aim of this study was to run a comprehensive study to investigate the role of STL and LTL in male spermatogenesis and infertility. Moreover, the association between the sperm parameters and 11 candidate single nucleotide polymorphisms (SNPs), identified in the literature for their association with telomere length (TL), was investigated. We observed no associations between sperm parameters and STL nor LTL. For the individual SNPs, we observed five statistically significant associations with sperm parameters: considering a p < 0.05. Namely, ACYP2˗rs11125529 and decreased sperm motility (p = 0.03); PXK˗rs6772228 with a lower sperm count (p = 0.02); NAF1˗rs7675998 with increased probability of having abnormal acrosomes (p = 0.03) and abnormal flagellum (p = 0.04); ZNF208˗rs8105767 and reduction of sperms with normal heads (p = 0.009). This study suggests a moderate involvement of telomere length in male fertility; however, in our analyses four SNPs were weakly associated with sperm variables, suggesting the SNPs to be pleiotropic and involved in other regulatory mechanisms independent of telomere homeostasis, but involved in the spermatogenic process.
Collapse
Affiliation(s)
- Manuel Gentiluomo
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.G.); (A.C.); (D.C.)
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (A.L.); (L.G.)
| | - Annapaola Cingolani
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.G.); (A.C.); (D.C.)
| | - Marco Fornili
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.F.); (E.L.); (L.B.)
| | - Laura Governini
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (A.L.); (L.G.)
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.F.); (E.L.); (L.B.)
| | - Laura Baglietto
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.F.); (E.L.); (L.B.)
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (A.L.); (L.G.)
- Correspondence: ; Tel.: +39-057-758-6632
| | - Daniele Campa
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.G.); (A.C.); (D.C.)
| |
Collapse
|
43
|
Dong M, Li H, Zhang X, Tan J. Weighted Correlation Gene Network Analysis Reveals New Potential Mechanisms and Biomarkers in Non-obstructive Azoospermia. Front Genet 2021; 12:617133. [PMID: 33868362 PMCID: PMC8044582 DOI: 10.3389/fgene.2021.617133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/22/2021] [Indexed: 11/21/2022] Open
Abstract
Non-obstructive azoospermia (NOA) denotes a severe form of male infertility, whose etiology is still poorly understood. This is mainly due to limited knowledge on the molecular mechanisms that lead to spermatogenesis failure. In this study, we acquired microarray data from GEO DataSets and identified differentially expressed genes using the limma package in R. We identified 1,261 differentially expressed genes between non-obstructive and obstructive azoospermia. Analysis of their possible biological functions and related signaling pathways using the cluster profiler package revealed an enrichment of genes involved in germ cell development, cilium organization, and oocyte meiosis. Immune infiltration analysis indicated that macrophages were the most significant immune component of NOA, cooperating with mast cells and natural killer cells. The weighted gene coexpression network analysis algorithm generated three related functional modules, which correlated closely with clinical parameters derived from histopathological subtypes of NOA. The resulting data enabled the construction of a protein–protein interaction network of these three modules, with CDK1, CDC20, CCNB1, CCNB2, and MAD2L1 identified as hub genes. This study provides the basis for further investigation of the molecular mechanism underlying NOA, as well as indications about potential biomarkers and therapeutic targets of NOA. Finally, using tissues containing different tissue types for differential expression analysis can reflect the expression differences in different tissues to a certain extent. But this difference in expression is only related and not causal. The specific causality needs to be verified later.
Collapse
Affiliation(s)
- Meng Dong
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.,School of Life Sciences, China Medical University, Shenyang, China
| | - Hao Li
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xue Zhang
- School of Life Sciences, China Medical University, Shenyang, China
| | - Jichun Tan
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China
| |
Collapse
|
44
|
Tu C, Li H, Liu X, Wang Y, Li W, Meng L, Wang W, Li Y, Li D, Du J, Lu G, Lin G, Tan YQ. TDRD7 participates in lens development and spermiogenesis by mediating autophagosome maturation. Autophagy 2021; 17:3848-3864. [PMID: 33618632 DOI: 10.1080/15548627.2021.1894058] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In humans, TDRD7 (tudor domain containing 7) mutations lead to a syndrome combining congenital cataracts (CCs) and non-obstructive azoospermia (NOA), characterized by abnormal lens development and spermiogenesis. However, the molecular mechanism underlying TDRD7's functions in eye and testicular development are still largely unknown. Here, we show that the depletion of this gene in mice and humans resulted in the accumulation of autophagosomes and the disruption of macroautophagic/autophagic flux. The disrupted autophagic flux in tdrd7-deficient mouse embryonic fibroblasts (MEFs) was caused by a failure of autophagosome fusion with lysosomes. Furthermore, transcriptome analysis and biochemical assays showed that TDRD7 might directly bind to Tbc1d20 mRNAs and downregulate its expression, which is a key regulator of autophagosome maturation, resulting in the disruption of autophagosome maturation. In addition, we provide evidence to show that TDRD7-mediated autophagosome maturation maintains lens transparency by facilitating the removal of damaged proteins and organelles from lens fiber cells and the biogenesis of acrosome. Altogether, our results showed that TDRD7 plays an essential role in the maturation of autophagosomes and that tdrd7 deletion results in eye defects and testicular abnormalities in mice, implicating disrupted autophagy might be the mechanism that contributes to lens development and spermiogenesis defects in human.Abbreviations: CB: chromatoid bodies; CC: congenital cataract; CTSD: cathepsin D; DMSO: dimethyl sulfoxide; LAMP1: lysosomal-associated membrane protein 1; LECs: lens epithelial cells; MAP1LC3/LC3/Atg8: microtubule-associated protein 1 light chain 3; MEFs: mouse embryonic fibroblasts; NOA: non-obstructive azoospermia; OFZ: organelle-free zone; RG: RNA granules; SQSTM1/p62: sequestosome 1; TBC1D20: TBC1 domain family member 20; TDRD7: tudor domain containing 7; TEM: transmission electron microscopy; WT: wild type.
Collapse
Affiliation(s)
- Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Haiyu Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Xuyang Liu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Ying Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lanlan Meng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Weili Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Yong Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Dongyan Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| |
Collapse
|
45
|
Sharma A, Minhas S, Dhillo WS, Jayasena CN. Male infertility due to testicular disorders. J Clin Endocrinol Metab 2021; 106:e442-e459. [PMID: 33295608 PMCID: PMC7823320 DOI: 10.1210/clinem/dgaa781] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Male infertility is defined as the inability to conceive following 1 year of regular unprotected intercourse. It is the causative factor in 50% of couples and a leading indication for assisted reproductive techniques (ART). Testicular failure is the most common cause of male infertility, yet the least studied to date. EVIDENCE ACQUISITION The review is an evidence-based summary of male infertility due to testicular failure with a focus on etiology, clinical assessment, and current management approaches. PubMed-searched articles and relevant clinical guidelines were reviewed in detail. EVIDENCE SYNTHESIS/RESULTS Spermatogenesis is under multiple levels of regulation and novel molecular diagnostic tests of sperm function (reactive oxidative species and DNA fragmentation) have since been developed, and albeit currently remain as research tools. Several genetic, environmental, and lifestyle factors provoking testicular failure have been elucidated during the last decade; nevertheless, 40% of cases are idiopathic, with novel monogenic genes linked in the etiopathogenesis. Microsurgical testicular sperm extraction (micro-TESE) and hormonal stimulation with gonadotropins, selective estrogen receptor modulators, and aromatase inhibitors are recently developed therapeutic approaches for men with the most severe form of testicular failure, nonobstructive azoospermia. However, high-quality clinical trials data is currently lacking. CONCLUSIONS Male infertility due to testicular failure has traditionally been viewed as unmodifiable. In the absence of effective pharmacological therapies, delivery of lifestyle advice is a potentially important treatment option. Future research efforts are needed to determine unidentified factors causative in "idiopathic" male infertility and long-term follow-up studies of babies conceived through ART.
Collapse
Affiliation(s)
- Aditi Sharma
- Section of Endocrinology and Investigative Medicine, Imperial College London, UK
| | - Suks Minhas
- Department of Urology, Charing Cross Hospital, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, UK
| | - Channa N Jayasena
- Section of Endocrinology and Investigative Medicine, Imperial College London, UK
| |
Collapse
|
46
|
Cerván-Martín M, Bossini-Castillo L, Rivera-Egea R, Garrido N, Luján S, Romeu G, Santos-Ribeiro S, Castilla JA, Gonzalvo MC, Clavero A, Vicente FJ, Guzmán-Jiménez A, Costa C, Llinares-Burguet I, Khantham C, Burgos M, Barrionuevo FJ, Jiménez R, Sánchez-Curbelo J, López-Rodrigo O, Peraza MF, Pereira-Caetano I, Marques PI, Carvalho F, Barros A, Bassas L, Seixas S, Gonçalves J, Larriba S, Lopes AM, Palomino-Morales RJ, Carmona FD. Evaluation of Male Fertility-Associated Loci in a European Population of Patients with Severe Spermatogenic Impairment. J Pers Med 2020; 11:22. [PMID: 33383876 PMCID: PMC7823507 DOI: 10.3390/jpm11010022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/05/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
Infertility is a growing concern in developed societies. Two extreme phenotypes of male infertility are non-obstructive azoospermia (NOA) and severe oligospermia (SO), which are characterized by severe spermatogenic failure (SpF). We designed a genetic association study comprising 725 Iberian infertile men as a consequence of SpF and 1058 unaffected controls to evaluate whether five single-nucleotide polymorphisms (SNPs), previously associated with reduced fertility in Hutterites, are also involved in the genetic susceptibility to idiopathic SpF and specific clinical entities. A significant difference in the allele frequencies of USP8-rs7174015 was observed under the recessive model between the NOA group and both the control group (p = 0.0226, OR = 1.33) and the SO group (p = 0.0048, OR = 1.78). Other genetic associations for EPSTI1-rs12870438 and PSAT1-rs7867029 with SO and between TUSC1-rs10966811 and testicular sperm extraction (TESE) success in the context of NOA were observed. In silico analysis of functional annotations demonstrated cis-eQTL effects of such SNPs likely due to the modification of binding motif sites for relevant transcription factors of the spermatogenic process. The findings reported here shed light on the molecular mechanisms leading to severe phenotypes of idiopathic male infertility, and may help to better understand the contribution of the common genetic variation to the development of these conditions.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
| | - Rocío Rivera-Egea
- Andrology Laboratory and Sperm Bank, IVIRMA Valencia, 46015 Valencia, Spain;
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain;
| | - Nicolás Garrido
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain;
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (S.L.); (G.R.)
| | - Saturnino Luján
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (S.L.); (G.R.)
| | - Gema Romeu
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (S.L.); (G.R.)
| | - Samuel Santos-Ribeiro
- IVI-RMA Lisbon, 1800-282 Lisbon, Portugal;
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | | | | | - José A. Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, 18014 Granada, Spain
- CEIFER Biobanco—NextClinics, 18004 Granada, Spain
| | - M. Carmen Gonzalvo
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, 18014 Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, 18014 Granada, Spain
| | - F. Javier Vicente
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
- UGC de Urología, HU Virgen de las Nieves, 18014 Granada, Spain
| | - Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
| | - Cláudia Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), 4200-135 Porto, Portugal; (C.C.); (P.I.M.); (F.C.); (A.B.); (S.S.); (A.M.L.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Inés Llinares-Burguet
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
| | - Chiranan Khantham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
| | - Francisco J. Barrionuevo
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
| | - Josvany Sánchez-Curbelo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, 08025 Barcelona, Spain; (J.S.-C.); (O.L.-R.); (M.F.P.); (L.B.)
| | - Olga López-Rodrigo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, 08025 Barcelona, Spain; (J.S.-C.); (O.L.-R.); (M.F.P.); (L.B.)
| | - M. Fernanda Peraza
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, 08025 Barcelona, Spain; (J.S.-C.); (O.L.-R.); (M.F.P.); (L.B.)
| | - Iris Pereira-Caetano
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (I.P.-C.); (J.G.)
| | - Patricia I. Marques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), 4200-135 Porto, Portugal; (C.C.); (P.I.M.); (F.C.); (A.B.); (S.S.); (A.M.L.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Filipa Carvalho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), 4200-135 Porto, Portugal; (C.C.); (P.I.M.); (F.C.); (A.B.); (S.S.); (A.M.L.)
- Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Alberto Barros
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), 4200-135 Porto, Portugal; (C.C.); (P.I.M.); (F.C.); (A.B.); (S.S.); (A.M.L.)
- Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, 08025 Barcelona, Spain; (J.S.-C.); (O.L.-R.); (M.F.P.); (L.B.)
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), 4200-135 Porto, Portugal; (C.C.); (P.I.M.); (F.C.); (A.B.); (S.S.); (A.M.L.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (I.P.-C.); (J.G.)
- ToxOmics—Centro de Toxicogenómica e Saúde Humana, Nova Medical School, 1169-056 Lisbon, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| | - Alexandra M. Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), 4200-135 Porto, Portugal; (C.C.); (P.I.M.); (F.C.); (A.B.); (S.S.); (A.M.L.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Rogelio J. Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, 18071 Granada, Spain
| | - F. David Carmona
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
| |
Collapse
|
47
|
Snider PL, Simmons O, Conway SJ. Cracd Marks the First Wave of Meiosis during Spermatogenesis and Is Mis-Expressed in Azoospermia Mice. J Dev Biol 2020; 8:jdb8030021. [PMID: 32962040 PMCID: PMC7558608 DOI: 10.3390/jdb8030021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/16/2022] Open
Abstract
Testicular development starts in utero and maturation continues postnatally, requiring a cascade of gene activation and differentiation into different cell types, with each cell type having its own specific function. As we had previously reported that the Capping protein inhibiting regulator of actin (Cracd) gene was expressed in the adult mouse testis, herein we examine when and where the β-catenin associated Cracd is initially expressed during postnatal testis development. Significantly, Cracd mRNA is present in both the immature postnatal and adult testis in round spermatid cells, with highest level of expression occurring during the first wave of meiosis and spermatogenesis. In the juvenile testes, Cracd is initially expressed within the innermost region but as maturation occurs, Cracd mRNA switches to a more peripheral location. Thereafter, Cracd is downregulated to maintenance levels in the haploid male germ cell lineage. As Cracd mRNA was expressed within developing round spermatids, we tested its effectiveness as a biomarker of non-obstructive azoospermia using transgenic knockout mice models. Meaningfully, Cracd expression was absent in Deleted in azoospermia like (Dazl) null testis, which exhibit a dramatic germ cell loss. Moreover, Cracd was abnormally regulated and ectopically mis-expressed in Polypyrimidine tract binding protein-2 (Ptbp2) conditional germ cell restricted knockout testis, which exhibit a block during spermatid differentiation and a reduction in the number of late stage spermatocytes coincident with reduced β-catenin expression. Combined, these data suggest that Cracd is a useful first wave of spermatogenesis biomarker of azoospermia phenotypes, even prior to an overt phenotype being evident.
Collapse
|
48
|
Liu L, Li F, Wen Z, Li T, Lv M, Zhao X, Zhang W, Liu J, Wang L, Ma X. Preliminary investigation of the function of hsa_circ_0049356 in nonobstructive azoospermia patients. Andrologia 2020; 52:e13814. [PMID: 32894622 DOI: 10.1111/and.13814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/13/2023] Open
Abstract
Nonobstructive azoospermia (NOA), which is considered the most severe form of male infertility, has placed a heavy burden on families and society. As vital regulators of transcriptional and post-transcriptional levels, Noncoding RNAs (ncRNAs) are closely related to all the pathophysiological processes involved in infertility in males, especially spermatogenesis. Our study explored the expression levels of circ_0049356 in both the whole blood and seminal plasma samples of idiopathic NOA patients via quantitative real-time PCR. Furthermore, the relative expression of its host gene (CARM1) was also determined using the same methods. In addition, as circRNAs have been demonstrated to regulate gene expression as miRNAs sponge, we predicted a total of five miRNAs and 101 mRNAs as putative downstream targets and constructed a circRNA-miRNA-mRNA network. Based on the predictions, Gene Ontology and KEGG pathway analyses were performed for further bioinformatics analysis to explore the potential function and investigate the circ_0049356-miRNA-mRNA interactions. Our results show target mRNAs that have been predicted to regulate guanyl-nucleotide exchange factor activity to mediate the GTP/GDP exchange, and downstream targets possibly involved in the regulation of the actin cytoskeleton, which play a significant role in cytoskeleton rearrangement of germ cells during spermatogenesis.
Collapse
Affiliation(s)
- Lin Liu
- The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Reproductive Medicine and Embryo of Gansu Province, Lanzhou, China
| | | | - Zhen Wen
- Lanzhou University, Lanzhou, China
| | - Tao Li
- Lanzhou University, Lanzhou, China
| | - Meng Lv
- Lanzhou University, Lanzhou, China
| | - Xiaodong Zhao
- The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Reproductive Medicine and Embryo of Gansu Province, Lanzhou, China
| | - Wei Zhang
- The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Reproductive Medicine and Embryo of Gansu Province, Lanzhou, China
| | - Jing Liu
- The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Reproductive Medicine and Embryo of Gansu Province, Lanzhou, China
| | - Liyan Wang
- The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Reproductive Medicine and Embryo of Gansu Province, Lanzhou, China
| | - Xiaoling Ma
- The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Reproductive Medicine and Embryo of Gansu Province, Lanzhou, China
| |
Collapse
|
49
|
Xie Y, Wei BH, Ni FD, Yang WX. Conversion from spermatogonia to spermatocytes: Extracellular cues and downstream transcription network. Gene 2020; 764:145080. [PMID: 32858178 DOI: 10.1016/j.gene.2020.145080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Spermatocyte (spc) formation from spermatogonia (spg) differentiation is the first step of spermatogenesis which produces prodigious spermatozoa for a lifetime. After decades of studies, several factors involved in the functioning of a mouse were discovered both inside and outside spg. Considering the peculiar expression and working pattern of each factor, this review divides the whole conversion of spg to spc into four consecutive development processes with a focus on extracellular cues and downstream transcription network in each one. Potential coordination among Dmrt1, Sohlh1/2 and BMP families mediates Ngn3 upregulation, which marks progenitor spg, with other changes. After that, retinoic acid (RA), as a master regulator, promotes A1 spg formation with its helpers and Sall4. A1-to-B spg transition is under the control of Kitl and impulsive RA signaling together with early and late transcription factors Stra8 and Dmrt6. Finally, RA and its responsive effectors conduct the entry into meiosis. The systematic transcription network from outside to inside still needs research to supplement or settle the controversials in each process. As a step further ahead, this review provides possible drug targets for infertility therapy by cross-linking humans and mouse model.
Collapse
Affiliation(s)
- Yi Xie
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei-Da Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|