1
|
Kora Y, Simon C. Coarse graining and criticality in the human connectome. Phys Rev E 2024; 109:044303. [PMID: 38755874 DOI: 10.1103/physreve.109.044303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/05/2024] [Indexed: 05/18/2024]
Abstract
In the face of the stupefying complexity of the human brain, network analysis is a most useful tool that allows one to greatly simplify the problem, typically by approximating the billions of neurons making up the brain by means of a coarse-grained picture with a practicable number of nodes. But even such relatively small and coarse networks, such as the human connectome with its 100-1000 nodes, may present challenges for some computationally demanding analyses that are incapable of handling networks with more than a handful of nodes. With such applications in mind, we set out to study the extent to which dynamical behavior and critical phenomena in the brain may be preserved following a severe coarse-graining procedure. Thus we proceeded to further coarse grain the human connectome by taking a modularity-based approach, the goal being to produce a network of a relatively small number of modules. After finding that the qualitative dynamical behavior of the coarse-grained networks reflected that of the original networks, albeit to a less pronounced extent, we then formulated a hypothesis based on the coarse-grained networks in the context of criticality in the Wilson-Cowan and Ising models, and we verified the hypothesis, which connected a transition value of the former with the critical temperature of the latter, using the original networks. This preservation of dynamical and critical behavior following a severe coarse-graining procedure, in principle, allows for the drawing of similar qualitative conclusions by analyzing much smaller networks, which opens the door for studying the human connectome in contexts typically regarded as computationally intractable, such as Integrated Information Theory and quantum models of the human brain.
Collapse
Affiliation(s)
- Youssef Kora
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada and Hotchkiss Brain Institute, University of Calgary, Calgary T2N 4N1, Canada
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada and Hotchkiss Brain Institute, University of Calgary, Calgary T2N 4N1, Canada
| |
Collapse
|
2
|
Janarek J, Drogosz Z, Grela J, Ochab JK, Oświęcimka P. Investigating structural and functional aspects of the brain's criticality in stroke. Sci Rep 2023; 13:12341. [PMID: 37524891 PMCID: PMC10390586 DOI: 10.1038/s41598-023-39467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
This paper addresses the question of the brain's critical dynamics after an injury such as a stroke. It is hypothesized that the healthy brain operates near a phase transition (critical point), which provides optimal conditions for information transmission and responses to inputs. If structural damage could cause the critical point to disappear and thus make self-organized criticality unachievable, it would offer the theoretical explanation for the post-stroke impairment of brain function. In our contribution, however, we demonstrate using network models of the brain, that the dynamics remain critical even after a stroke. In cases where the average size of the second-largest cluster of active nodes, which is one of the commonly used indicators of criticality, shows an anomalous behavior, it results from the loss of integrity of the network, quantifiable within graph theory, and not from genuine non-critical dynamics. We propose a new simple model of an artificial stroke that explains this anomaly. The proposed interpretation of the results is confirmed by an analysis of real connectomes acquired from post-stroke patients and a control group. The results presented refer to neurobiological data; however, the conclusions reached apply to a broad class of complex systems that admit a critical state.
Collapse
Affiliation(s)
- Jakub Janarek
- Institute of Theoretical Physics, Jagiellonian University, 30-348, Kraków, Poland
| | - Zbigniew Drogosz
- Institute of Theoretical Physics, Jagiellonian University, 30-348, Kraków, Poland
| | - Jacek Grela
- Institute of Theoretical Physics, Jagiellonian University, 30-348, Kraków, Poland
- Mark Kac Center for Complex Systems Research, Jagiellonian University, 30-348, Kraków, Poland
| | - Jeremi K Ochab
- Institute of Theoretical Physics, Jagiellonian University, 30-348, Kraków, Poland.
- Mark Kac Center for Complex Systems Research, Jagiellonian University, 30-348, Kraków, Poland.
| | - Paweł Oświęcimka
- Institute of Theoretical Physics, Jagiellonian University, 30-348, Kraków, Poland
- Mark Kac Center for Complex Systems Research, Jagiellonian University, 30-348, Kraków, Poland
- Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, 31-342, Kraków, Poland
| |
Collapse
|
3
|
Luppi AI, Cabral J, Cofre R, Mediano PAM, Rosas FE, Qureshi AY, Kuceyeski A, Tagliazucchi E, Raimondo F, Deco G, Shine JM, Kringelbach ML, Orio P, Ching S, Sanz Perl Y, Diringer MN, Stevens RD, Sitt JD. Computational modelling in disorders of consciousness: Closing the gap towards personalised models for restoring consciousness. Neuroimage 2023; 275:120162. [PMID: 37196986 PMCID: PMC10262065 DOI: 10.1016/j.neuroimage.2023.120162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/16/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023] Open
Abstract
Disorders of consciousness are complex conditions characterised by persistent loss of responsiveness due to brain injury. They present diagnostic challenges and limited options for treatment, and highlight the urgent need for a more thorough understanding of how human consciousness arises from coordinated neural activity. The increasing availability of multimodal neuroimaging data has given rise to a wide range of clinically- and scientifically-motivated modelling efforts, seeking to improve data-driven stratification of patients, to identify causal mechanisms for patient pathophysiology and loss of consciousness more broadly, and to develop simulations as a means of testing in silico potential treatment avenues to restore consciousness. As a dedicated Working Group of clinicians and neuroscientists of the international Curing Coma Campaign, here we provide our framework and vision to understand the diverse statistical and generative computational modelling approaches that are being employed in this fast-growing field. We identify the gaps that exist between the current state-of-the-art in statistical and biophysical computational modelling in human neuroscience, and the aspirational goal of a mature field of modelling disorders of consciousness; which might drive improved treatments and outcomes in the clinic. Finally, we make several recommendations for how the field as a whole can work together to address these challenges.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - Joana Cabral
- Life and Health Sciences Research Institute, University of Minho, Portugal
| | - Rodrigo Cofre
- CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile; Centre National de la Recherche Scientifique (CNRS), Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Gif-sur-Yvette, France
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK; Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK; Centre for Complexity Science, Imperial College London, London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
| | - Abid Y Qureshi
- University of Kansas Medical Center, Kansas City, MO, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, USA
| | - Enzo Tagliazucchi
- Departamento de Física (UBA) e Instituto de Fisica de Buenos Aires (CONICET), Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Federico Raimondo
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - James M Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Psychiatry, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso and Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - ShiNung Ching
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yonatan Sanz Perl
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institut du Cerveau et de la Moelle épinière - Paris Brain Institute, ICM, Paris, France; National Scientific and Technical Research Council (CONICET), Godoy Cruz, CABA 2290, Argentina
| | - Michael N Diringer
- Department of Neurology and Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Robert D Stevens
- Departments of Anesthesiology and Critical Care Medicine, Neurology, and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jacobo Diego Sitt
- Institut du Cerveau et de la Moelle épinière - Paris Brain Institute, ICM, Paris, France; Sorbonne Université, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.
| |
Collapse
|
4
|
Gervais C, Boucher LP, Villar GM, Lee U, Duclos C. A scoping review for building a criticality-based conceptual framework of altered states of consciousness. Front Syst Neurosci 2023; 17:1085902. [PMID: 37304151 PMCID: PMC10248073 DOI: 10.3389/fnsys.2023.1085902] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
The healthy conscious brain is thought to operate near a critical state, reflecting optimal information processing and high susceptibility to external stimuli. Conversely, deviations from the critical state are hypothesized to give rise to altered states of consciousness (ASC). Measures of criticality could therefore be an effective way of establishing the conscious state of an individual. Furthermore, characterizing the direction of a deviation from criticality may enable the development of treatment strategies for pathological ASC. The aim of this scoping review is to assess the current evidence supporting the criticality hypothesis, and the use of criticality as a conceptual framework for ASC. Using the PRISMA guidelines, Web of Science and PubMed were searched from inception to February 7th 2022 to find articles relating to measures of criticality across ASC. N = 427 independent papers were initially found on the subject. N = 378 were excluded because they were either: not related to criticality; not related to consciousness; not presenting results from a primary study; presenting model data. N = 49 independent papers were included in the present research, separated in 7 sub-categories of ASC: disorders of consciousness (DOC) (n = 5); sleep (n = 13); anesthesia (n = 18); epilepsy (n = 12); psychedelics and shamanic state of consciousness (n = 4); delirium (n = 1); meditative state (n = 2). Each category included articles suggesting a deviation of the critical state. While most studies were only able to identify a deviation from criticality without being certain of its direction, the preliminary consensus arising from the literature is that non-rapid eye movement (NREM) sleep reflects a subcritical state, epileptic seizures reflect a supercritical state, and psychedelics are closer to the critical state than normal consciousness. This scoping review suggests that, though the literature is limited and methodologically inhomogeneous, ASC are characterized by a deviation from criticality, though its direction is not clearly reported in a majority of studies. Criticality could become, with more extensive research, an effective and objective way to characterize ASC, and help identify therapeutic avenues to improve criticality in pathological brain states. Furthermore, we suggest how anesthesia and psychedelics could potentially be used as neuromodulation techniques to restore criticality in DOC.
Collapse
Affiliation(s)
- Charles Gervais
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
| | - Louis-Philippe Boucher
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Guillermo Martinez Villar
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Biomedical Sciences, Université de Montréal, Montréal, QC, Canada
| | - UnCheol Lee
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Catherine Duclos
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Montréal, QC, Canada
- CIFAR Azrieli Global Scholars Program, Toronto, ON, Canada
| |
Collapse
|
5
|
Kora Y, Salhi S, Davidsen J, Simon C. Global excitability and network structure in the human brain. Phys Rev E 2023; 107:054308. [PMID: 37328981 DOI: 10.1103/physreve.107.054308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/07/2023] [Indexed: 06/18/2023]
Abstract
We utilize a model of Wilson-Cowan oscillators to investigate structure-function relationships in the human brain by means of simulations of the spontaneous dynamics of brain networks generated through human connectome data. This allows us to establish relationships between the global excitability of such networks and global structural network quantities for connectomes of two different sizes for a number of individual subjects. We compare the qualitative behavior of such correlations between biological networks and shuffled networks, the latter generated by shuffling the pairwise connectivities of the former while preserving their distribution. Our results point towards a remarkable propensity of the brain to achieve a trade-off between low network wiring cost and strong functionality, and highlight the unique capacity of brain network topologies to exhibit a strong transition from an inactive state to a globally excited one.
Collapse
Affiliation(s)
- Youssef Kora
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada and Hotchkiss Brain Institute, University of Calgary, T2N 4N1 Calgary, Canada
| | - Salma Salhi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada and Hotchkiss Brain Institute, University of Calgary, T2N 4N1 Calgary, Canada
| | - Jörn Davidsen
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada and Hotchkiss Brain Institute, University of Calgary, T2N 4N1 Calgary, Canada
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada and Hotchkiss Brain Institute, University of Calgary, T2N 4N1 Calgary, Canada
| |
Collapse
|
6
|
Ballanti S, Campagnini S, Liuzzi P, Hakiki B, Scarpino M, Macchi C, Oddo CM, Carrozza MC, Grippo A, Mannini A. EEG-based methods for recovery prognosis of patients with disorders of consciousness: A systematic review. Clin Neurophysiol 2022; 144:98-114. [PMID: 36335795 DOI: 10.1016/j.clinph.2022.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Disorders of consciousness (DoC) are acquired conditions of severely altered consciousness. Electroencephalography (EEG)-derived biomarkers have been studied as clinical predictors of consciousness recovery. Therefore, this study aimed to systematically review the methods, features, and models used to derive prognostic EEG markers in patients with DoC in a rehabilitation setting. METHODS We conducted a systematic literature search of EEG-based strategies for consciousness recovery prognosis in five electronic databases. RESULTS The search resulted in 2964 papers. After screening, 15 studies were included in the review. Our analyses revealed that simpler experimental settings and similar filtering cut-off frequencies are preferred. The results of studies were categorised by extracting qualitative and quantitative features. The quantitative features were further classified into evoked/event-related potentials, spectral measures, entropy measures, and graph-theory measures. Despite the variety of methods, features from all categories, including qualitative ones, exhibited significant correlations with DoC prognosis. Moreover, no agreement was found on the optimal set of EEG-based features for the multivariate prognosis of patients with DoC, which limits the computational methods applied for outcome prediction and correlation analysis to classical ones. Nevertheless, alpha power, reactivity, and higher complexity metrics were often found to be predictive of consciousness recovery. CONCLUSIONS This study's findings confirm the essential role of qualitative EEG and suggest an important role for quantitative EEG. Their joint use could compensate for their reciprocal limitations. SIGNIFICANCE This study emphasises the need for further efforts toward guidelines on standardised EEG analysis pipeline, given the already proven role of EEG markers in the recovery prognosis of patients with DoC.
Collapse
Affiliation(s)
- Sara Ballanti
- IRCCS Fondazione Don Carlo Gnocchi, Firenze 50143, Italy; The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera 56025, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa 56127, Italy.
| | - Silvia Campagnini
- IRCCS Fondazione Don Carlo Gnocchi, Firenze 50143, Italy; The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera 56025, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa 56127, Italy.
| | - Piergiuseppe Liuzzi
- IRCCS Fondazione Don Carlo Gnocchi, Firenze 50143, Italy; The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera 56025, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa 56127, Italy.
| | - Bahia Hakiki
- IRCCS Fondazione Don Carlo Gnocchi, Firenze 50143, Italy.
| | | | - Claudio Macchi
- IRCCS Fondazione Don Carlo Gnocchi, Firenze 50143, Italy; Department of Experimental and Clinical Medicine, University of Florence, Firenze 50143, Italy.
| | - Calogero Maria Oddo
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera 56025, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa 56127, Italy.
| | - Maria Chiara Carrozza
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera 56025, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa 56127, Italy.
| | | | - Andrea Mannini
- IRCCS Fondazione Don Carlo Gnocchi, Firenze 50143, Italy.
| |
Collapse
|
7
|
Coppola L, Mirabelli P, Baldi D, Smaldone G, Estraneo A, Soddu A, Grimaldi AM, Mele G, Salvatore M, Cavaliere C. An innovative approach for the evaluation of prolonged disorders of consciousness using NF-L and GFAP biomarkers: a pivotal study. Sci Rep 2022; 12:18446. [PMID: 36323711 PMCID: PMC9630372 DOI: 10.1038/s41598-022-21930-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Behavioral assessments during the clinical evaluation in prolonged disorders of consciousness patients could be not sufficient for a correct diagnosis and prognostication. To this aim, we used an innovative approach, involving the ultra-sensitive determination of biological markers, correlating them with imaging parameters to investigate the prolonged disorders of consciousness (pDoC).We assessed the serum concentration of neurofilament light chain(NF-L) and glial fibrillary acidic protein (GFAP) in pDoC (n = 16), and healthy controls (HC, n = 6) as well as several clinical imaging parameters such as Fractional Anisotropy (FA), Whole Brain SUV, and White Matter Hyperintensities volumes (WMH) using PET-MRI acquisition. As for differential diagnosis task, only the imaging WMH volume was able to discriminate between vegetative state/unresponsive wakefulness syndrome (VS/UWS), and minimally conscious state (MCS) patients (p-value < 0.01), while all selected markers (both imaging and in vitro) were able to differentiate between pDoC patients and HC. At subject level, serum NF-L concentrations significantly differ according to clinical progression and consciousness recovery (p-value < 0.01), highlighting a potential play for the longitudinal management of these patients.
Collapse
Affiliation(s)
| | | | | | | | - A. Estraneo
- grid.418563.d0000 0001 1090 9021Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi, Florence, Italy
| | - A. Soddu
- grid.39381.300000 0004 1936 8884Department of Physics and Astronomy, Western Institute of Neuroscience, University of Western Ontario, London, ON Canada
| | | | - G. Mele
- IRCCS Synlab SDN, Napoli, Italy
| | | | | |
Collapse
|
8
|
Walter N, Hinterberger T. Self-organized criticality as a framework for consciousness: A review study. Front Psychol 2022; 13:911620. [PMID: 35911009 PMCID: PMC9336647 DOI: 10.3389/fpsyg.2022.911620] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/29/2022] [Indexed: 01/04/2023] Open
Abstract
Objective No current model of consciousness is univocally accepted on either theoretical or empirical grounds, and the need for a solid unifying framework is evident. Special attention has been given to the premise that self-organized criticality (SOC) is a fundamental property of neural system. SOC provides a competitive model to describe the physical mechanisms underlying spontaneous brain activity, and thus, critical dynamics were proposed as general gauges of information processing representing a strong candidate for a surrogate measure of consciousness. As SOC could be a neurodynamical framework, which may be able to bring together existing theories and experimental evidence, the purpose of this work was to provide a comprehensive overview of progress of research on SOC in association with consciousness. Methods A comprehensive search of publications on consciousness and SOC published between 1998 and 2021 was conducted. The Web of Science database was searched, and annual number of publications and citations, type of articles, and applied methods were determined. Results A total of 71 publications were identified. The annual number of citations steadily increased over the years. Original articles comprised 50.7% and reviews/theoretical articles 43.6%. Sixteen studies reported on human data and in seven studies data were recorded in animals. Computational models were utilized in n = 12 studies. EcoG data were assessed in n = 4 articles, fMRI in n = 4 studies, and EEG/MEG in n = 10 studies. Notably, different analytical tools were applied in the EEG/MEG studies to assess a surrogate measure of criticality such as the detrended fluctuation analysis, the pair correlation function, parameters from the neuronal avalanche analysis and the spectral exponent. Conclusion Recent studies pointed out agreements of critical dynamics with the current most influencing theories in the field of consciousness research, the global workspace theory and the integrated information theory. Thus, the framework of SOC as a neurodynamical parameter for consciousness seems promising. However, identified experimental work was small in numbers, and a heterogeneity of applied analytical tools as a surrogate measure of criticality was observable, which limits the generalizability of findings.
Collapse
|
9
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard JD, Williams GB, Craig MM, Finoia P, Peattie ARD, Coppola P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. Whole-brain modelling identifies distinct but convergent paths to unconsciousness in anaesthesia and disorders of consciousness. Commun Biol 2022; 5:384. [PMID: 35444252 PMCID: PMC9021270 DOI: 10.1038/s42003-022-03330-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
The human brain entertains rich spatiotemporal dynamics, which are drastically reconfigured when consciousness is lost due to anaesthesia or disorders of consciousness (DOC). Here, we sought to identify the neurobiological mechanisms that explain how transient pharmacological intervention and chronic neuroanatomical injury can lead to common reconfigurations of neural activity. We developed and systematically perturbed a neurobiologically realistic model of whole-brain haemodynamic signals. By incorporating PET data about the cortical distribution of GABA receptors, our computational model reveals a key role of spatially-specific local inhibition for reproducing the functional MRI activity observed during anaesthesia with the GABA-ergic agent propofol. Additionally, incorporating diffusion MRI data obtained from DOC patients reveals that the dynamics that characterise loss of consciousness can also emerge from randomised neuroanatomical connectivity. Our results generalise between anaesthesia and DOC datasets, demonstrating how increased inhibition and connectome perturbation represent distinct neurobiological paths towards the characteristic activity of the unconscious brain.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK.
- The Alan Turing Institute, London, UK.
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
- Data Science Institute, Imperial College London, London, UK
- Centre for Complexity Science, Imperial College London, London, UK
| | - Judith Allanson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's Hospital, Cambridge, UK
| | - John D Pickard
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Michael M Craig
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Paola Finoia
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alexander R D Peattie
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Coppola
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adrian M Owen
- The Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Daniel Bor
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Sarasso S, Casali AG, Casarotto S, Rosanova M, Sinigaglia C, Massimini M. Consciousness and complexity: a consilience of evidence. Neurosci Conscious 2021; 2021:niab023. [PMID: 38496724 PMCID: PMC10941977 DOI: 10.1093/nc/niab023] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/19/2021] [Accepted: 07/29/2021] [Indexed: 03/19/2024] Open
Abstract
Over the last years, a surge of empirical studies converged on complexity-related measures as reliable markers of consciousness across many different conditions, such as sleep, anesthesia, hallucinatory states, coma, and related disorders. Most of these measures were independently proposed by researchers endorsing disparate frameworks and employing different methods and techniques. Since this body of evidence has not been systematically reviewed and coherently organized so far, this positive trend has remained somewhat below the radar. The aim of this paper is to make this consilience of evidence in the science of consciousness explicit. We start with a systematic assessment of the growing literature on complexity-related measures and identify their common denominator, tracing it back to core theoretical principles and predictions put forward more than 20 years ago. In doing this, we highlight a consistent trajectory spanning two decades of consciousness research and provide a provisional taxonomy of the present literature. Finally, we consider all of the above as a positive ground to approach new questions and devise future experiments that may help consolidate and further develop a promising field where empirical research on consciousness appears to have, so far, naturally converged.
Collapse
Affiliation(s)
- Simone Sarasso
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | - Adenauer Girardi Casali
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Sao Jose dos Campos, 12247-014, Brazil
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | | | - Marcello Massimini
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| |
Collapse
|
11
|
A comparison of diffusion tractography techniques in simulating the generalized Ising model to predict the intrinsic activity of the brain. Brain Struct Funct 2021; 226:817-832. [PMID: 33523294 DOI: 10.1007/s00429-020-02211-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/30/2020] [Indexed: 12/20/2022]
Abstract
Diffusion tractography is a non-invasive technique that is being used to estimate the location and direction of white matter tracts in the brain. Identifying the characteristics of white matter plays an important role in research as well as in clinical practice that relies on finding the relationship between the structure and function of the brain. An Ising model implemented on a structural connectivity (SC) has proven to explain the spontaneous fluctuations in the brain at criticality using brain's structure depicted by white matter tracts. Since the SC is the only input of the model, identifying the tractography technique which provides a SC that delivers the highest prediction of the brain's intrinsic activity via the generalized Ising model (GIM) is essential. Hence an Ising model is simulated on SCs generated using two different acquisition schemes (single and multi-shell) and two different tractography approaches (deterministic and probabilistic) and analyzed at criticality across 69 healthy subjects. Results showed that by introducing the GIM, predictability of the empirical correlation matrix increases on average from 0.2 to 0.6 compared to the predictability using the empirical connectivity matrix directly. It is also observed that the SC generated using deterministic tractography without fractional anisotropy resulted in the highest correlation coefficient value of 0.65 between the simulated and empirical correlation matrices. Additionally, calculated dimensionalities per simulation illustrated that the dimensionality depends upon the method of tractography that has been used to extract the SC.
Collapse
|
12
|
Cofré R, Herzog R, Mediano PA, Piccinini J, Rosas FE, Sanz Perl Y, Tagliazucchi E. Whole-Brain Models to Explore Altered States of Consciousness from the Bottom Up. Brain Sci 2020; 10:E626. [PMID: 32927678 PMCID: PMC7565030 DOI: 10.3390/brainsci10090626] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 01/16/2023] Open
Abstract
The scope of human consciousness includes states departing from what most of us experience as ordinary wakefulness. These altered states of consciousness constitute a prime opportunity to study how global changes in brain activity relate to different varieties of subjective experience. We consider the problem of explaining how global signatures of altered consciousness arise from the interplay between large-scale connectivity and local dynamical rules that can be traced to known properties of neural tissue. For this purpose, we advocate a research program aimed at bridging the gap between bottom-up generative models of whole-brain activity and the top-down signatures proposed by theories of consciousness. Throughout this paper, we define altered states of consciousness, discuss relevant signatures of consciousness observed in brain activity, and introduce whole-brain models to explore the biophysics of altered consciousness from the bottom-up. We discuss the potential of our proposal in view of the current state of the art, give specific examples of how this research agenda might play out, and emphasize how a systematic investigation of altered states of consciousness via bottom-up modeling may help us better understand the biophysical, informational, and dynamical underpinnings of consciousness.
Collapse
Affiliation(s)
- Rodrigo Cofré
- CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Rubén Herzog
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360103, Chile;
| | - Pedro A.M. Mediano
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK;
| | - Juan Piccinini
- National Scientific and Technical Research Council, Buenos Aires C1033AAJ, Argentina; (J.P.); (Y.S.P.); (E.T.)
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Fernando E. Rosas
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London SW7 2DD, UK;
- Data Science Institute, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
| | - Yonatan Sanz Perl
- National Scientific and Technical Research Council, Buenos Aires C1033AAJ, Argentina; (J.P.); (Y.S.P.); (E.T.)
- Departamento de Matemáticas y Ciencias, Universidad de San Andrés, Buenos Aires B1644BID, Argentina
| | - Enzo Tagliazucchi
- National Scientific and Technical Research Council, Buenos Aires C1033AAJ, Argentina; (J.P.); (Y.S.P.); (E.T.)
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|