1
|
Hashemi H, Khabazkhoob M, Heydarian S, Emamian MH, Fotouhi A. Five-year changes in retinal nerve fibre layer thickness in the adult population: a population-based cohort study. Clin Exp Optom 2024:1-9. [PMID: 39374949 DOI: 10.1080/08164622.2024.2410879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
CLINICAL RELEVANCE Distinguishing between the pathological thinning of the retinal nerve fibre layer (RNFL) and age-related reduction requires a comprehensive understanding of the longitudinal changes in RNFL thickness within a healthy population. BACKGROUND To determine five-year changes in RNFL thickness and associated factors in people aged 45-69 years. METHODS This report pertains to the second and third phases of the Shahroud Eye Cohort Study. Participants were recruited by a multi-stage cluster sampling in Shahroud, Iran. Data on demographic details, visual acuity, non-cycloplegic refraction, and slit-lamp biomicroscopy were collected. High-definition optical coherence tomography was employed for retinal imaging. RESULTS A total of 1,524 eyes from 908 participants were examined. The average RNFL thickness was 92.2 ± 8.5 (95% CI: 91.6 to 92.8) and 93.1 ± 8.7 μm (95% CI: 92.5 to 93.7) in the first and second phases with a five-year mean change of 0.95 ± 4.15 μm (95% CI: 0.70 to 1.20). The RNFL thickness mean changes in the superior, inferior, nasal, and temporal quadrants were 2.51 ± 7.86 (95% CI: 2.01 to 3.02), 2.93 ± 7.39 (95% CI: 2.56 to 3.29), -0.53 ± 6.15 (95% CI: -0.84 to -0.21), and -1.01 ± 4.67 μm (95% CI: -1.27 to -0.75), respectively. The five-year changes in average RNFL thickness were inversely correlated with axial length (β = -0.69, p < 0.001), mean keratometry (β = -0.37, p = 0.017), and baseline RNFL thickness (β = -0.617, p < 0.001). In hyperopic individuals, the increase in average RNFL thickness (β = 0.65, p = 0.012) was significantly greater than in those with emmetropia. Macular volume (β = 1.65, p < 0.001) showed a direct association with five-year changes in average RNFL thickness. CONCLUSION Over 5 years, RNFL thickness changes were clinically insignificant in the normal population. The mean RNFL thickness seems to remain stable unless there is ocular disease. However, increased axial length and steeper keratometric readings were linked to RNFL thinning. Those with thicker RNFL measurements were at higher risk of thinning over time.
Collapse
Affiliation(s)
- Hassan Hashemi
- Noor Ophthalmology Research Center, Noor Eye Hospital, Tehran, Iran
| | - Mehdi Khabazkhoob
- Department of Medical Surgical Nursing, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Heydarian
- Department of Rehabilitation Science, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Hassan Emamian
- Ophthalmic Epidemiology Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Akbar Fotouhi
- Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Liu Y, Zhu M, Yan X, Li M, Xiang Y. The Effect of Repeated Low-Level Red-Light Therapy on Myopia Control and Choroid. Transl Vis Sci Technol 2024; 13:29. [PMID: 39432402 PMCID: PMC11498649 DOI: 10.1167/tvst.13.10.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Purpose To investigate the long-term effects of repeated low-level red light (RLRL) therapy on the axial length (AL), spherical equivalent (SE), and choroidal parameters. Methods Two hundred eight myopic eyes were recruited. The RLRL group included 100 eyes, whereas the control group included 108 eyes. Throughout the one-year follow-up period, changes in AL and SE were recorded for both groups. The RLRL group underwent additional choroidal imaging, and changes in choroidal thickness (CT), choroidal vascularity (CV), and choriocapillaris luminal area (CLA) were assessed before and after RLRL therapy. Results During the follow-up period, the changing trends in AL and SE differed significantly between the RLRL and control groups. In the RLRL group, AL decreased at three and six months (both P < 0.05) and returned to pretreatment values at 12 months (P = 0.453). In contrast, AL increased significantly throughout the follow-up period (three, six, and 12 months) in the control group (all P < 0.001). The SE increased significantly during the entire follow-up period in the RLRL group (all P < 0.001), whereas it decreased significantly in the control group (all P < 0.05). Regarding choroidal parameters, significant improvements were observed in CT, CV and CLA throughout the follow-up period (all P < 0.05), and changes in most choroidal parameters were significantly correlated with changes in AL and SE during the follow-up period (all P < 0.05). Furthermore, AL, SE, and most choroidal parameters showed significant correlations between changes at three and 12 months (all P < 0.05). Conclusions RLRL therapy significantly improved choroidal blood perfusion and circulation, which may explain the observed slowing or reversal of myopia progression in the RLRL group. Thus RLRL therapy may be a novel and effective method for controlling myopia. Furthermore, the short-term effect of photobiomodulation therapy (i.e., changes at three months) can be used to predict the long-term effects (i.e., changes at 12 months). Translational Relevance In this study, RLRL therapy showed a significant control effect on the development of axial length and spherical equivalent. RLRL therapy also promoted the choroidal blood perfusion and circulation. RLRL therapy could be a novel and effective method for myopia control.
Collapse
Affiliation(s)
- Ying Liu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengxia Zhu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqin Yan
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mu Li
- Department of Ophthalmology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xiang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Lal B, She Z, Beach KM, Hung LF, Patel NB, Smith EL, Ostrin LA. Inner Retinal Microvasculature With Refraction in Juvenile Rhesus Monkeys. Transl Vis Sci Technol 2024; 13:42. [PMID: 39186302 PMCID: PMC11361384 DOI: 10.1167/tvst.13.8.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Purpose To characterize inner retinal microvasculature of rhesus monkeys with a range of refractive errors using optical coherence tomography angiography. Method Refractive error was induced in right eyes of 18 rhesus monkeys. At 327 to 347 days of age, axial length and spherical equivalent refraction (SER) were measured, and optical coherence tomography and optical coherence tomography angiography scans (Spectralis, Heidelberg) were collected. Magnification-corrected metrics included foveal avascular zone area and perfusion density, fractal dimension, and lacunarity of the superficial vascular complex (SVC) and deep vascular complex (DVC) in the central 1-mm diameter and 1.0- to 1.5-mm, 1.5- to 2.0-mm, and 2.0- to 2.5-mm annuli. Pearson correlations were used to explore relationships. Results The mean SER and axial length were 0.78 ± 4.02 D (-7.12 to +7.13 D) and 17.96 ± 1.08 mm (16.41 to 19.93 mm), respectively. The foveal avascular zone area and SVC perfusion density were correlated with retinal thickness for the central 1 mm (P < 0.05). SVC perfusion density of 2.0- to 2.5-mm annulus decreased with increasing axial length (P < 0.001). SVC and DVC fractal dimensions of 2.0- to 2.5-mm were correlated with axial length and SER, and DVC lacunarity of 1.5- to 2.0-mm annulus was correlated with axial length (P < 0.05). Conclusions Several inner retinal microvasculature parameters were associated with increasing axial length and SER in juvenile rhesus monkeys. These findings suggest that changes in retinal microvasculature could be indicators of refractive error development. Translational Relevance In juvenile rhesus monkeys, increasing myopic refraction and axial length are associated with alterations in the inner retinal microvasculature, which may have implications in myopia-related changes in humans.
Collapse
Affiliation(s)
- Barsha Lal
- University of Houston College of Optometry, Houston, TX, USA
| | - Zhihui She
- University of Houston College of Optometry, Houston, TX, USA
| | - Krista M. Beach
- University of Houston College of Optometry, Houston, TX, USA
| | - Li-Fang Hung
- University of Houston College of Optometry, Houston, TX, USA
| | - Nimesh B. Patel
- University of Houston College of Optometry, Houston, TX, USA
| | - Earl L. Smith
- University of Houston College of Optometry, Houston, TX, USA
| | - Lisa A. Ostrin
- University of Houston College of Optometry, Houston, TX, USA
| |
Collapse
|
4
|
Lal B, Alonso-Caneiro D, Read SA, Carkeet A. Changes in retinal and choroidal optical coherence tomography angiography indices among young adults and children over 1 year. Clin Exp Optom 2024; 107:627-634. [PMID: 37848182 DOI: 10.1080/08164622.2023.2259907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
CLINICAL RELEVANCE Optical coherence tomography angiography (OCT-A) indices are likely to change across time and optometrists should be aware of the variability expected during childhood development and in healthy adults. BACKGROUND Cross-sectional studies have shown that OCT-A indices are associated with age in adults and children. The aim of this study is to investigate longitudinal changes in retinal and choroidal OCT-A indices over 1 year among healthy children and young adults. METHODS This prospective longitudinal study captured macular OCT-A and OCT scans, and biometry measures at baseline and 1-year follow-up for 22 adults (18-30 years; -6.87 to +0.37 D) and 21 children (6-15 years; -5.75 to +0.25 D). Superficial and deep retinal layer, choriocapillaris and deep choroidal en face OCT-A images were analysed to extract magnification-corrected vascular indices in foveal, parafoveal and perifoveal regions. The retinal indices included foveal avascular zone metrics, perfusion, and vessel density. Flow deficit number, size, and density were extracted from choriocapillaris and perfusion density from deep choroid. Associations between annual changes in the OCT-A indices and axial length and baseline refraction were also studied. RESULTS Among children, significant reductions were noted only in parafoveal superficial retinal and foveal and perifoveal deep retinal layer indices over 1 year (p < 0.05). Choroidal OCT-A indices in children and both retinal and choroidal OCT-A indices in adults did not show significant changes. Myopia was associated with a larger reduction in the perifoveal retinal OCT-A indices in children, and with increases in sub-foveal and sub-parafoveal choroidal indices in adults. There were associations between OCT-A indices and axial length changes but differently in adults and children. CONCLUSIONS Significant changes were noted in retinal OCT-A indices over 1 year among children but not adults. In comparison, choroidal OCT-A indices in adults and children showed a stable morphology over this period of time.
Collapse
Affiliation(s)
- Barsha Lal
- Centre for Vision and Eye Research, Optometry & Vision Science, Queensland University of Technology, Kelvin Grove, Brisbane, Australia
| | - David Alonso-Caneiro
- School of Science, Technology and Engineering, University of Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Scott A Read
- Centre for Vision and Eye Research, Optometry & Vision Science, Queensland University of Technology, Kelvin Grove, Brisbane, Australia
| | - Andrew Carkeet
- Centre for Vision and Eye Research, Optometry & Vision Science, Queensland University of Technology, Kelvin Grove, Brisbane, Australia
| |
Collapse
|
5
|
Xue J, Zhang R, Zheng M, Cao X, Li C, Wu C. Choroidal vascularity features of fundus tessellation in adults with high myopia. BMC Ophthalmol 2024; 24:303. [PMID: 39039517 PMCID: PMC11265055 DOI: 10.1186/s12886-024-03567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/09/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND To investigate alterations in choroidal vascularity index among highly myopic adults with fundus tessellation, utilizing optical coherence tomography. METHODS Total of 143 highly myopic adults (234 eyes) with fundus tessellation were collected in this cross-sectional study, which was stratified into different lesion groups based on the novel tessellated fundus classification. Subfoveal choroidal thickness (SFCT), choroidal luminal area (LA), stromal area (SA), total choroidal area (TCA), and choroidal vascularity index (CVI) were analyzed utilizing optical coherence tomography (OCT) with enhanced depth imaging (EDI) mode, enabling precise quantification of these parameters. RESULTS Comparison analysis demonstrated notable distinctions in spherical equivalent (SE), axial length (AL), and SFCT across the four tessellation grades (p < 0.001). Analysis of the choroidal vascularity parameters, including LA, TCA, and CVI, demonstrated notable disparities across the four groups (p < 0.001), while no significant variations were observed in SA when comparing Grade 1 versus Grade 2, as well as Grade 2 versus Grade 3 (p > 0.05). Logistic regression analyses illustrated that the higher grade of tessellated exhibited a positive association with AL (OR = 1.701, p = 0.027), while negatively associated with SFCT (OR = 0.416, p = 0.007), LA (OR = 0.438, p = 0.010) and CVI (OR = 0.529, p = 0.004). Multiple regression analyses demonstrated a significant negative association between CVI and both SE and AL after adjusting for age, while positively associated with SFCT (p < 0.05). CONCLUSION Subtle choroidal vascularity changes may have a meaningful contribution to the development and progression of fundus tessellation. CVI and LA dramatically decreased during the early stages of tessellation development and maintained a relatively stable status when in the severe tessellated grades.
Collapse
Affiliation(s)
- Jiarui Xue
- Department of Ophthalmology, Yijishan Hospital of Wannan Medical College, 92 West Zheshan Road, Wuhu, Anhui Province, 241001, China
| | - Rongrong Zhang
- Department of Ophthalmology, Fuyang People's Hospital Affiliated to Anhui Medical University, Fuyang, Anhui Province, 236000, China
| | - Minmin Zheng
- Department of Ophthalmology, Yijishan Hospital of Wannan Medical College, 92 West Zheshan Road, Wuhu, Anhui Province, 241001, China
| | - Xiao Cao
- Department of Ophthalmology, Yijishan Hospital of Wannan Medical College, 92 West Zheshan Road, Wuhu, Anhui Province, 241001, China
| | - Chenhao Li
- Department of Ophthalmology, Yijishan Hospital of Wannan Medical College, 92 West Zheshan Road, Wuhu, Anhui Province, 241001, China
| | - Changfan Wu
- Department of Ophthalmology, Yijishan Hospital of Wannan Medical College, 92 West Zheshan Road, Wuhu, Anhui Province, 241001, China.
| |
Collapse
|
6
|
Yang CN, Chen WL, Yeh HH, Chu HS, Wu JH, Hsieh YT. Convolutional Neural Network-Based Prediction of Axial Length Using Color Fundus Photography. Transl Vis Sci Technol 2024; 13:23. [PMID: 38809531 DOI: 10.1167/tvst.13.5.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Purpose To develop convolutional neural network (CNN)-based models for predicting the axial length (AL) using color fundus photography (CFP) and explore associated clinical and structural characteristics. Methods This study enrolled 1105 fundus images from 467 participants with ALs ranging from 19.91 to 32.59 mm, obtained at National Taiwan University Hospital between 2020 and 2021. The AL measurements obtained from a scanning laser interferometer served as the gold standard. The accuracy of prediction was compared among CNN-based models with different inputs, including CFP, age, and/or sex. Heatmaps were interpreted by integrated gradients. Results Using age, sex, and CFP as input, the mean ± standard deviation absolute error (MAE) for AL prediction by the model was 0.771 ± 0.128 mm, outperforming models that used age and sex alone (1.263 ± 0.115 mm; P < 0.001) and CFP alone (0.831 ± 0.216 mm; P = 0.016) by 39.0% and 7.31%, respectively. The removal of relatively poor-quality CFPs resulted in a slight MAE reduction to 0.759 ± 0.120 mm without statistical significance (P = 0.24). The inclusion of age and CFP improved prediction accuracy by 5.59% (P = 0.043), while adding sex had no significant improvement (P = 0.41). The optic disc and temporal peripapillary area were highlighted as the focused areas on the heatmaps. Conclusions Deep learning-based prediction of AL using CFP was fairly accurate and enhanced by age inclusion. The optic disc and temporal peripapillary area may contain crucial structural information for AL prediction in CFP. Translational Relevance This study might aid AL assessments and the understanding of the morphologic characteristics of the fundus related to AL.
Collapse
Affiliation(s)
- Che-Ning Yang
- School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Li Chen
- School of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsu-Hang Yeh
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiao-Sang Chu
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jo-Hsuan Wu
- Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
| | - Yi-Ting Hsieh
- School of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Zhang Z, Mu J, Wei J, Geng H, Liu C, Yi W, Sun Y, Duan J. Correlation between refractive errors and ocular biometric parameters in children and adolescents: a systematic review and meta-analysis. BMC Ophthalmol 2023; 23:472. [PMID: 37990308 PMCID: PMC10662558 DOI: 10.1186/s12886-023-03222-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Refractive errors are one of the most common ocular conditions among children and adolescents, with myopia showing an increasing prevalence and early onset in this population. Recent studies have identified a correlation between refractive errors and ocular biometric parameters. METHODS A systematic search was conducted in electronic databases including PubMed, EMBASE, Cochrane Library, Web of Science, and Medline from January 1, 2012, to May 1, 2023. Various ocular biometric parameters were summarized under different refractive states, including axial length (AL), central corneal thickness (CCT), anterior chamber depth (ACD), lens thickness (LT), corneal curvature (CC), Corneal curvature radius (CR),axial length-to-corneal radius ratio (AL/CR ratio), choroidal thickness (ChT), retinal thickness (RT), retinal nerve fiber layer thickness (RNFL), and retinal blood density (VD). The differences in these parameters among different refractive states were analyzed using Stata software with fixed or random-effects models, taking into account the assessed heterogeneity level. RESULTS This meta-analysis included a total of 69 studies involving 128,178 eyes, including 48,795 emmetropic eyes, 60,691 myopic eyes, 13,983 hyperopic eyes, 2,040 low myopic eyes, 1,201 moderate myopic eyes, and 1,468 high myopic eyes. The results of our study demonstrated that, compared to the control group (emmetropic group), the myopic group and low, moderate, and high myopic groups showed significant increases in AL, AL/CR ratio, and ACD, while the hyperopic group exhibited significant decreases. Compared to the control group, the myopic group had a significantly increase for CC, while CR, CCT, perifoveal RT, subfoveal ChT, foveal ChT, parafoveal ChT, perifoveal (except nasal) ChT, and pRNFL (except temporal) significantly decreased. Compared to the control group, the hyperopic group had a significantly increase for subfoveal ChT, foveal ChT, parafoveal ChT, perifoveal ChT, and nasal pRNFL. Compared to the control group, the low and moderate myopic groups had a significantly decreases for the CCT, parafoveal RT (except nasal), perifoveal RT (except nasal), and pRNFL (except superior and temporal). Compared to the control group, the high myopic group had a significantly increase for CR, while LT, perifoveal ChT (except nasal), parafoveal RT, perifoveal RT, and pRNFL (except temporal) had significant decreased. CONCLUSION The changes of ocular biometric parameters in children and adolescents are closely related to refractive errors. Ocular biometric parameters devices, as effective non-invasive techniques, provide objective biological markers for monitoring refractive errors such as myopia.
Collapse
Affiliation(s)
- Zengrui Zhang
- Chengdu University of TCM, Chengdu, Sichuan, China
- Eye college of Chengdu University of TCM, Chengdu, Sichuan, China
- Ineye Hospital of Chengdu University of TCM, Chengdu, Sichuan, China
| | - Jingyu Mu
- Chengdu University of TCM, Chengdu, Sichuan, China
- Eye college of Chengdu University of TCM, Chengdu, Sichuan, China
- Ineye Hospital of Chengdu University of TCM, Chengdu, Sichuan, China
| | - Jing Wei
- Chengdu University of TCM, Chengdu, Sichuan, China
- Eye college of Chengdu University of TCM, Chengdu, Sichuan, China
- Ineye Hospital of Chengdu University of TCM, Chengdu, Sichuan, China
| | - Haoming Geng
- Chengdu University of TCM, Chengdu, Sichuan, China
- Eye college of Chengdu University of TCM, Chengdu, Sichuan, China
- Ineye Hospital of Chengdu University of TCM, Chengdu, Sichuan, China
| | - Chunmeng Liu
- Chengdu University of TCM, Chengdu, Sichuan, China
- Eye college of Chengdu University of TCM, Chengdu, Sichuan, China
- Ineye Hospital of Chengdu University of TCM, Chengdu, Sichuan, China
| | - Wenhua Yi
- Chengdu University of TCM, Chengdu, Sichuan, China
- Eye college of Chengdu University of TCM, Chengdu, Sichuan, China
- Ineye Hospital of Chengdu University of TCM, Chengdu, Sichuan, China
| | - Yue Sun
- Chengdu University of TCM, Chengdu, Sichuan, China
- Eye college of Chengdu University of TCM, Chengdu, Sichuan, China
- Ineye Hospital of Chengdu University of TCM, Chengdu, Sichuan, China
| | - Junguo Duan
- Chengdu University of TCM, Chengdu, Sichuan, China.
- Eye college of Chengdu University of TCM, Chengdu, Sichuan, China.
- Ineye Hospital of Chengdu University of TCM, Chengdu, Sichuan, China.
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
AttaAllah HR, Abdelaziz STA, Mohamed AAM, Ibrahiem MFK. Assessment of macular microvascular changes in children following treatment of anisometropic myopic amblyopia using optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 2023; 261:2689-2699. [PMID: 37052667 PMCID: PMC10432315 DOI: 10.1007/s00417-023-06055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
PURPOSE To evaluate macular microvascular changes in the form of foveal avascular zone (FAZ) area and vessel density in the superficial, deep capillary plexuses, and choriocapillaris using optical coherence tomography angiography (OCTA) in children with anisometropic myopic amblyopia before and after treatment. METHODS This prospective observational study included 32 patients younger than 12 years old with anisomyopic amblyopia. OCTA was done before patients' treatment with optical correction with or without patching and was repeated after successful amblyopia treatment. Outcomes included superficial, deep, and choriocapillaris vessel density (VD) and superficial and deep FAZ areas. RESULTS The study included 13 males (40.6%) and 19 females (59.4%), and the mean age was 9.52 ± 1.33 years. Fifty-three percent (53%) of patients needed only optical correction, and the remaining 47% needed additional patching therapy. After successful treatment, there was a significant improvement in amblyopic eyes in best-corrected visual acuity (p < 0.001), with higher VD values in superficial capillary plexuses (p < 0.001), deep capillary plexuses (p < 0.001), and foveal choriocapillaris (p = 0.030). In the glasses with patching subgroup, the difference between pre-treatment and post-treatment parameters revealed a significant improvement in vessel density in superficial retinal plexuses (foveal and parafoveal; p values 0.023 and < 0.001, respectively) and deep retinal plexuses (whole image, foveal, and parafoveal; p values 0.003, < 0.001, and 0.002, respectively). While amblyopic eyes treated with glasses alone had a significantly greater difference in choriocapillaris foveal VD (p value = 0.022). CONCLUSION After effective amblyopia treatment, amblyopic eyes exhibited improved best-corrected visual acuity and better macular perfusion along the superficial, deep vascular density, and choriocapillaris foveal VD. CLINICAL TRIAL REGISTRATION CinicalTrials.gov Identifier: NCT05223153.
Collapse
Affiliation(s)
- Heba Radi AttaAllah
- Ophthalmology department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Sahar Torky Abdelrazik Abdelaziz
- Ophthalmology department, Faculty of Medicine, Minia University, Minia, Egypt.
- Ophthalmology department, Minia University Hospital, Minia University, Minia, 61111, Egypt.
| | | | | |
Collapse
|
9
|
De Piano M, Cacciamani A, Balzamino BO, Scarinci F, Cosimi P, Cafiero C, Ripandelli G, Micera A. Biomarker Signature in Aqueous Humor Mirrors Lens Epithelial Cell Activation: New Biomolecular Aspects from Cataractogenic Myopia. Biomolecules 2023; 13:1328. [PMID: 37759728 PMCID: PMC10526747 DOI: 10.3390/biom13091328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023] Open
Abstract
Inflammatory, vasculogenic, and profibrogenic factors have been previously reported in vitreous (VH) and aqueous (AH) humors in myopic patients who underwent cataract surgery. In light of this, we selected some mediators for AH and anterior-capsule-bearing lens epithelial cell (AC/LEC) analysis, and AH expression was correlated with LEC activation (epithelial-mesenchymal transition and EMT differentiation) and axial length (AL) elongation. In this study, AH (97; 41M/56F) and AC/LEC samples (78; 35M/43F) were collected from 102 patients who underwent surgery, and biosamples were grouped according to AL elongation. Biomolecular analyses were carried out for AH and LECs, while microscopical analyses were restricted to whole flattened AC/LECs. The results showed increased levels of interleukin (IL)-6, IL-8, and angiopoietin-2 (ANG)-2 and decreased levels of vascular endothelium growth factor (VEGF)-A were detected in AH depending on AL elongation. LECs showed EMT differentiation as confirmed by the expression of smooth muscle actin (α-SMA) and transforming growth factor (TGF)-βR1/TGFβ isoforms. A differential expression of IL-6R/IL-6, IL-8R/IL-8, and VEGF-R1/VEGF was observed in the LECs, and this expression correlated with AL elongation. The higher VEGF-A and lower VEGF-D transcript expressions were detected in highly myopic LECs, while no significant changes were monitored for VEGF-R transcripts. In conclusion, these findings provide a strong link between the AH protein signature and the EMT phenotype. Furthermore, the low VEGF-A/ANG-2 and the high VEGF-A/VEGF-D ratios in myopic AH might suggest a specific inflammatory and profibrogenic pattern in high myopia. The highly myopic AH profile might be a potential candidate for rating anterior chamber inflammation and predicting retinal distress at the time of cataract surgery.
Collapse
Affiliation(s)
- Maria De Piano
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (M.D.P.); (B.O.B.)
| | - Andrea Cacciamani
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (A.C.); (F.S.); (P.C.); (G.R.)
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (M.D.P.); (B.O.B.)
| | - Fabio Scarinci
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (A.C.); (F.S.); (P.C.); (G.R.)
| | - Pamela Cosimi
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (A.C.); (F.S.); (P.C.); (G.R.)
| | - Concetta Cafiero
- Anatomic Pathology Unit, Fabrizio Spaziani Hospital, 03100 Frosinone, Italy;
| | - Guido Ripandelli
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (A.C.); (F.S.); (P.C.); (G.R.)
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (M.D.P.); (B.O.B.)
| |
Collapse
|
10
|
Lin CR, Toychiev A, Ablordeppey RK, Srinivas M, Benavente-Perez A. Age exacerbates the effect of myopia on retinal capillaries and string vessels. Front Med (Lausanne) 2023; 10:1112396. [PMID: 37601788 PMCID: PMC10438986 DOI: 10.3389/fmed.2023.1112396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
The retinal vasculature supplies oxygen and nutrition to the cells and is crucial for an adequate retinal function. In myopia, excessive eye growth is associated with various anatomical changes that can lead to myopia-related complications. However, how myopia-induced ocular growth affects the integrity of the aged retinal microvasculature at the cellular level is not well understood. Here, we studied how aging interacts with myopia-induced alteration of the retinal microvasculature in fourteen marmoset retinas (Callithrix jacchus). String vessel and capillary branchpoint were imaged and quantified in all four capillary plexi of the retinal vasculature. As marmosets with lens-induced myopia aged, they developed increasing numbers of string vessels in all four vascular plexi, with increased vessel branchpoints in the parafoveal and peripapillary retina and decreased vessel branchpoints in the peripheral retina. These myopia-induced changes to the retinal microvasculature suggest an adaptive reorganization of the retinal microvascular cellular structure template with aging and during myopia development and progression.
Collapse
|
11
|
Kalaitzidis G, Pellegrini N, Nagy N, Vasileiou E, Ehrhardt H, Reppen A, Murphy OC, Moussa H, Filippatou A, Lambe J, DuVal A, Fioravante N, Kwakyi O, Nguyen J, Davis S, Douglas M, Ramirez A, Ecoff K, Valenzuela A, Reyes-Mantilla M, Hu C, Fitzgerald KC, Sotirchos ES, Saidha S, Calabresi PA. Effects of Myopia on Rates of Change in Optical Coherence Tomography Measured Retinal Layer Thicknesses in People with Multiple Sclerosis and Healthy Controls. Curr Eye Res 2023; 48:312-319. [PMID: 36440535 DOI: 10.1080/02713683.2022.2149806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To quantify the associations of myopia with longitudinal changes in retinal layer thicknesses in people with multiple sclerosis (PwMS) and healthy controls (HC). METHODS A cohort of PwMS and HC with recorded refractive error (RE) prospectively scanned on Cirrus HD-OCT at the Johns Hopkins MS Center was assessed for inclusion. Exclusion criteria included OCT follow-up < 6 months, ocular comorbidities, incidental OCT pathologies, and inadequate scan quality. Eyes were classified as having high myopia (HM) (RE≤ -6 diopters), low myopia (LM) (RE> -6 and ≤ -3 diopters), or no myopia (NM) (RE> -3 and ≤ +2.75). Linear mixed-effects regression models were used in analyses. RESULTS A total of 213 PwMS (eyes: 67 HM, 98 LM, 207 NM) and 80 HC (eyes: 26 HM, 37 LM, 93 NM) were included. Baseline average ganglion cell/inner plexiform (GCIPL) and peri-papillary retinal nerve fiber layer (pRNFL) thicknesses were lower in MS HM compared with MS NM (diff: -3.2 µm, 95% CI: -5.5 to -0.8, p = 0.008 and -5.3 µm, 95% CI: -9.0 to -1.7, p = 0.004, respectively), and similarly in HC HM, as compared with HC NM. Baseline superior, inferior, and nasal pRNFL thicknesses were lower in HM compared with NM, while temporal pRNFL thickness was higher, both in MS and HC (MS: 7.1 µm, 95% CI: 2.7-11.6, p = 0.002; HC: 4.7 µm, 95% CI: -0.3 to 9.7, p = 0.07). No longitudinal differences in rates of GCIPL change were noted between HM and LM vs. NM, either in MS or HC. CONCLUSION Cross-sectional differences in average GCIPL and pRNFL thicknesses are commonly seen in people with HM as compared to reference normative values from people with NM and can lead to false attribution of pathology if RE is not taken into account. However, our study suggests that longitudinal changes in average GCIPL thickness in PwMS with myopia are similar in magnitude to PwMS with NM, and therefore are appropriate for monitoring disease-related pathology.
Collapse
Affiliation(s)
- Grigorios Kalaitzidis
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicole Pellegrini
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natalia Nagy
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eleni Vasileiou
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Henrik Ehrhardt
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abbey Reppen
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olwen C Murphy
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hussein Moussa
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angeliki Filippatou
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey Lambe
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna DuVal
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas Fioravante
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ohemaa Kwakyi
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Nguyen
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Simidele Davis
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Morgan Douglas
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexandra Ramirez
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Katie Ecoff
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssandra Valenzuela
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria Reyes-Mantilla
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chen Hu
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathryn C Fitzgerald
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elias S Sotirchos
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shiv Saidha
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD,USA
| |
Collapse
|
12
|
Luo H, Sun J, Chen L, Ke D, Zhong Z, Cheng X, Yu H, Sun X. Compartmental analysis of three-dimensional choroidal vascularity and thickness of myopic eyes in young adults using SS-OCTA. Front Physiol 2022; 13:916323. [PMID: 36160870 PMCID: PMC9490056 DOI: 10.3389/fphys.2022.916323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: We aimed to investigate the change of three-dimensional (3D) choroidal thickness (ChT), choroidal vessel volume (CVV), and choroidal vessel index (CVI) in young myopic adults using swept-source optical coherence tomography angiography (SS-OCTA) and compare the difference of these indicators in different quadrants of the macula and optic disc. Methods: A total of 248 eye samples from 135 participants were used in this cross-sectional study. Each participant underwent detailed history taking and ocular examinations. Based on axial length (AL), patients were divided into the emmetropia (EM) group, mild-myopia (MIM) group, moderate-myopia (MOM) group, and high-myopia (HM) group. 6 mm × 6 mm (1,024 × 1024 B-scans) SS-OCTA scans were performed centered on the fovea and optic disc. 3D ChT, CVV, and CVI were measured based on a built-in deep learning algorithm. Differences in ChT, CVV, and CVI were analyzed in different regions and different myopic groups. Results: Significant reduction in the global CVV were found in the HM group (1.930 ± 0.865) in comparison with the EM (3.486 ± 0.992), MIM (3.238 ± 1.033), and MOM (2.589 ± 1.083) groups (p < 0.001). The global CVI was also lower in the HM group (0.258 ± 0.061) than in the EM (0.320 ± 0.055), MIM (0.320 ± 0.051), and MOM (0.286 ± 0.066) groups (p < 0.001). The ChT was thinner in eyes with HM (242.753 ± 65.641) than in eyes with EM (377.532 ± 80.593), MIM (348.367 ± 78.191), or MOM (300.197 ± 87.175) (p < 0.001). Compartmental analysis revealed that ChT, CVV, and CVI in the nasal quadrant of the macula and temporal and inferior quadrants of the optic disc were much lower than those in other quadrants (p < 0.05). Correlation analyses found that ChT, CVV, and CVI were negatively correlated with AL and spherical equivalence. Conclusion: 3D ChT, CVV, and CVI gradually decreased as the degree of myopia increased. The changes were more dramatic on the nasal side of the macula and the temporal and inferior sides of the optic disc. These findings demonstrated the 3D choroidal change and highlighted the papillo-macular bundle as a sensitive region in myopic development.
Collapse
Affiliation(s)
- Huan Luo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinfu Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lan Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dandan Ke
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Zhong
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xi Cheng
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huimin Yu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Huimin Yu, ; Xufang Sun,
| | - Xufang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Huimin Yu, ; Xufang Sun,
| |
Collapse
|
13
|
Ji S, Ye L, Zhang L, Xu D, Dai J. Retinal neurodegeneration in a mouse model of green-light-induced myopia. Exp Eye Res 2022; 223:109208. [DOI: 10.1016/j.exer.2022.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 11/15/2022]
|
14
|
Superficial Retinal Vessel Density and Foveal Avascular Zone in Myopic Anisometropia: An OCTA-Based Study in Young Chinese Children. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1229009. [PMID: 35845945 PMCID: PMC9279070 DOI: 10.1155/2022/1229009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 12/04/2022]
Abstract
This retrospective study investigated superficial retinal vessel density (SRVLD) and foveal avascular zone (FAZ) area using optical coherence tomography angiography (OCTA) in children with myopic anisometropia. We included 84 eyes of 42 individuals with myopic anisometropia and no posterior segment abnormalities. All eyes underwent OCTA. Individual SRVLD and FAZ area were measured on OCTA. Using a paired t-test, we compared the interocular difference between the fellow eyes for all the measurements. SRVLD was significantly higher in the relatively more myopic eyes than in the fellow eyes in the whole population and in patients with an interocular difference of >1.5 D (p = 003 and 0.01, respectively). In patients with an interocular difference of ≤1.5 D in spherical equivalent refraction, only the nasal sector showed higher SRVLD in the less myopic eyes. SRVLD in the whole image and parafoveal sector was significantly lower in the dominant eye (paired t-test, p = 003 and 0.03, respectively), while other locations showed no difference. The area, perimeter, and circularity index in FAZ parameters showed no difference. SRVLD showed no significant differences between the two types of eyes, with an interocular difference of ≤1.5 D but increased in the relatively more myopic eyes than in the fellow eyes in children with myopic anisometropia, with an interocular difference of >1.5 D. Increasing SRVLD may show a compensatory increase to maintain retinal function and thus maintain normal visual function in the relatively more myopic fellow eyes. As the study to use patients as self-control with OCTA analysis in both eyes, this study provides some reference value for further interpretation of the pathogenesis of anisometropia.
Collapse
|
15
|
Lv L, Li M, Chang X, Zhu M, Liu Y, Wang P, Xiang Y. Macular Retinal Microvasculature of Hyperopia, Emmetropia, and Myopia in Children. Front Med (Lausanne) 2022; 9:900486. [PMID: 35669923 PMCID: PMC9163362 DOI: 10.3389/fmed.2022.900486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
PurposeTo compare macular retinal microcirculation in myopia, emmetropia, and hyperopia groups and investigate the relationship between macular retinal microcirculation and axial length (AL) in children.MethodsForty myopic, 29 emmetropic, and 34 hyperopic eyes were included. All the recruited eyes underwent optical coherence tomography angiography (OCTA) examinations. After adjusting the image size by the Littmann method and Bennett formula, the vessel density (VD) of the deep capillary plexus (DCP) and superficial vascular plexus (SVP) were assessed.ResultsThe VD of the DCP was significantly lower in the myopia group than in the hyperopia group, whereas no significant differences in the VD of the SVP were observed among the myopia, emmetropia, and hyperopia groups. The VD of the DCP was significantly associated with AL, spherical equivalent (SE), and foveal retinal thickness (FRT), whereas the VD of the SVP was only significantly associated with FRT but not with AL or SE.ConclusionsThe myopic VD of the DCP was significantly lower than the hyperopic one, and the VD of the DCP was significantly associated with AL, indicating that myopia has a lower VD of the DCP, and AL could have a negative effect on the VD of the DCP. Thus, early myopic axial stretching might decrease retinal blood perfusion of the DCP in children.
Collapse
Affiliation(s)
- Liang Lv
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Ophthalmology, Hankou Aier Eye Hospital, Wuhan, China
| | - Mu Li
- Department of Ophthalmology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuejiao Chang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengxia Zhu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Liu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Ping Wang,
| | - Yan Xiang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Yan Xiang,
| |
Collapse
|
16
|
Liu LL, Wang YC, Cao M, Liu F, Zhang S, Liu J, Liu JC, Xie LF, Wang H. Analysis of Macular Retinal Thickness and Microvascular System Changes in Children with Monocular Hyperopic Anisometropia and Severe Amblyopia. DISEASE MARKERS 2022; 2022:9431044. [PMID: 35082933 PMCID: PMC8786532 DOI: 10.1155/2022/9431044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study the changes of macular retinal thickness and microvascular system in children with monocular hyperopic anisometropia and severe amblyopia using optical coherence tomography angiography (OCTA) and to explore the value of OCTA in the diagnosis and treatment of amblyopia. METHODS Thirty-two children with monocular hyperopic anisometropia and severe amblyopia who were treated in the Department of Ophthalmology of the First Affiliated Hospital of Gannan Medical College from January 2020 to December 2020 were included in the study. Eyes with amblyopia (n = 32) served as the experimental group, and the contralateral healthy eyes (n = 32 eyes) served as the control group. All children underwent comprehensive ophthalmological examination including slit lamp, eye position, visual acuity, optometry, eye movement, intraocular pressure, ocular axis, and fundus examination to rule out organic lesions. Macular 6 mm × 6 mm scans were performed on both eyes of all subjects by the same experienced clinician using an OCTA instrument. After ImageJ processing, the vessel density, inner layer, and full-layer retinal thickness (RT) of superficial retinal capillary plexus (SCP) were obtained. All data were analyzed by SPSS21.0 software, and a paired t-test was used for comparison between groups. P < 0.05 was considered to indicate statistical significance. RESULTS The vessel densities of macular SCP in the amblyopia and control groups were 47.66 ± 2.36% and 50.37 ± 2.24% in the outer superior, 49.19 ± 2.64% and 51.44 ± 2.44% in the inner inferior, 49.63 ± 2.51% and 51.41 ± 3.03% in the outer inferior, and 45.56 ± 3.44% and 50.44 ± 3.52% in the outer temporal regions, respectively. The vessel density of macular SCP in the amblyopia group was significantly lower than that in contralateral healthy eyes in the outer superior, inner inferior, outer inferior, outer temporal, and central regions. There was no significant difference between the two groups in the inner superior, inner nasal, outer nasal, and inner temporal regions. The macular RT in the amblyopia group and the control group is 90.38 ± 6.09 μm and 87.56 ± 5.55 μm in the outer temporal, respectively. The RT in the macular inner layer in the outer temporal region of the amblyopia group was thicker than that of the control group (P < 0.05). There was no significant difference in the other eight regions between the two groups. The whole macular RT in the amblyopia group was thicker than that in the control group in nine regions, and the central area of macular RT in the amblyopia and control groups was 229.06 ± 6.70 μm and 214.50 ± 10.36 μm, respectively. CONCLUSION The OCTA results showed the overall RT of macula in 9 areas in the amblyopia group was thicker than that in the control group, which could show that the macular retinal thickness can be a potential way to distinguish the children with monocular hyperopic anisometropia and severe amblyopia.
Collapse
Affiliation(s)
- Lin-Lin Liu
- The Department of Ophthalmology of the 1st Affiliated Hospital, Gannan Medical University, Ganzhou, 341000 Jiangxi Province, China
| | - Yu-Chuan Wang
- Postgraduates at Gannan Medical University, Ganzhou, 341000 Jiangxi Province, China
| | - Miao Cao
- Postgraduates at Gannan Medical University, Ganzhou, 341000 Jiangxi Province, China
| | - Fang Liu
- Postgraduates at Gannan Medical University, Ganzhou, 341000 Jiangxi Province, China
| | - Shuang Zhang
- The Department of Ophthalmology of the 1st Affiliated Hospital, Gannan Medical University, Ganzhou, 341000 Jiangxi Province, China
| | - Jing Liu
- The Department of Ophthalmology of the 1st Affiliated Hospital, Gannan Medical University, Ganzhou, 341000 Jiangxi Province, China
| | - Jin-Chang Liu
- The Department of Ophthalmology of the 1st Affiliated Hospital, Gannan Medical University, Ganzhou, 341000 Jiangxi Province, China
| | - Lian-Feng Xie
- The Department of Ophthalmology of the 1st Affiliated Hospital, Gannan Medical University, Ganzhou, 341000 Jiangxi Province, China
| | - Hui Wang
- The Department of Ophthalmology of the 1st Affiliated Hospital, Gannan Medical University, Ganzhou, 341000 Jiangxi Province, China
| |
Collapse
|
17
|
Mao J, Deng X, Ye Y, Liu H, Fang Y, Zhang Z, Chen N, Sun M, Shen L. Morphological characteristics of retinal vessels in eyes with high myopia: Ultra-wide field images analyzed by artificial intelligence using a transfer learning system. Front Med (Lausanne) 2022; 9:956179. [PMID: 36874950 PMCID: PMC9982751 DOI: 10.3389/fmed.2022.956179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/27/2022] [Indexed: 02/18/2023] Open
Abstract
Purpose The purpose of this study is to investigate the retinal vascular morphological characteristics in high myopia patients of different severity. Methods 317 eyes of high myopia patients and 104 eyes of healthy control subjects were included in this study. The severity of high myopia patients is classified into C0-C4 according to the Meta Analysis of the Pathologic Myopia (META-PM) classification and their vascular morphological characteristics in ultra-wide field imaging were analyzed using transfer learning methods and RU-net. Correlation with axial length (AL), best corrected visual acuity (BCVA) and age was analyzed. In addition, the vascular morphological characteristics of myopic choroidal neovascularization (mCNV) patients and their matched high myopia patients were compared. Results The RU-net and transfer learning system of blood vessel segmentation had an accuracy of 98.24%, a sensitivity of 71.42%, a specificity of 99.37%, a precision of 73.68% and a F1 score of 72.29. Compared with healthy control group, high myopia group had smaller vessel angle (31.12 ± 2.27 vs. 32.33 ± 2.14), smaller fractal dimension (Df) (1.383 ± 0.060 vs. 1.424 ± 0.038), smaller vessel density (2.57 ± 0.96 vs. 3.92 ± 0.93) and fewer vascular branches (201.87 ± 75.92 vs. 271.31 ± 67.37), all P < 0.001. With the increase of myopia maculopathy severity, vessel angle, Df, vessel density and vascular branches significantly decreased (all P < 0.001). There were significant correlations of these characteristics with AL, BCVA and age. Patients with mCNV tended to have larger vessel density (P < 0.001) and more vascular branches (P = 0.045). Conclusion The RU-net and transfer learning technology used in this study has an accuracy of 98.24%, thus has good performance in quantitative analysis of vascular morphological characteristics in Ultra-wide field images. Along with the increase of myopic maculopathy severity and the elongation of eyeball, vessel angle, Df, vessel density and vascular branches decreased. Myopic CNV patients have larger vessel density and more vascular branches.
Collapse
Affiliation(s)
- Jianbo Mao
- Department of Ophthalmology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.,Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyi Deng
- Department of Ophthalmology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.,Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Ye
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei, China
| | - Hui Liu
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei, China
| | - Yuyan Fang
- Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhengxi Zhang
- Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nuo Chen
- Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mingzhai Sun
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei, China
| | - Lijun Shen
- Department of Ophthalmology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.,Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
18
|
Vessel Density and Retinal Thickness from Optical Coherence Tomography Angiography as New Indexes in Adolescent Myopia. J Ophthalmol 2021; 2021:6069833. [PMID: 34956668 PMCID: PMC8694993 DOI: 10.1155/2021/6069833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/28/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose To evaluate and quantify blood perfusion and retinal thickness (RT) from the perspective of quadrants by optical coherence tomography angiography (OCTA) in adolescents with myopia and explore the relationship between axial elongation and related indexes of OCTA. Methods A total of 88 subjects (149 eyes) with different degrees of myopia were included in this cross-sectional study. Vessel density (VD) and RT of quadrants in macular and peripheral regions were measured through OCTA. Results The superficial VD (SVD) of the parainferior region was significantly correlated with axial length (AL) between the emmetropia (EM) group and high myopia (HI) group (P=0.012). There were significant differences in deep VD (DVD) in all quadrants, except for the foveal, perifoveal, and peri-inferior regions (P > 0.05). However, there were significant alterations in the whole, parainferior, and perinasal regions (P=0.030, 0.023, and 0.035) in the low-to-moderate myopia (L–M) group compared with those in the HI group. There were significant differences in the RT in all quadrants, except for the foveal, paratemporal, and paranasal regions (P > 0.05) between the EM and L–M groups and the foveal region (P > 0.05) between the EM and HI groups. Nevertheless, only RT in the peri-inferior region of the L–M and HI groups showed significant differences. AL was negatively correlated with SVD in the perifoveal and parainferior regions (r = −0.179, P=0.029; r = −0.227, P=0.005) and inversely correlated with DVD and RT in almost all quadrants, except for the foveal region (r = −0.020, P=0.811; r = 0.135, P=1.000). Conclusion DVD and RT were closely associated with the severity of myopia and might be new indexes in assessing and detecting myopia development via OCTA.
Collapse
|
19
|
Zeng L, Li X, Liu J, Liu H, Xu H, Yang Z. RNA-Seq Analysis Reveals an Essential Role of the Tyrosine Metabolic Pathway and Inflammation in Myopia-Induced Retinal Degeneration in Guinea Pigs. Int J Mol Sci 2021; 22:ijms222212598. [PMID: 34830490 PMCID: PMC8618104 DOI: 10.3390/ijms222212598] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Myopia is the second leading cause of visual impairment globally. Myopia can induce sight-threatening retinal degeneration and the underlying mechanism remains poorly defined. We generated a model of myopia-induced early-stage retinal degeneration in guinea pigs and investigated the mechanism of action. Methods: The form-deprivation-induced myopia (FDM) was induced in the right eyes of 2~3-week-old guinea pigs using a translucent balloon for 15 weeks. The left eye remained untreated and served as a self-control. Another group of untreated age-matched animals was used as naïve controls. The refractive error and ocular biometrics were measured at 3, 7, 9, 12 and 15 weeks post-FDM induction. Visual function was evaluated by electroretinography. Retinal neurons and synaptic structures were examined by confocal microscopy of immunolabelled retinal sections. The total RNAs were extracted from the retinas and processed for RNA sequencing analysis. Results: The FDM eyes presented a progressive axial length elongation and refractive error development. After 15 weeks of intervention, the average refractive power was -3.40 ± 1.85 D in the FDM eyes, +2.94 ± 0.59 D and +2.69 ± 0.56 D in the self-control and naïve control eyes, respectively. The a-wave amplitude was significantly lower in FDM eyes and these eyes had a significantly lower number of rods, secretagogin+ bipolar cells, and GABAergic amacrine cells in selected retinal areas. RNA-seq analysis showed that 288 genes were upregulated and 119 genes were downregulated in FDM retinas compared to naïve control retinas. In addition, 152 genes were upregulated and 12 were downregulated in FDM retinas compared to self-control retinas. The KEGG enrichment analysis showed that tyrosine metabolism, ABC transporters and inflammatory pathways were upregulated, whereas tight junction, lipid and glycosaminoglycan biosynthesis were downregulated in FDM eyes. Conclusions: The long-term (15-week) FDM in the guinea pig models induced an early-stage retinal degeneration. The dysregulation of the tyrosine metabolism and inflammatory pathways may contribute to the pathogenesis of myopia-induced retinal degeneration.
Collapse
Affiliation(s)
- Ling Zeng
- Aier School of Ophthalmology, Central South University, Changsha 410000, China;
| | - Xiaoning Li
- Aier Eye Hospital, Changsha 410000, China;
- Aier School of Optometry and Vision Science, Hubei University of Science and Technology, Xian-ning 437100, China
- Aier Institute of Optometry and Vision Science, Changsha 410000, China; (J.L.); (H.L.)
| | - Jian Liu
- Aier Institute of Optometry and Vision Science, Changsha 410000, China; (J.L.); (H.L.)
| | - Hong Liu
- Aier Institute of Optometry and Vision Science, Changsha 410000, China; (J.L.); (H.L.)
| | - Heping Xu
- Aier School of Ophthalmology, Central South University, Changsha 410000, China;
- Aier Institute of Optometry and Vision Science, Changsha 410000, China; (J.L.); (H.L.)
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
- Correspondence: (H.X.); (Z.Y.); Tel.: +44-(0)28909-76463 (H.X.); +86-(0)13380071988 (Z.Y.)
| | - Zhikuan Yang
- Aier School of Ophthalmology, Central South University, Changsha 410000, China;
- Aier School of Optometry and Vision Science, Hubei University of Science and Technology, Xian-ning 437100, China
- Aier Institute of Optometry and Vision Science, Changsha 410000, China; (J.L.); (H.L.)
- Correspondence: (H.X.); (Z.Y.); Tel.: +44-(0)28909-76463 (H.X.); +86-(0)13380071988 (Z.Y.)
| |
Collapse
|
20
|
Pan X, Ruan MZC, Fan W, Cao K, Feng H, Hu Z, Yang Y, Yan F, Zhao M, Liu Q, Fu M, Xiang F, Lee R, Li S, Han Y. Retina Vascular Structures Near the Optic Disc and in the Macula in Primary Angle Closure Suspects. Ophthalmic Res 2021; 65:575-583. [PMID: 34649251 DOI: 10.1159/000520030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Xiaohua Pan
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing, China,
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China,
| | - Merry Z C Ruan
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, USA
| | - Wudi Fan
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, USA
- College of Engineering, University of California, Berkeley, California, USA
| | - Kai Cao
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing, China
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hui Feng
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing, China
| | - Zhongyin Hu
- Department of Ophthalmology, First People's Hospital of Yunnan Province, Kunming, China
| | - Yue Yang
- Department of Ophthalmology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Fancheng Yan
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mengya Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, China
| | - Qian Liu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fei Xiang
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing, China
| | - Richard Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shuning Li
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing, China
| | - Ying Han
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, USA
- Ophthalmology Section, Surgical Service, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
21
|
Associations of refractive errors and retinal changes measured by optical coherence tomography: A systematic review and meta-analysis. Surv Ophthalmol 2021; 67:591-607. [PMID: 34343537 DOI: 10.1016/j.survophthal.2021.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Studies reporting alteration in retinal thickness using optical coherence tomography (OCT) have been performed in different populations with various degrees of refractive error, producing inconsistent results. Therefore, we performed a meta-analysis to evaluate the alterations in retinal OCT measurements in myopic and hyperopic patients compared to controls. Evaluation of different retinal layers' thickness may have significance for developing novel approaches for preventing, diagnosing, and treating refractive errors and their complications. We searched PubMed and EMBASE to identify articles that reported OCT measurements of different retinal layers and regions, including macular, foveal, parafoveal, perifoveal, foveolar, ganglion cell complex (GCC), retinal nerve fiber layer (RNFL), peripapillary retinal nerve fiber layer (pRNFL), and ganglion cell and inner plexiform layer (GC-IPL) thickness in addition to macular volume, and optic disc area in myopes and hyperopes comparing their differences with controls. We applied either a fixed-effects or random-effects model for the meta-analysis of these differences based on the assessed heterogeneity level. Furthermore, subgroup analyses and metaregression, as well as publication bias and quality assessment, were conducted for the eligible studies. Forty-seven studies with a total of 12223 eyes, including 8600 cases and 3623 non-cases, are included in this meta-analysis. Our results showed that, in comparison to controls, highly myopic eyes had a significantly lower value for mean macular thickness, macular GCC, macular GC-IPL, parafoveal, perifoveal, foveal, foveolar, RNFL, and pRNFL thickness. Compared to controls, moderately myopic eyes showed a significantly thinner mean macular GCC layer and pRNFL. On the other hand, hyperopic eyes had significantly thicker average pRNFL than controls. Several other significant differences were also observed in various regional analyses. The findings of the current study affirm the retinal OCT measurement differences between myopic and hyperopic eyes compared to controls, emphasizing OCT measurements' advantages as potential biomarkers of ocular pathologies.
Collapse
|
22
|
Tamplin MR, Deng W, Garvin MK, Binkley EM, Hyer DE, Buatti JM, Ledolter J, Boldt HC, Kardon RH, Grumbach IM. Temporal Relationship Between Visual Field, Retinal and Microvascular Pathology Following 125I-Plaque Brachytherapy for Uveal Melanoma. Invest Ophthalmol Vis Sci 2021; 62:3. [PMID: 33393969 PMCID: PMC7794259 DOI: 10.1167/iovs.62.1.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To define the temporal relationship of vascular versus neuronal abnormalities in radiation retinopathy. Methods Twenty-five patients with uveal melanoma treated with brachytherapy and sixteen controls were tested. Functional outcome measures included visual acuity and threshold perimetry (HVF 10-2), while structural outcomes included retinal thickness by OCT and vascular measures by OCT angiography and digital fundus photography. The degree of structural abnormality was determined by intereye asymmetry compared with normal subject asymmetry. Diagnostic sensitivity and specificity of each measure were determined using receiver operating characteristic curves. The relationships between the outcome measures were quantified by Spearman correlation. The effect of time from brachytherapy on visual function, retinal layer thickness, and capillary density was also determined. Results Within the first 2 years of brachytherapy, outcome measures revealed visual field loss and microvascular abnormalities in 38% and 31% of subjects, respectively. After 2 years, they became more prevalent, increasing to 67% and 67%, respectively, as did retinal thinning (50%). Visual field loss, loss of capillary density, and inner retinal thickness were highly correlated with one another. Diagnostic sensitivity and specificity were highest for abnormalities in digital fundus photography, visual field loss within the central 10°, and decrease in vessel density. Conclusions Using quantitative approaches, radiation microvasculopathy and visual field defects were detected earlier than loss of inner retinal structure after brachytherapy. Strong correlations eventually developed between vascular pathology, change in retinal thickness, neuronal dysfunction, and radiation dose. Radiation-induced ischemia seems to be a primary early manifestation of radiation retinopathy preceding visual loss.
Collapse
Affiliation(s)
- Michelle R Tamplin
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa, United States
| | - Wenxiang Deng
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States.,Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa, United States
| | - Mona K Garvin
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States.,Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa, United States
| | - Elaine M Binkley
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa, United States
| | - John M Buatti
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa, United States
| | - Johannes Ledolter
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States.,Henry B. Tippie College of Business, University of Iowa, Iowa City, Iowa, United States
| | - H Culver Boldt
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Randy H Kardon
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Isabella M Grumbach
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa, United States.,Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States.,Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
23
|
Chen Y, Shen X. Compensatory Changes in the Anterior Segment and Vascular System of the Eye in Myopic Children After Orthokeratology. Front Pediatr 2021; 9:663644. [PMID: 34568237 PMCID: PMC8458806 DOI: 10.3389/fped.2021.663644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/09/2021] [Indexed: 12/05/2022] Open
Abstract
Purpose: To analyze changes in the anterior segment, retinal vessel density, and choroidal thickness (ChT) after orthokeratology (Ortho-K). Methods: Myopic children were enrolled from Ruijin Hospital, Shanghai, China. Ortho-K lenses and single-vision spectacles were fitted for myopia correction. Ocular measurements were taken at baseline and 6 months, including axial length (AL), central corneal thickness (CCT), anterior chamber depth (ACD), lens thickness (LT), white to white (WTW), ChT, macular vessel density (MVD), and optic disc vessel density (OVD). Results: Seventy-six patients were enrolled in this study, including 40 in the Ortho-K group and 36 in the control group. At baseline, no parameters between the two groups were statistically different. After 6 months, changes in CCT and ACD decreased in the Ortho-K group compared with those in the control group (p < 0.05); LT and ChT in the Ortho-K group were thicker than those in the control group (p < 0.05), while there was no difference in MVD and OVD compared with those in the control group (p > 0.05). There were moderate positive correlations between ChT and LT and between ChT and OVD in the Ortho-K group (p < 0.05). Conclusion: The changes in the anterior and posterior segments of the eye after Ortho-K lens wearing suggest that the human eye has a powerful compensatory effect on the imposed defocus.
Collapse
Affiliation(s)
- Yanwei Chen
- Department of Ophthalmology, School of Medicine, Ruijin Hospital Affiliated Shanghai Jiao Tong University, Shanghai, China
| | - Xi Shen
- Department of Ophthalmology, School of Medicine, Ruijin Hospital Affiliated Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|