1
|
Zhao Y, Yang X, Wen B, Li Y, Yu H. The effect of attachment systems and denture cleaning methods on microbial biomass and composition in implant-supported overdentures: an experimental study. Int J Implant Dent 2024; 10:45. [PMID: 39419937 PMCID: PMC11486873 DOI: 10.1186/s40729-024-00564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE This research endeavors to scrutinize the influence of attachment systems and denture cleaning methodologies on microbial biomass and composition within the realm of implant-supported overdentures, a crucial consideration for patients with dentition defects necessitating such prosthetic solutions. SUBJECTS AND METHODS Employing five polymethyl methacrylate specimens designed to emulate the fitting surfaces of traditional dentures and implant-supported overdentures. Following the polishing of each specimen and the quantification of its roughness, co-cultivation with three distinct microbial strains ensued, culminating in ultrasonic cleaning in water. The bar-clip group, differentiated by the depth of attachment, underwent cleaning employing four diverse methods. Biomass quantities were meticulously recorded both pre and post cleaning interventions, with subsequent data analysis via t-testing and one-way ANOVA, maintaining a significance level of α = 0.05. RESULTS The bar-clip groups demonstrated an elevated degree of microbial adhesion, with the deeper locator group exhibiting heightened biomass residue post-cleaning, indicative of increased cleaning complexity. Ultrasonic cleaning predominantly targeted biofilm and deceased bacteria, whereas chemical cleaners primarily reduced the quantity of viable bacteria. The synergistic application of ultrasonics and chemical cleaning treatments yielded the minimal biomass residue. CONCLUSION In contemplating the utilization of dentures milled by dental computer-aided design/manufacturing systems, meticulous pre-use surface polishing is imperative. The extent of biofilm adhesion correlates with the chosen attachment system. This study advocates for the incorporation of ultrasonic cleaning in conjunction with chemical cleaning solutions to optimize the removal of biofilm and live cellular entities in the context of implant-supported overdentures.
Collapse
Affiliation(s)
- Yuwei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section of Ren Min Nan Rd., Chengdu, Sichuan, 610041, People's Republic of China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section of Ren Min Nan Rd., Chengdu, Sichuan, 610041, People's Republic of China
| | - Bixin Wen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section of Ren Min Nan Rd., Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section of Ren Min Nan Rd., Chengdu, Sichuan, 610041, People's Republic of China
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section of Ren Min Nan Rd., Chengdu, Sichuan, 610041, People's Republic of China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
2
|
Burnice Nalina Kumari C, Ambalavanan N, Rajesh Kumar S, Mahendra J, Sudhakar U. Anti-oxidant, anti-inflammatory and antimicrobial activity of aqueous extract from acerola and amla. Bioinformation 2024; 20:765-770. [PMID: 39309562 PMCID: PMC11414346 DOI: 10.6026/973206300200765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Amla, scientifically known as emblica officinalis and Acerola (malphigian emarginata) both are Vitamin C fruits possess varied medicinal properties being used for preventive disease health management strategies. Therefore, it is of interest to explore the antioxidant, anti-inflammatory, antibacterial, and cytotoxic properties of aqueous extracts from Acerola and Amla. Hence, the anti-inflammatory activity of Acerola and amla was assessed using the bovine serum albumin denaturation assay (BSA Assay), antioxidant properties were compared using DPPH (2,2-diphenyl-1-picrylhydrazyl) assay. Both extracts antibacterial activities were evaluated through the agar well diffusion technique against oral pathogens and Brine shrimp lethality assay for cytotoxicity. The current research sheds light on natural remedies for oxidative stress-related diseases, inflammatory conditions and bacterial infections, offering promising avenues for disease management and preventive healthcare strategies especially in the treatment of oral health diseases like periodontitis.
Collapse
Affiliation(s)
- Chellathurai Burnice Nalina Kumari
- Department of Periodontics, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Namasivayam Ambalavanan
- Department of Periodontics, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Shanmugam Rajesh Kumar
- Nano biomedicine Lab, Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Jaideep Mahendra
- Department of Periodontics, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Uma Sudhakar
- Department of Periodontics, Thai Moogambigai Dental College and Hospital, Tamil Nadu, India
| |
Collapse
|
3
|
Kurnia D, Lestari S, Mayanti T, Gartika M, Nurdin D. Anti-Infection of Oral Microorganisms from Herbal Medicine of Piper crocatum Ruiz & Pav. Drug Des Devel Ther 2024; 18:2531-2553. [PMID: 38952486 PMCID: PMC11215520 DOI: 10.2147/dddt.s453375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/20/2024] [Indexed: 07/03/2024] Open
Abstract
The WHO Global Status Report on Oral Health 2022 reveals that oral diseases caused by infection with oral pathogenic microorganisms affect nearly 3.5 billion people worldwide. Oral health problems are caused by the presence of S. mutans, S. sanguinis, E. faecalis and C. albicans in the oral cavity. Synthetic anti-infective drugs have been widely used to treat oral infections, but have been reported to cause side effects and resistance. Various strategies have been implemented to overcome this problem. Synthetic anti-infective drugs have been widely used to treat oral infections, but they have been reported to cause side effects and resistance. Therefore, it is important to look for safe anti-infective alternatives. Ethnobotanical and ethnopharmacological studies suggest that Red Betel leaf (Piper crocatum Ruiz & Pav) could be a potential source of oral anti-infectives. This review aims to discuss the pathogenesis mechanism of several microorganisms that play an important role in causing health problems, the mechanism of action of synthetic oral anti-infective drugs in inhibiting microbial growth in the oral cavity, and the potential of red betel leaf (Piper crocatum Ruiz & Pav) as an herbal oral anti-infective drug. This study emphasises the importance of researching natural components as an alternative treatment for oral infections that is more effective and can meet global needs.
Collapse
Affiliation(s)
- Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Seftiana Lestari
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Tri Mayanti
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Meirina Gartika
- Department of Pediatric Dentistry, Faculty of Medicine, University of Padjadjaran, Bandung, Indonesia
| | - Denny Nurdin
- Departement of Conservative Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
4
|
Mohammed AE, Aldahasi RM, Rahman I, Shami A, Alotaibi M, BinShabaib MS, ALHarthi SS, Aabed K. The antimicrobial activity of tea tree oil ( Melaleuca alternifolia) and its metal nanoparticles in oral bacteria. PeerJ 2024; 12:e17241. [PMID: 38854801 PMCID: PMC11162611 DOI: 10.7717/peerj.17241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/25/2024] [Indexed: 06/11/2024] Open
Abstract
Tea tree (Melaleuca alternifolia) oil (TTO) is an antimicrobial agent, and hence, its use in fabricating nanoparticles (NP) may be useful in providing more efficacious antimicrobial agents. The current research aimed to test the antimicrobial efficacy of TTO and its TTO-Metal-NPs against oral microbes: Porphyromonas gingivalis, Enterococcus faecalis, and Streptococcus mutans. The antimicrobial activity of TTO and zinc (Zn) and iron (Fe) nanoparticles (NPs) and the combined effects of antimicrobial agents were investigated using agar well diffusion assays. Fourier-transform infrared spectroscopy (FT-IR) was used to identify the phyto-constituents of TTO. Field emission scanning electron microscopy (FE-SEM), dynamic light scatter (DLS), and zeta potential were utilized to analyze the biogenic nanoparticles' morphology, size, and potential. The antimicrobial mode of action was determined by assessing the morphological changes under scanning electron microscopy (SEM). The TTO extracts converted Zn and Fe ions to NPs, having an average size of 97.50 (ZnNPs) and 102.4 nm (FeNPs). All tested agents had significant antibacterial efficacy against the tested oral microbes. However, the TTO extract was more efficacious than the NPs. Combination treatment of TTO with antibiotics resulted in partial additive effects against P. gingivalis and partial antagonistic effects against E. faecalis, S. mutans, and common mouthwashes (Oral B and chlorhexidine). TTO and NP-treated bacteria underwent morphological changes on treatment. M. alternifolia phytochemicals could be useful for further research and development of antimicrobial NPs. The current study highlights the variance in activity observed for different types of bacteria and antagonistic effects seen with common mouthwashes, which represent a threat to therapeutic efficacy and heighten the risk of clinical microbial resistance.
Collapse
Affiliation(s)
- Afrah E. Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Reham M. Aldahasi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ishrat Rahman
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Modhi Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Munerah S. BinShabaib
- Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shatha S. ALHarthi
- Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Kawther Aabed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Cao X, Cheng XW, Liu YY, Dai HW, Gan RY. Inhibition of pathogenic microbes in oral infectious diseases by natural products: Sources, mechanisms, and challenges. Microbiol Res 2024; 279:127548. [PMID: 38016378 DOI: 10.1016/j.micres.2023.127548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
The maintenance of oral health is of utmost importance for an individual's holistic well-being and standard of living. Within the oral cavity, symbiotic microorganisms actively safeguard themselves against potential foreign diseases by upholding a multifaceted equilibrium. Nevertheless, the occurrence of an imbalance can give rise to a range of oral infectious ailments, such as dental caries, periodontitis, and oral candidiasis. Presently, clinical interventions encompass the physical elimination of pathogens and the administration of antibiotics to regulate bacterial and fungal infections. Given the limitations of various antimicrobial drugs frequently employed in dental practice, the rising incidence of oral inflammation, and the escalating bacterial resistance to antibiotics, it is imperative to explore alternative remedies that are dependable, efficacious, and affordable for the prevention and management of oral infectious ailments. There is an increasing interest in the creation of novel antimicrobial agents derived from natural sources, which possess attributes such as safety, cost-effectiveness, and minimal adverse effects. This review provides a comprehensive overview of the impact of natural products on the development and progression of oral infectious diseases. Specifically, these products exert their influences by mitigating dental biofilm formation, impeding the proliferation of oral pathogens, and hindering bacterial adhesion to tooth surfaces. The review also encompasses an examination of the various classes of natural products, their antimicrobial mechanisms, and their potential therapeutic applications and limitations in the context of oral infections. The insights garnered from this review can support the promising application of natural products as viable therapeutic options for managing oral infectious diseases.
Collapse
Affiliation(s)
- Xin Cao
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xing-Wang Cheng
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yin-Ying Liu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, Singapore 138669, Singapore; Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Hong-Wei Dai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, Singapore 138669, Singapore; Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore.
| |
Collapse
|
6
|
Katrak C, Garcia BA, Dornelas-Figueira LM, Nguyen M, Williams RB, Lorenz MC, Abranches J. Catalase produced by Candida albicans protects Streptococcus mutans from H 2O 2 stress-one more piece in the cross-kingdom synergism puzzle. mSphere 2023; 8:e0029523. [PMID: 37607054 PMCID: PMC10597455 DOI: 10.1128/msphere.00295-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023] Open
Abstract
Co-infection with Streptococcus mutans and Candida albicans is associated with dental caries, and their co-cultivation results in enhanced biofilm matrix production that contributes to increased virulence and caries risk. Moreover, the catalase-negative S. mutans demonstrates increased oxidative stress tolerance when co-cultivated in biofilms with C. albicans, a catalase-producing yeast. Here, we sought to obtain mechanistic insights into the increased H2O2 tolerance of S. mutans when co-cultivated with clinical isolates of Candida glabrata, Candida tropicalis, and C. albicans. Additionally, the C. albicans SC5314 laboratory strain, its catalase mutant (SC5314Δcat1), and S. mutans UA159 and its glucosyltransferase B/C mutant (UA159ΔgtfB/C) were grown as single- and dual-species biofilms. Time-kill assays revealed that upon acute H2O2 challenge, the survival rates of S. mutans in dual-species biofilms with the clinical isolates and C. albicans SC5314 were greater than when paired with SC5314Δcat1 or as a single-species biofilm. Importantly, this protection was independent of glucan production through S. mutans GtfB/C. Transwell assays and treatment with H2O2-pre-stimulated C. albicans SC5314 supernatant revealed that this protection is contact-dependent. Biofilm stability assays with sublethal H2O2 or peroxigenic Streptococcus A12 challenge resulted in biomass reduction of single-species S. mutans UA159 and dual-species with SC5314Δcat1 biofilms compared to UA159 biofilms co-cultured with C. albicans SC5314. S. mutans oxidative stress genes were upregulated in single-species biofilms when exposed to H2O2, but not when S. mutans was co-cultivated with C. albicans SC5314. Here, we uncovered a novel, contact-dependent, synergistic interaction in which the catalase of C. albicans protects S. mutans against H2O2. IMPORTANCE It is well established that co-infection with the gram-positive caries-associated bacterium Streptococcus mutans and the yeast pathobiont Candida albicans results in aggressive forms of caries in humans and animal models. Together, these microorganisms form robust biofilms through enhanced production of extracellular polysaccharide matrix. Further, co-habitation in a biofilm community appears to enhance these microbes' tolerance to environmental stressors. Here, we show that catalase produced by C. albicans protects S. mutans from H2O2 stress in a biofilm matrix-independent manner. Our findings uncovered a novel synergistic trait between these two microorganisms that could be further exploited for dental caries prevention and control.
Collapse
Affiliation(s)
- Callahan Katrak
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Bruna A. Garcia
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Department of Restorative Dental Sciences, University of Florida College of Dentistry, Gainesville, Florida, USA
| | | | - Mary Nguyen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Robert B. Williams
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas, USA
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas, USA
| | - Jacqueline Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
7
|
Master NG, Markande AR. Importance of microbial amphiphiles: interaction potential of biosurfactants, amyloids, and other exo-polymeric-substances. World J Microbiol Biotechnol 2023; 39:320. [PMID: 37747579 DOI: 10.1007/s11274-023-03751-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Microorganisms produce a diverse group of biomolecules having amphipathic nature (amphiphiles). Microbial amphiphiles, including amyloids, bio-surfactants, and other exo-polymeric substances, play a crucial role in various biological processes and have gained significant attention recently. Although diverse in biochemical composition, these amphiphiles have been reported for common microbial traits like biofilm formation and pathogenicity due to their ability to act as surface active agents with active interfacial properties essential for microbes to grow in various niches. This enables microbes to reduce surface tension, emulsification, dispersion, and attachment at the interface. In this report, the ecological importance and biotechnological usage of important amphiphiles have been discussed. The low molecular weight amphiphiles like biosurfactants, siderophores, and peptides showing helical and antimicrobial activities have been extensively reported for their ability to work as quorum-sensing mediators. While high molecular weight amphiphiles make up amyloid fibers, exopolysaccharides, liposomes, or magnetosomes have been shown to have a significant influence in deciding microbial physiology and survival. In this report, we have discussed the functional similarities and biochemical variations of several amphipathic biomolecules produced by microbes, and the present report shows these amphiphiles showing polyphyletic and ecophysiological groups of microorganisms and hence can `be replaced in biotechnological applications depending on the compatibility of the processes.
Collapse
Affiliation(s)
- Nishita G Master
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India
| | - Anoop R Markande
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India.
| |
Collapse
|
8
|
Potential Activity of Arthrospira platensis as Antioxidant, Cytotoxic and Antifungal against Some Skin Diseases: Topical Cream Application. Mar Drugs 2023; 21:md21030160. [PMID: 36976209 PMCID: PMC10058287 DOI: 10.3390/md21030160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/05/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
This research evaluated the antifungal effectiveness of Arthrospira platensis ethanol, methanol, ethyl acetate and acetone extracts against the tested pathogenic fungi (Candida albicans, Trichophyton rubrum and Malassezia furfur). Antioxidant and cytotoxicity effectiveness of A. platensis extracts against four distinct cell lines were also assessed. Methanol extract of A. platensis exhibited the highest inhibition zones against Candida albicans as measured by the well diffusion method. A transmission electron micrograph of the treated group of Candida cells with A. platensis methanolic extract showed mild lysis and vacuolation of the cytoplasmic organelles. In vivo, after induced infection of mice by C. albicans and treatment with A. platensis methanolic extract cream, the skin layer emerged with the removal of Candida spherical plastopores. The extract of A. platensis recorded the highest antioxidant activity using the DPPH (2, 2- diphenyl-1-picrylhydrazyl) scavenging method (IC50 28 mg/mL). A cytotoxicity test using a MTT assay showed that the A. platensis extract had strong cytotoxic activity against the HepG2 cell line (IC50 20.56 ± 1.7 μg/mL) and moderate cytotoxic activity against MCF7 and the Hela cell (IC50 27.99 ± 2.1 μg/mL). Gas Chromatography/Mass Spectroscopy (GC/MS) results revealed that the effective activity of A. platensis extract could be linked to a synergistic impact between their prominent composition as alkaloids, phytol, fatty acids hydrocarbons, phenolics and phthalates. A. platensis extract contains active metabolites that constitute a promising source of antifungal, antioxidant and anti-proliferative compounds for the pharmaceutical drug industry.
Collapse
|
9
|
Moshaverinia M, Sahmeddini S, Lavee F, Zareshahrabadi Z, Zomorodian K. Antimicrobial and Anti-Biofilm Activities of Thymus fallax Essential Oil against Oral Pathogens. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9744153. [PMID: 39281058 PMCID: PMC11401671 DOI: 10.1155/2022/9744153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 09/18/2024]
Abstract
Aim Oral infections associated with a wide diversity of microorganisms, including bacteria and yeasts, occur frequently in humans, affecting the whole oral cavity and well-being. Oral pathogens easily grow and propagate in the oral cavity, leading to the formation of dental plaque on both soft and hard tissue. The oral cavity contains up to 700 different species of microorganisms, which Candida and Streptococci are the most common organisms. Oral diseases continue to increase despite the best efforts of the medical and scientific communities. During the past decades, drug resistance to common antibiotics used in the treatment of oral infections has been raised to high levels worldwide. To overcome such resistance, there is a growing tendency to use herbal medicine as alternative. This study was conducted to find out the chemical constitution of Thymus fallax (T. fallax) essential oil and to determine its antimicrobial and anti-biofilm efficacy against common oral pathogens. Materials and Methods The chemical compositions of the essential oil distilled from T. fallax plants were analyzed using gas chromatography/mass spectrometry (GC/MS). Antimicrobial susceptibility testing against common Streptococcus, Enterococcus, Staphylococcus, and Candida strains was assessed by broth microdilution in 96-well plates as suggested by the Clinical and Laboratory Standards Institute (CLSI) methods. Biofilm growth and development were assessed using XTT reduction assay. Results Based on the GC/MS test results, thymol (67.75%) followed by caryophyllene (E-) (7.27%) was the main component of this essential oil. T. fallax inhibited the growth of examined microbial pathogens at concentrations of 0.031-16 μL/mL. Also, the essential oil showed biofilm inhibition of greater than 95% in the concentration of 8 μL/mL against all tested bacterial strains as well as Candida albicans (p value < 0.05). Conclusions Considering the significant antimicrobial activities of T. fallax, this essential oil has the potential to be used as further antimicrobial and anti-biofilm pharmaceutical products in the control and treatment of oral infections.
Collapse
Affiliation(s)
- Maryam Moshaverinia
- Department of Oral and Maxillofacial Disease, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sarina Sahmeddini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Lavee
- Oral and Dental Disease Research Center, Oral and Maxillofacial Disease Department, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zareshahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Inchingolo AD, Malcangi G, Semjonova A, Inchingolo AM, Patano A, Coloccia G, Ceci S, Marinelli G, Di Pede C, Ciocia AM, Mancini A, Palmieri G, Barile G, Settanni V, De Leonardis N, Rapone B, Piras F, Viapiano F, Cardarelli F, Nucci L, Bordea IR, Scarano A, Lorusso F, Palermo A, Costa S, Tartaglia GM, Corriero A, Brienza N, Di Venere D, Inchingolo F, Dipalma G. Oralbiotica/Oralbiotics: The Impact of Oral Microbiota on Dental Health and Demineralization: A Systematic Review of the Literature. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1014. [PMID: 35883998 PMCID: PMC9323959 DOI: 10.3390/children9071014] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/17/2022]
Abstract
The oral microbiota plays a vital role in the human microbiome and oral health. Imbalances between microbes and their hosts can lead to oral and systemic disorders such as diabetes or cardiovascular disease. The purpose of this review is to investigate the literature evidence of oral microbiota dysbiosis on oral health and discuss current knowledge and emerging mechanisms governing oral polymicrobial synergy and dysbiosis; both have enhanced our understanding of pathogenic mechanisms and aided the design of innovative therapeutic approaches as ORALBIOTICA for oral diseases such as demineralization. PubMed, Web of Science, Google Scholar, Scopus, Cochrane Library, EMBEDDED, Dentistry & Oral Sciences Source via EBSCO, APA PsycINFO, APA PsyArticles, and DRUGS@FDA were searched for publications that matched our topic from January 2017 to 22 April 2022, with an English language constraint using the following Boolean keywords: ("microbio*" and "demineralization*") AND ("oral microbiota" and "demineralization"). Twenty-two studies were included for qualitative analysis. As seen by the studies included in this review, the balance of the microbiota is unstable and influenced by oral hygiene, the presence of orthodontic devices in the oral cavity and poor eating habits that can modify its composition and behavior in both positive and negative ways, increasing the development of demineralization, caries processes, and periodontal disease. Under conditions of dysbiosis, favored by an acidic environment, the reproduction of specific bacterial strains increases, favoring cariogenic ones such as Bifidobacterium dentium, Bifidobacterium longum, and S. mutans, than S. salivarius and A. viscosus, and increasing of Firmicutes strains to the disadvantage of Bacteroidetes. Microbial balance can be restored by using probiotics and prebiotics to manage and treat oral diseases, as evidenced by mouthwashes or dietary modifications that can influence microbiota balance and prevent or slow disease progression.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Alexandra Semjonova
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Chiara Di Pede
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Anna Maria Ciocia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Giuseppe Barile
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Fabio Viapiano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Filippo Cardarelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 6, 80138 Naples, Italy;
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (A.S.); (F.L.)
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (A.S.); (F.L.)
| | - Andrea Palermo
- Implant Dentistry College of Medicine and Dentistry Birmingham, University of Birmingham, Birmingham B46BN, UK;
| | - Stefania Costa
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Orthodontics, School of Dentistry, University of Messina, 98125 Messina, Italy;
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy;
- Department of Orthodontics, Faculty of Medicine, University of Milan, 20100 Milan, Italy
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (A.C.); (N.B.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (A.C.); (N.B.)
| | - Daniela Di Venere
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| |
Collapse
|
11
|
Černáková L, Líšková A, Lengyelová L, Rodrigues CF. Prevalence and Antifungal Susceptibility Profile of Oral Candida spp. Isolates from a Hospital in Slovakia. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58050576. [PMID: 35629993 PMCID: PMC9144549 DOI: 10.3390/medicina58050576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023]
Abstract
Oral fungal infections are a worldwide healthcare problem. Although Candida albicans is still the most common yeast involved in the infections of oral cavity, non-Candida albicans Candida species (NCACs) have been highly related to these infections, particularly in older, immunosuppressed or patients with long exposure to antimicrobial drugs. The goal of this work was to perform a quick epidemiological and mycological study on the oral samples collected from a laboratory of a hospital in Slovakia, for 60 days. The samples’ identification was performed by Germ-tube formation test, CHROMID® Candida, Auxacolor 2, ID 32C automated method, and the antifungal susceptibility testing determined by E-test®. Results confirm that comparing with bacteria, yeasts still occur in the lower number, but there is a high rate of antifungal resistance (81.6%)—to, at least one drug—among the collected samples, particularly to azoles and 5′-FC, which is clinically noteworthy.
Collapse
Affiliation(s)
- Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Anna Líšková
- Department of Clinical Microbiology, Nitra Faculty Hospital, 950 01 Nitra, Slovakia
| | - Libuša Lengyelová
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Célia F Rodrigues
- TOXRUN-Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, 4585-116 Gandra, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
12
|
Charavet C, Gourdain Z, Graveline L, Lupi L. Cleaning and Disinfection Protocols for Clear Orthodontic Aligners: A Systematic Review. Healthcare (Basel) 2022; 10:healthcare10020340. [PMID: 35206954 PMCID: PMC8871989 DOI: 10.3390/healthcare10020340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 01/25/2023] Open
Abstract
(1) Background: Clear orthodontic aligners support the development of oral biofilms, which could lead to interferences with the oral microbiota already existing and the deterioration of oral health, with the development of dental caries, periodontal disease and even systemic infections. Therefore, preventive oral health care requires a cleaning and disinfection procedure for aligners. (2) Methods: A systematic review of the literature was conducted across four databases following the PRISMA guidelines up to May 2021, combining an electronic and a manual search. Prospective studies, including randomized controlled trials (RCTs), crossover studies (COSs) and controlled clinical trials (CCTs), published in the English language without time restrictions, evaluating the efficacy of cleaning and disinfection protocols for clear orthodontic aligners by comparing them with a placebo or a negative control, were included. The article selection, data extraction and risk of bias assessment were performed by two independent blinded review authors. In case of disagreement, a third author was solicited throughout the selection process. (3) Results: Among the 221 articles screened in the search process, 4 studies were included in the review, all designed as crossover studies (single arm without randomization with the same sequence of different cleaning and disinfection protocols for each participant). Different cleaning and disinfection methods were studied such as mechanical methods (brushing with toothpaste or vibration), chemical methods/pharmaceutical products (chlorhexidine antibacterial substance, anionic or cationic detergents or effervescent tablets) or combinations of both. (4) Conclusion: Although the determination of the most remarkable method of cleaning and disinfection was impossible because no direct comparison was conducted between all these methods, a multi-step protocol, including the combination of a mechanical and a chemical method, seems to be the most effective approach. Further research is needed to define the most preventive oral health care protocol. Registration: PROSPERO CRD 42021278498.
Collapse
Affiliation(s)
- Carole Charavet
- Université Côte d’Azur, Faculté de Chirurgie Dentaire, Département d’Orthodontie, 06800 Nice, France
- Centre Hospitalier Universitaire de Nice, Pôle Odontologie, 06000 Nice, France; (Z.G.); (L.G.)
- Laboratoire MICORALIS UPR 7354, Université Côte d’Azur, 06800 Nice, France
- Correspondence: or
| | - Zoé Gourdain
- Centre Hospitalier Universitaire de Nice, Pôle Odontologie, 06000 Nice, France; (Z.G.); (L.G.)
- Université Côte d’Azur, Faculté de Chirurgie Dentaire, 06800 Nice, France
| | - Léa Graveline
- Centre Hospitalier Universitaire de Nice, Pôle Odontologie, 06000 Nice, France; (Z.G.); (L.G.)
- Université Côte d’Azur, Faculté de Chirurgie Dentaire, 06800 Nice, France
| | - Laurence Lupi
- Centre Hospitalier Universitaire de Nice, Pôle Odontologie, 06000 Nice, France; (Z.G.); (L.G.)
- Laboratoire MICORALIS UPR 7354, Université Côte d’Azur, 06800 Nice, France
- Université Côte d’Azur, Faculté de Chirurgie Dentaire, Département de Santé Publique, 06800 Nice, France;
| |
Collapse
|
13
|
Yang F, Dinis M, Haghighi F, He X, Shi W, Chaichanasakul Tran N. Oral colonization of Candida albicans and Streptococcus mutans in children with or without fixed orthodontic appliances: A pilot study. J Dent Sci 2022; 17:451-458. [PMID: 35028070 PMCID: PMC8739723 DOI: 10.1016/j.jds.2021.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Indexed: 01/31/2023] Open
Abstract
Background/purpose Adolescents undergoing fixed orthodontic therapy have an increased risk of oral diseases due to additional plaque accumulation sites. However, the effect of fixed orthodontics appliances (FOAs) on the colonization of Candida albicans (Ca) and Streptococcus mutans (Sm), two synergistic oral pathogens, is largely unknown and was, therefore, the primary objective of this pilot investigation. Material and methods Sixteen children aged 10–15 years were enrolled, nine in the FOA and seven in the control groups. Saliva and occlusal plaque were collected, and the Ca and Sm levels were quantified with a quantitative real-time polymerase chain reaction (qPCR) assay. Results A trend of higher Ca levels was observed in the saliva and occlusal plaque of the FOA group, while the control group contained higher levels of Sm. Furthermore, for Sm levels, a positive correlation between saliva and occlusal plaque was shown in both the FOA and control groups; in contrast, Ca levels were negatively correlated between these samples only in the FOA group. Between Ca and Sm, a positive correlation was observed in saliva and occlusal plaque in the control group; however, this relationship was disrupted in the FOA group. Conclusion Our preliminary study demonstrated that the presence of FOAs disturbs the colonization of Ca and Sm within the oral cavity. This perturbation might increase orthodontic patients’ risk for Ca- and Sm-related diseases.
Collapse
Affiliation(s)
- Fang Yang
- Section of Pediatric Dentistry, School of Dentistry, University of California Los Angeles, Los Angeles, USA.,Department of Stomatology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China.,Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao, Shandong Province, China
| | - Márcia Dinis
- Section of Pediatric Dentistry, School of Dentistry, University of California Los Angeles, Los Angeles, USA
| | - Farnoosh Haghighi
- Section of Periodontics, Division of Constitutive & Regenerative Sciences, School of Dentistry, University of California Los Angeles, Los Angeles, USA
| | - Xuesong He
- The Forsyth Institute, Microbiology, Cambridge, USA
| | - Wenyuan Shi
- The Forsyth Institute, Microbiology, Cambridge, USA
| | - Nini Chaichanasakul Tran
- Section of Pediatric Dentistry, School of Dentistry, University of California Los Angeles, Los Angeles, USA
| |
Collapse
|
14
|
Nittayananta W, Tangsuksan P, Srichana T, Kettratad M. Antimicrobial and anti-inflammatory effects of α-mangostin soluble film. J Int Soc Prev Community Dent 2022; 12:189-198. [PMID: 35462748 PMCID: PMC9022392 DOI: 10.4103/jispcd.jispcd_222_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 11/04/2022] Open
|
15
|
Niculescu AG, Grumezescu AM. Natural Compounds for Preventing Ear, Nose, and Throat-Related Oral Infections. PLANTS 2021; 10:plants10091847. [PMID: 34579380 PMCID: PMC8468404 DOI: 10.3390/plants10091847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022]
Abstract
Oral health is an essential element in maintaining general well-being. By preserving the complex equilibrium within the oral microbial community, commensal microorganisms can protect against extrinsic pathogenic threats. However, when an imbalance occurs, the organism is susceptible to a broad range of infections. Synthetic drugs can be administered to help the body fight against the fungal, bacterial, or viral burden. Nonetheless, they may produce undesirable consequences such as toxicity, adverse effects, and drug resistance. In this respect, research has focused on finding safer and more efficient alternatives. Particularly, increasing attention has been drawn towards developing novel formulations based on natural compounds. This paper reviews the plant-based, algae-based, and beehive products investigated for their antimicrobial properties, aiming to thoroughly present the state of the art on oral infection prevention in the ear, nose, and throat (ENT) field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 50044 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-3997
| |
Collapse
|
16
|
Khan F, Bamunuarachchi NI, Pham DTN, Tabassum N, Khan MSA, Kim YM. Mixed biofilms of pathogenic Candida-bacteria: regulation mechanisms and treatment strategies. Crit Rev Microbiol 2021; 47:699-727. [PMID: 34003065 DOI: 10.1080/1040841x.2021.1921696] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mixed-species biofilm is one of the most frequently recorded clinical problems. Mixed biofilms develop as a result of interactions between microorganisms of a single or multiple species (e.g. bacteria and fungi). Candida spp., particularly Candida albicans, are known to associate with various bacterial species to form a multi-species biofilm. Mixed biofilms of Candida spp. have been previously detected in vivo and on the surfaces of many biomedical instruments. Treating infectious diseases caused by mixed biofilms of Candida and bacterial species has been challenging due to their increased resistance to antimicrobial drugs. Here, we review and discuss the clinical significance of mixed Candida-bacteria biofilms as well as the signalling mechanisms involved in Candida-bacteria interactions. We also describe possible approaches for combating infections associated with mixed biofilms, such as the use of natural or synthetic drugs and combination therapy. The review presented here is expected to contribute to the advances in the biomedical field on the understanding of underlying interaction mechanisms of pathogens in mixed biofilm, and alternative approaches to treating the related infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea.,Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle, Sri Lanka
| | - Dung Thuy Nguyen Pham
- Center of Excellence for Biochemistry and Natural Products, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.,NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, South Korea
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| |
Collapse
|
17
|
Guo H, Chen Y, Guo W, Chen J. Effects of extracellular DNA on dual-species biofilm formed by Streptococcus mutans and Candida albicans. Microb Pathog 2021; 154:104838. [PMID: 33691176 DOI: 10.1016/j.micpath.2021.104838] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/28/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Streptococcus mutans is the most important acid-producing pathogen that causes dental caries, while Candida albicans is an opportunistic fungal pathogen that is frequently detected in conjunction with heavy infection by S. mutans. Their interactions in dental plaque biofilms remain unclear. Extracellular DNA (eDNA) is found in oral biofilms, but its effects have not been thoroughly defined. In this study, the role of eDNA in dual-species biofilms formed by S. mutans and C. albicans was investigated. With eDNA removal, the growth of both strains was not affected, but the formation of dual-species biofilms obviously decreased. In addition, the removal of eDNA spatially disrupted the structure of the dual-species biofilm. It was also shown that eDNA mainly affected the initial attachment and development stages of the dual-species biofilms but not the well-developed biofilms. A similar phenomenon was also observed in the cell viability of dual-species biofilms after DNase I treatment. To further exploration, we analyzed the expression of genes associated with biofilm formation in both S. mutans and C. albicans. We determined that the co-cultivation of S. mutans and C. albicans promotes the expression of genes related to extracellular polysaccharide production (e.g., gtfC), adhesion (e.g., spaP, epa1), mycelial transformation (e.g., hwp1), and drug resistance (e.g., cdr2). However, these genes were significantly downregulated when the eDNA of the dual-species biofilm was removed by adding DNase I compared to those untreated groups. Altogether, eDNA removal, such as that by DNase I treatment, could be considered a promising strategy to control oral biofilms and biofilm-associated oral diseases.
Collapse
Affiliation(s)
- Haoran Guo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yitong Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wenjin Guo
- Beijing Chong Wen Stomatological Hospital, Beijing, 100062, China
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
18
|
Zrelovs N, Kurbatska V, Rudevica Z, Leonchiks A, Fridmanis D. Sorting out the Superbugs: Potential of Sortase A Inhibitors among Other Antimicrobial Strategies to Tackle the Problem of Antibiotic Resistance. Antibiotics (Basel) 2021; 10:164. [PMID: 33562778 PMCID: PMC7916047 DOI: 10.3390/antibiotics10020164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
Rapid spread of antibiotic resistance throughout the kingdom bacteria is inevitably bringing humanity towards the "post-antibiotic" era. The emergence of so-called "superbugs"-pathogen strains that develop resistance to multiple conventional antibiotics-is urging researchers around the globe to work on the development or perfecting of alternative means of tackling the pathogenic bacteria infections. Although various conceptually different approaches are being considered, each comes with its advantages and drawbacks. While drug-resistant pathogens are undoubtedly represented by both Gram(+) and Gram(-) bacteria, possible target spectrum across the proposed alternative approaches of tackling them is variable. Numerous anti-virulence strategies aimed at reducing the pathogenicity of target bacteria rather than eliminating them are being considered among such alternative approaches. Sortase A (SrtA) is a membrane-associated cysteine protease that catalyzes a cell wall sorting reaction by which surface proteins, including virulence factors, are anchored to the bacterial cell wall of Gram(+) bacteria. Although SrtA inhibition seems perspective among the Gram-positive pathogen-targeted antivirulence strategies, it still remains less popular than other alternatives. A decrease in virulence due to inactivation of SrtA activity has been extensively studied in Staphylococcus aureus, but it has also been demonstrated in other Gram(+) species. In this manuscript, results of past studies on the discovery of novel SrtA inhibitory compounds and evaluation of their potency were summarized and commented on. Here, we discussed the rationale behind the inhibition of SrtA, raised some concerns on the comparability of the results from different studies, and touched upon the possible resistance mechanisms as a response to implementation of such therapy in practice. The goal of this article is to encourage further studies of SrtA inhibitory compounds.
Collapse
Affiliation(s)
| | | | | | | | - Davids Fridmanis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k1, LV-1067 Riga, Latvia; (N.Z.); (V.K.); (Z.R.); (A.L.)
| |
Collapse
|
19
|
Ghali S, Katti G, Shahbaz S, Chitroda PK, V A, Divakar DD, Khan AA, Naik S, Al-Kheraif AA, Jhugroo C. Fascial space odontogenic infections: Ultrasonography as an alternative to magnetic resonance imaging. World J Clin Cases 2021; 9:573-580. [PMID: 33553395 PMCID: PMC7829733 DOI: 10.12998/wjcc.v9.i3.573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/29/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The introduction of modern diagnostic tools has transformed the field of maxillofacial radiology. Odontogenic infection and fascial space involvement have been evaluated with many diagnostic tools, including ultrasonography (USG) and magnetic resonance imaging (MRI).
AIM To explore USG as an alternative model to MRI in the detection of fascial space spread of odontogenic infections.
METHODS Among 20 patients, 50 fascial spaces were clinically diagnosed with odontogenic infection and included in this prospective study. Fascial space infection involvement was examined by USG and MRI. Results were compared for both and confirmed by microbiological testing.
RESULTS Ultrasonography identified 42 (84%) of 50 involved fascial spaces. Whereas MRI identified all 50 (100%). USG could stage the infections from edematous change to cellulitis to complete abscess formation.
CONCLUSION MRI was superior in recognizing deep fascial space infections compared to USG. However, USG is a significant addition and has a definite role in prognosticating the stage of infection and exact anatomic location in superficial space infections.
Collapse
Affiliation(s)
- Sreenivasarao Ghali
- Department of Oral Medicine and Radiology, Nanded Rural Dental College and Research Center, Nanded 431606, Maharashtra, India
| | - Girish Katti
- Department of Oral Medicine and Radiology, Al-Badar Dental College and Hospital, Kalaburagi 585102, Karnataka, India
| | - Syed Shahbaz
- Department of Oral Medicine and Radiology, Al-Badar Dental College and Hospital, Kalaburagi 585102, Karnataka, India
| | - Parita K Chitroda
- Department of Oral Medicine and Radiology, Al-Badar Dental College and Hospital, Kalaburagi 585102, Karnataka, India
| | - Anukriti V
- Department of Oral Medicine and Radiology, Nanded Rural Dental College and Research Center, Nanded 431606, Maharashtra, India
| | - Darshan Devang Divakar
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Aftab Ahmed Khan
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Sachin Naik
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Abdulaziz A Al-Kheraif
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Chitra Jhugroo
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| |
Collapse
|
20
|
Talapko J, Juzbašić M, Matijević T, Pustijanac E, Bekić S, Kotris I, Škrlec I. Candida albicans-The Virulence Factors and Clinical Manifestations of Infection. J Fungi (Basel) 2021; 7:79. [PMID: 33499276 PMCID: PMC7912069 DOI: 10.3390/jof7020079] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is a common commensal fungus that colonizes the oropharyngeal cavity, gastrointestinal and vaginal tract, and healthy individuals' skin. In 50% of the population, C. albicans is part of the normal flora of the microbiota. The various clinical manifestations of Candida species range from localized, superficial mucocutaneous disorders to invasive diseases that involve multiple organ systems and are life-threatening. From systemic and local to hereditary and environmental, diverse factors lead to disturbances in Candida's normal homeostasis, resulting in a transition from normal flora to pathogenic and opportunistic infections. The transition in the pathophysiology of the onset and progression of infection is also influenced by Candida's virulence traits that lead to the development of candidiasis. Oral candidiasis has a wide range of clinical manifestations, divided into primary and secondary candidiasis. The main supply of C. albicans in the body is located in the gastrointestinal tract, and the development of infections occurs due to dysbiosis of the residential microbiota, immune dysfunction, and damage to the muco-intestinal barrier. The presence of C. albicans in the blood is associated with candidemia-invasive Candida infections. The commensal relationship exists as long as there is a balance between the host immune system and the virulence factors of C. albicans. This paper presents the virulence traits of Candida albicans and clinical manifestations of specific candidiasis.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Tatjana Matijević
- Department of Dermatology and Venereology, Clinical Hospital Center Osijek, HR-31000 Osijek, Croatia;
| | - Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, HR-52100 Pula, Croatia;
| | - Sanja Bekić
- Family Medicine Practice, HR-31000 Osijek, Croatia;
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Ivan Kotris
- Department of Internal Medicine, General County Hospital Vukovar, HR-3200 Vukovar, Croatia;
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| |
Collapse
|
21
|
Černáková L, Rodrigues CF. Microbial interactions and immunity response in oral Candida species. Future Microbiol 2020; 15:1653-1677. [PMID: 33251818 DOI: 10.2217/fmb-2020-0113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oral candidiasis are among the most common noncommunicable diseases, related with serious local and systemic illnesses. Although these infections can occur in all kinds of patients, they are more recurrent in immunosuppressed ones such as patients with HIV, hepatitis, cancer or under long antimicrobial treatments. Candida albicans continues to be the most frequently identified Candida spp. in these disorders, but other non-C. albicans Candida are rising. Understanding the immune responses involved in oral Candida spp. infections is a key feature to a successful treatment and to the design of novel therapies. In this review, we performed a literature search in PubMed and WoS, in order to examine and analyze common oral Candida spp.-bacteria/Candida-Candida interactions and the host immunity response in oral candidiasis.
Collapse
Affiliation(s)
- Lucia Černáková
- Department of Microbiology & Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Célia F Rodrigues
- Department of Chemical Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology & Energy, Faculty of Engineering, University of Porto, Portugal
| |
Collapse
|
22
|
Martins N, Rodrigues CF. Biomaterial-Related Infections. J Clin Med 2020; 9:jcm9030722. [PMID: 32155973 PMCID: PMC7141348 DOI: 10.3390/jcm9030722] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Correspondence: (N.M.); (C.F.R.)
| | - Célia F. Rodrigues
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: (N.M.); (C.F.R.)
| |
Collapse
|