1
|
Wang Z, Gao H, Ma X, Zhu D, Zhao L, Xiao W. Adrenic acid: A promising biomarker and therapeutic target (Review). Int J Mol Med 2025; 55:20. [PMID: 39575474 PMCID: PMC11611323 DOI: 10.3892/ijmm.2024.5461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/06/2024] [Indexed: 01/05/2025] Open
Abstract
Adrenic acid is a 22‑carbon unsaturated fatty acid that is widely present in the adrenal gland, liver, brain, kidney and vascular system that plays a regulatory role in various pathophysiological processes, such as inflammatory reactions, lipid metabolism, oxidative stress, vascular function, and cell death. Adrenic acid is a potential biomarker for various ailments, including metabolic, neurodegenerative and cardiovascular diseases and cancer. In addition, adrenic acid is influenced by the pharmacological properties of several natural products, such as astragaloside IV, evodiamine, quercetin, kaempferol, Berberine‑baicalin and prebiotics, so it is a promising new target for clinical treatment and drug development. However, the molecular mechanisms by which adrenic acid exerts are unclear. The present study systematically reviewed the biosynthesis and metabolism of adrenic acid, focusing on intrinsic mechanisms that influence the progression of metabolic, cardiovascular and neurological disease. These mechanisms regulate several key processes, including immuno‑inflammatory response, oxidative stress, vascular function and cell death. In addition, the present study explored the potential clinical translational value of adrenic acid as a biomarker and therapeutic target. To the best of our knowledge, the present study is first systematic summary of the mechanisms of action of adrenic acid across a range of diseases. The present study provides understanding of the wide range of metabolic activities of adrenic acid and a basis for further exploring the pathogenesis and therapeutic targets of various diseases.
Collapse
Affiliation(s)
- Ze Wang
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Haoyang Gao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xiaotong Ma
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Danlin Zhu
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Linlin Zhao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
- School of Physical Education, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Weihua Xiao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| |
Collapse
|
2
|
Balestra F, De Luca M, Panzetta G, Depalo N, Rizzi F, Mastrogiacomo R, Coletta S, Serino G, Piccinno E, Stabile D, Pesole PL, De Nunzio V, Pinto G, Cerabino N, Di Chito M, Notarnicola M, Shahini E, De Pergola G, Scavo MP. An 8-Week Very Low-Calorie Ketogenic Diet (VLCKD) Alters the Landscape of Obese-Derived Small Extracellular Vesicles (sEVs), Redefining Hepatic Cell Phenotypes. Nutrients 2024; 16:4189. [PMID: 39683581 DOI: 10.3390/nu16234189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Background. Very low-calorie ketogenic diets (VLCKD) are an effective weight-loss strategy for obese individuals, reducing risks of liver conditions such as non-alcoholic steatohepatitis and fibrosis. Small extracellular vesicles (sEVs) are implicated in liver fibrosis by influencing hepatic cell phenotypes and contributing to liver damage. This study investigates sEVs derived from serum of 60 obese adults categorized into low fibrosis risk (LR) and intermediate/high fibrosis risk (IHR) groups based on FibroScan elastography (FIB E scores, limit value 8 kPa) and all participants underwent an 8-week VLCKD intervention. Methods. The study examines the impact of these sEVs on fibrosis markers, inflammation, and autophagy in a hepatocyte cell line (HEPA-RG) using bioinformatics, RNA sequencing, lipidomics, RT-PCR, and Western blotting before (T0) and after (T1) VLCKD. Results. sEVs from LR patients post-VLCKD reduced fibrosis related gene expression (e.g., ACTA2) and enhanced proteins associated with regeneration and inflammation (e.g., HDAC6). Conversely, sEVs from IHR patients increased fibrosis and inflammation related gene expression (PIK3CB, AKT1, ACTA2) in hepatocytes, raising concerns about VLCKD suitability for IHR patients. IHR sEVs also decreased expression of HDAC10, HDAC6, HDAC3, MMP19, and MMP2, while increasing modulation of p-AKT, α-SMA, and VIM. Conclusion. These findings underscore the critical role of sEVs in regulating inflammation, remodeling, and hepatic stress responses, particularly in IHR patients, and suggest sEVs could complement instrumental evaluations like FibroScan in fibrosis assessment.
Collapse
Affiliation(s)
- Francesco Balestra
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Maria De Luca
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Giorgia Panzetta
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, Via Orabona 4, 70126 Bari, Italy
| | - Federica Rizzi
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, Via Orabona 4, 70126 Bari, Italy
| | - Rita Mastrogiacomo
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Sergio Coletta
- Core Facility Biobank, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Grazia Serino
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Emanuele Piccinno
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Dolores Stabile
- Core Facility Biobank, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Pasqua Letizia Pesole
- Core Facility Biobank, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology, "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Giuliano Pinto
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology, "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Nicole Cerabino
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Martina Di Chito
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology, "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Giovanni De Pergola
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Maria Principia Scavo
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| |
Collapse
|
3
|
Parolini A, Da Dalt L, Norata GD, Baragetti A. Dietary fats as regulators of neutrophil plasticity: an update on molecular mechanisms. Curr Opin Clin Nutr Metab Care 2024; 27:434-442. [PMID: 39083430 PMCID: PMC11309349 DOI: 10.1097/mco.0000000000001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
PURPOSE OF REVIEW Contemporary guidelines for the prevention of cardio-metabolic diseases focus on the control of dietary fat intake, because of their adverse metabolic effects. Moreover, fats alter innate immune defenses, by eliciting pro-inflammatory epigenetic mechanisms on the long-living hematopoietic cell progenitors which, in the bone marrow, mainly give rise to short-living neutrophils. Nevertheless, the heterogenicity of fats and the complexity of the biology of neutrophils pose challenges in the understanding on how this class of nutrients could contribute to the development of cardio-metabolic diseases via specific molecular mechanisms activating the inflammatory response. RECENT FINDINGS The knowledge on the biology of neutrophils is expanding and there are now different cellular networks orchestrating site-specific reprogramming of these cells to optimize the responses against pathogens. The innate immune competence of neutrophil is altered in response to high fat diet and contributes to the development of metabolic alterations, although the precise mechanisms are still poorly understood. SUMMARY Defining the different molecular mechanisms involved in the fat-neutrophil crosstalk will help to reconcile the sparse data about the interaction of dietary fats with neutrophils and to tailor strategies to target neutrophils in the context of cardio-metabolic diseases.
Collapse
Affiliation(s)
- Anna Parolini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
4
|
Zhang L, Liu J, Cao Y, Liu S, Zhao W, Wang C, Banzhao S, Liu Z, Liu L. Association between circulating levels of unsaturated fatty acids and risk for prediabetes in the NHANES 2003-2004 and 2011-2012. Diabetes Res Clin Pract 2024; 213:111728. [PMID: 38838943 DOI: 10.1016/j.diabres.2024.111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/11/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
AIMS This study aimed to investigate the association between serum levels of common and uncommon unsaturated fatty acids and prediabetes risk. METHODS Data were collected from the National Health and Nutrition Examination Survey for 2003-2004 and 2011-2012. Weighted proportional and multivariate logistic regression analyses were performed to assess the association of serum PUFAs and MUFAs with prediabetes risk after adjusting for potential confounders. RESULTS A total of 3575 individuals were enrolled in this study. Serum levels of PUFAs EPA (20:5 n3) and GLA (18:3 n6) were associated with increased prediabetes risk (EPA (20:5 n3): OR = 1.878, 95% CI: 1.177-2.996, Ptrend = 0.002; GLA (18:3 n6): 1.702, 95% CI: 1.140-2.541, Ptrend = 0.016). The MUFAs PA (16:1 n7) and EA (20:1 n9) were associated with the risk of prediabetes (OR in quintile5: PA (16:1 n7): 1.780, 95% CI: 1.056-3.001, Ptrend = 0.003; EA (20:1 n9): 0.587, 95% CI: 0.347-0.994, Ptrend = 0.010). Moreover, nonlinear analysis revealed that serum levels of EPA (20:5 n3) and EA (20:1 n-9) were nonlinearly associated with prediabetes risk. CONCLUSION Some serum n-3 PUFAs are positively associated with prediabetes, several serum n-6 PUFAs are inversely associated with prediabetes. Regulating individual serum USFA levels may help prevent prediabetes, thereby providing evidence for clinical and nutritional practices.
Collapse
Affiliation(s)
- Liwen Zhang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Jiayi Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Yuxuan Cao
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Shan Liu
- Department of Endocrinology, The Second Hospital of Shijiazhuang, Shijiazhuang, Hebei 050000, China
| | - Weili Zhao
- Hebei Key Laboratory of Basic Medicine for Diabetes, The Second Hospital of Shijiazhuang, Shijiazhuang, Hebei 050000, China
| | - Ci Wang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Shangfang Banzhao
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Zanchao Liu
- Hebei Key Laboratory of Basic Medicine for Diabetes, The Second Hospital of Shijiazhuang, Shijiazhuang, Hebei 050000, China; Shijiazhuang Diabetes Precision Diagnosis and Treatment Technology Innovation Center, Shijiazhuang, Hebei 050000, China.
| | - Lipeng Liu
- Hebei Key Laboratory of Basic Medicine for Diabetes, The Second Hospital of Shijiazhuang, Shijiazhuang, Hebei 050000, China; College of Veterinary, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
5
|
Lattibeaudiere KG, Alexander-Lindo RL. Oleic Acid and Succinic Acid: A Potent Nutritional Supplement in Improving Hepatic Glycaemic Control in Type 2 Diabetic Sprague-Dawley Rats. Adv Pharmacol Pharm Sci 2024; 2024:5556722. [PMID: 38938594 PMCID: PMC11208809 DOI: 10.1155/2024/5556722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/29/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
Nutritional supplements are gaining traction for their effects in mitigating the impacts of various health conditions. In particular, many supplements are being proposed to reduce the impacts of type 2 diabetes (T2D), a metabolic condition that has reached global epidemic proportions. Recently, a supplement of oleic acid (OA) and succinic acid (SA; 1 : 1, w/w) was reported to improve glycaemic control in type 2 diabetic (T2D) Sprague-Dawley (S-D) rats through ameliorating insulin release and sensitivity. Here, we investigate the effects of the supplement (OA and SA) on hepatic and pancreatic function in T2D S-D rats. Eighteen (18) S-D rats were rendered diabetic and were divided into three equal groups: diabetic control, diabetic treatment, and diabetic glibenclamide. Another 12 S-D rats were obtained and served as the normal groups. The animals were treated daily with the vehicle, OA and SA (800 mg/kg body weight (bw); 1 : 1), or glibenclamide (10 mg/kg bw) which served as the positive control. The findings indicated that treatment with the supplement resulted in a 35.69 ± 4.22% reduction (p=0.006) in blood glucose levels (BGL). Analysis of hepatic enzymes depicted that the nutritional supplement reduced the activity of the gluconeogenesis enzyme, glucose-6-phosphatase (G6P) while improved the activity of catabolic enzymes such as glucose-6-phosphate dehydrogenase (G6PD) and pyruvate kinase (PK). Furthermore, the supplement attenuated oxidative stress through restoration of catalase (CAT) and superoxide dismutase (SOD), while reducing malondialdehyde (MDA) levels. Finally, the supplement showed no liver or kidney toxicity and improved the size and number of pancreatic islets of Langerhans, indicating its potential application in treating T2D. The study highlighted that a supplement of the two organic acids may be beneficial in reducing the rate of pathogenesis of type 2 diabetes. Therefore, it may offer therapeutic value as a dietary or nutritional supplement in the approach against diabetes and its complications.
Collapse
Affiliation(s)
- Kemmoy G. Lattibeaudiere
- School of Natural and Applied Sciences, Faculty of Science and Sport, University of Technology, Kingston, Jamaica
- Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston, Jamaica
| | - Ruby Lisa Alexander-Lindo
- Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston, Jamaica
| |
Collapse
|
6
|
Gumpper-Fedus K, Crowe O, Hart PA, Pita-Grisanti V, Velez-Bonet E, Belury MA, L Ramsey M, Cole RM, Badi N, Culp S, Hinton A, F Lara L, Krishna SG, Conwell DL, Cruz-Monserrate Z. Differences in Plasma Fatty Acid Composition Related to Chronic Pancreatitis: A Pilot Study. Pancreas 2024; 53:e416-e423. [PMID: 38530954 PMCID: PMC11087201 DOI: 10.1097/mpa.0000000000002318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
OBJECTIVES Chronic pancreatitis (CP) is an inflammatory disease affecting the absorption of fat-soluble nutrients. Signaling in pancreatic cells that lead to inflammation may be influenced by fatty acids (FAs) through diet and de novo lipogenesis. Here, we investigated the relationship between plasma FA composition in CP with heterogeneity of etiology and complications of CP. MATERIALS AND METHODS Blood and clinical parameters were collected from subjects with CP (n = 47) and controls (n = 22). Plasma was analyzed for FA composition using gas chromatography and compared between controls and CP and within CP. RESULTS Palmitic acid increased, and linoleic acid decreased in CP compared with controls. Correlations between age or body mass index and FAs are altered in CP compared with controls. Diabetes, pancreatic calcifications, and substance usage, but not exocrine pancreatic dysfunction, were associated with differences in oleic acid and linoleic acid relative abundance in CP. De novo lipogenesis index was increased in the plasma of subjects with CP compared with controls and in calcific CP compared with noncalcific CP. CONCLUSIONS Fatty acids that are markers of de novo lipogenesis and linoleic acid are dysregulated in CP depending on the etiology or complication. These results enhance our understanding of CP and highlight potential pathways targeting FAs for treating CP.
Collapse
Affiliation(s)
| | | | | | | | | | - Martha A Belury
- Department of Food Science and Technology, College of Food, Agriculture, and Environmental Sciences, The Ohio State University
| | - Mitchell L Ramsey
- From the Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine
| | - Rachel M Cole
- Department of Food Science and Technology, College of Food, Agriculture, and Environmental Sciences, The Ohio State University
| | | | | | - Alice Hinton
- Division of Biostatistics, College of Public Heath, The Ohio State University Wexner Medical Center, Columbus
| | - Luis F Lara
- Department of Internal Medicine, Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, OH
| | | | - Darwin L Conwell
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY
| | | |
Collapse
|
7
|
Acácio BR, Prada AL, Neto SF, Gomes GB, Perdomo RT, Nazario CED, Neto ES, Martines MAU, de Almeida DAT, Gasparotto Junior A, Amado JRR. Cytotoxicity, anti-inflammatory effect, and acute oral toxicity of a novel Attalea phalerata kernel oil-loaded nanocapsules. Biomed Pharmacother 2024; 174:116308. [PMID: 38626517 DOI: 10.1016/j.biopha.2024.116308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 04/18/2024] Open
Abstract
The kernel oil of the Attalea phalerata Mart. Ex Spreng (Acurí) is traditionally used in several Latin American countries to treat respiratory problems, inflammation, and fever. However, it cannot be found on the literature any attend to use this oil in pharmaceutical formulation. In this paper, it was developed Acurí oil-loaded nanocapsules, and it was evaluated the cytotoxicity against cancer cells, the antinflammatory activity and the oral acute toxicity in rats. Acurí oil contains lauric acid as the predominant saturated fatty acid (433.26 mg/g) and oleic acid as the main unsaturated fatty acid (180.06 mg/g). The Acurí oil-loaded nanocapsules showed a size of 237 nm, a polydispersity index of 0.260, and a high ζ-potential of -78.75 mV. It was obtained an encapsulation efficiency of 88.77%, and the nanocapsules remain stable on the shelf for 180 days. The nanocapsules showed a rapid release profile (98.25% in 40 minutes). Nanocapsules at a dose of 10 mg/kg exhibit an anti-inflammatory effect similar to indomethacin at the same dose. The nanocapsules showed excellent antiproliferative effect and selectivity index against prostate tumor cells (IC50 2.09 µg/mL, SI=119.61) and kidney tumor cells (IC50 3.03 µg/mL, SI=82.50). Both Acurí oil and Acurí oil-loaded nanocapsules are nontoxic at a dose of 2000 mg/kg. Additionally, they reduce serum triglyceride and total cholesterol levels in rat and could find application in nutraceutical formulations. The Acurí oil-loaded nanocapsules emerge as a promising candidate for new antitumor therapies.
Collapse
Affiliation(s)
- Bianca Rodrigues Acácio
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Food, and Nutrition, Federal University of Mato Grosso do Sul, Brazil
| | - Ariadna Lafourcade Prada
- Postgraduate Program in Biotechnology, Faculty of Pharmacy, Food, and Nutrition, Federal University of Mato Grosso do Sul, Brazil
| | - Serafim Florentino Neto
- Laboratory of Innovation in Pharmaceutical Technology, Federal University of Amazonas, Manaus, AM, Brazil
| | - Giovana Bicudo Gomes
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Food, and Nutrition, Federal University of Mato Grosso do Sul, Brazil
| | - Renata Trentin Perdomo
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Food, and Nutrition, Federal University of Mato Grosso do Sul, Brazil
| | | | - Eduardo Sobieski Neto
- Postgraduate Program in Biotechnology, Institute of Chemistry, Federal University of Mato Grosso do Sul, Brazil
| | | | - Danielle Ayr Tavares de Almeida
- Postgraduate Program in Health Sciences. Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Arquimedes Gasparotto Junior
- Postgraduate Program in Health Sciences. Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Jesus Rafael Rodriguez Amado
- Postgraduate Program in Health Sciences. Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil.
| |
Collapse
|
8
|
Galmés S, Reynés B, Domínguez-Flores A, Terradas S, Torres AM, Palou A. Biochemical Composition and Related Potential Nutritional and Health Properties of Sobrassada de Mallorca. Foods 2024; 13:761. [PMID: 38472874 DOI: 10.3390/foods13050761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
'Sobrassada de Mallorca' is an EU PGI (Protected Geographical Indication) -qualified traditional food with important historical, social, and gastronomical relevance. However, its nutritional features are poorly characterized. Here, we studied 15 samples of Sobrassada de Mallorca (SM) and 9 samples of 'Sobrassada de Mallorca de Porc Negre' (SMBP), which are the two types of sobrassada that are PGI-protected. Their composition was assessed under the light of the EU Regulation 1924/2006 on nutrition and health claims (NHC) made on food. Results show the notably high energetic density (588 and 561 kcal/100 g for SM and SMBP, respectively) due to the notable fatty acid (FA) content and the relatively high proportion of unsaturated FAs (≈61% of total FAs) is also noted, mainly oleic acid (39.7 and 45.7%). Moreover, analyses showed that 100 g of both types of 'Sobrassada de Mallorca' present a 'significant' content (at least 15% of the established Nutrient Reference Values) of vitamins A (241 and 232 µg), E (2.67 and 2.67 mg), B3 (3.50 and 2.43 mg), B6 (0.27 and 0.35 mg), B12 (0.65 and 0.56 µg), phosphorus (271 and 186 mg), and selenium (17.3 and 16.2 µg) as defined by the EU standards and, in essence, their associated health benefits can be claimed for both SM and SMBP or foods containing them. In principle, SM and SMBP could be associated with various health claims (HC), including those related to energy-yielding metabolism, normal functioning of the immune system, and reduction of tiredness and fatigue.
Collapse
Affiliation(s)
- Sebastià Galmés
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Bàrbara Reynés
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alicia Domínguez-Flores
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands, 07122 Palma, Spain
| | - Silvia Terradas
- Consejo Regulador de la IGP "Sobrasada de Mallorca", 07006 Palma, Spain
| | | | - Andreu Palou
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Consejo Regulador de la IGP "Sobrasada de Mallorca", 07006 Palma, Spain
| |
Collapse
|
9
|
Martin M, Condori AI, Davico B, Gómez Rosso L, Gaete L, Tetzlaff W, Chiappe EL, Sáez MS, Lorenzon González MV, Godoy MF, Osta V, Trifone L, Ballerini MG, Cherñavsky A, Boero L, Tonietti M, Feliu S, Brites F. Impaired Reverse Cholesterol Transport is Associated with Changes in Fatty Acid Profile in Children and Adolescents with Abdominal Obesity. J Nutr 2024; 154:12-25. [PMID: 37716606 DOI: 10.1016/j.tjnut.2023.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Abdominal obesity is an important cardiovascular disease risk factor. Plasma fatty acids display a complex network of both pro and antiatherogenic effects. High density lipoproteins (HDL) carry out the antiatherogenic pathway called reverse cholesterol transport (RCT), which involves cellular cholesterol efflux (CCE), and lecithin:cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) activities. OBJECTIVES Our aim was to characterize RCT and its relation to fatty acids present in plasma in pediatric abdominal obesity. METHODS Seventeen children and adolescents with abdominal obesity and 17 healthy controls were studied. Anthropometric parameters were registered. Glucose, insulin, lipid levels, CCE employing THP-1 cells, LCAT and CETP activities, plus fatty acids in apo B-depleted plasma were measured. RESULTS The obese group showed a more atherogenic lipid profile, plus lower CCE (Mean±Standard Deviation) (6 ± 2 vs. 7 ± 2%; P < 0.05) and LCAT activity (11 ± 3 vs. 15 ±5 umol/dL.h; P < 0.05). With respect to fatty acids, the obese group showed higher myristic (1.1 ± 0.3 vs. 0.7 ± 0.3; P < 0.01) and palmitic acids (21.5 ± 2.8 vs. 19.6 ± 1.9; P < 0.05) in addition to lower linoleic acid (26.4 ± 3.3 vs. 29.9 ± 2.6; P < 0.01). Arachidonic acid correlated with CCE (r = 0.37; P < 0.05), myristic acid with LCAT (r = -0.37; P < 0.05), palmitioleic acid with CCE (r = -0.35; P < 0.05), linoleic acid with CCE (r = 0.37; P < 0.05), lauric acid with LCAT (r = 0.49; P < 0.05), myristic acid with LCAT (r = -0.37; P < 0.05) ecoisatrienoic acid with CCE (r = 0.40; P < 0.05) and lignoseric acid with LCAT (r = -0.5; P < 0.01). CONCLUSIONS Children and adolescents with abdominal obesity presented impaired RCT, which was associated with modifications in proinflammatory fatty acids, such as palmitoleic and myristic, thus contributing to increased cardiovascular disease risk.
Collapse
Affiliation(s)
- Maximiliano Martin
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Anabel Impa Condori
- Departamento de Sanidad, Nutrición, Bromatología y Toxicología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Belén Davico
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leonardo Gómez Rosso
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura Gaete
- Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Walter Tetzlaff
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel Lozano Chiappe
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | - María Fernanda Godoy
- Departamento de Sanidad, Nutrición, Bromatología y Toxicología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Viviana Osta
- Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Liliana Trifone
- Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - María Gabriela Ballerini
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra Cherñavsky
- Instituto de Inmunología, Genética y Metabolismo, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Laura Boero
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Miriam Tonietti
- Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Susana Feliu
- Departamento de Sanidad, Nutrición, Bromatología y Toxicología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Brites
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Dong W, Xing B, Yu J, Li W, Wang Y, Zhong L, Liu Y, Wang Y, Shu Z, Liu S. A metabolism-based study of the mechanism of action of Scrophularia ningpoensis Hemsl. on nephrogenic edema. Biomed Chromatogr 2024; 38:e5757. [PMID: 37814466 DOI: 10.1002/bmc.5757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/11/2023] [Accepted: 09/17/2023] [Indexed: 10/11/2023]
Abstract
Nephrogenic edema (NE) is a type of edema with hypoproteinemia and water and sodium retention as a result of renal injury. Traditional Chinese medicine has proved that Scrophularia ningpoensis Hemsl. has an effect on NE, but its mechanism is not clear. In this study, the main components and blood components of S. ningpoensis were identified using ultra-high-performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS). Pathological section and blood biochemical analysis were used to estimate the therapeutic effect of S. ningpoensis on NE. Network pharmacology was used to predict the potential pathways of S. ningpoensis. The metabolomics method was used to study the changes in small-molecule metabolites in the body. The results showed that S. ningpoensis could relieve NE by regulating relative to renal function and body edema, and its mechanism may be related to the regulation of energy metabolism, recovery of renal injury, and reduction in inflammation. The active component harpagoside may be one of the important compounds of S. ningpoensis in the treatment of NE. We confirmed that S. ningpoensis has a therapeutic effect on NE, which provides a solid scientific research basis for the clinical application of S. ningpoensis.
Collapse
Affiliation(s)
- WanRu Dong
- Drug Safety Evaluation Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - BeiYu Xing
- Department of Stomatology, Heilongjiang Provincial Hospital, Harbin, China
| | - JiaMin Yu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Wang
- The Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - LuYang Zhong
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Liu
- College of Pharmacy, Hainan Medical College, Hainan, China
| | - Yi Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - ZunPeng Shu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - ShuMin Liu
- The Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
11
|
Tavera-Hernández R, Jiménez-Estrada M, Alvarado-Sansininea JJ, Huerta-Reyes M. Chia ( Salvia hispanica L.), a Pre-Hispanic Food in the Treatment of Diabetes Mellitus: Hypoglycemic, Antioxidant, Anti-Inflammatory, and Inhibitory Properties of α-Glucosidase and α-Amylase, and in the Prevention of Cardiovascular Disease. Molecules 2023; 28:8069. [PMID: 38138560 PMCID: PMC10745661 DOI: 10.3390/molecules28248069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes mellitus (DM) is considered one of the major health diseases worldwide, one that requires immediate alternatives to allow treatments for DM to be more effective and less costly for patients and also for health-care systems. Recent approaches propose treatments for DM based on that; in addition to focusing on reducing hyperglycemia, they also consider multitargets, as in the case of plants. Among these, we find the plant known as chia to be highlighted, a crop native to Mexico and one cultivated in Mesoamerica from pre-Hispanic times. The present work contributes to the review of the antidiabetic effects of chia for the treatment of DM. The antidiabetic effects of chia are effective in different mechanisms involved in the complex pathogenesis of DM, including hypoglycemic, antioxidant, and anti-inflammatory mechanisms, and the inhibition of the enzymes α-glucosidase and α-amylase, as well as in the prevention of the risk of cardiovascular disease. The tests reviewed included 16 in vivo assays on rodent models, 13 clinical trials, and 4 in vitro tests. Furthermore, chia represents advantages over other natural products due to its availability and its acceptance and, in addition, as a component of the daily diet worldwide, especially due to its omega-3 fatty acids and its high concentration of dietary fiber. Thus, chia in the present work represents a source of antidiabetic agents that would perhaps be useful in novel clinical treatments.
Collapse
Affiliation(s)
- Rosario Tavera-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (R.T.-H.); (M.J.-E.)
| | - Manuel Jiménez-Estrada
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (R.T.-H.); (M.J.-E.)
| | - J. Javier Alvarado-Sansininea
- Herbario FEZA, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla de 5 de mayo S/N, Col. Ejército de Oriente, Ciudad de México 09230, Mexico;
| | - Maira Huerta-Reyes
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc, Ciudad de México 06720, Mexico
| |
Collapse
|
12
|
Nuchuchua O, Inpan R, Srinuanchai W, Karinchai J, Pitchakarn P, Wongnoppavich A, Imsumran A. Phytosome Supplements for Delivering Gymnema inodorum Phytonutrients to Prevent Inflammation in Macrophages and Insulin Resistance in Adipocytes. Foods 2023; 12:foods12112257. [PMID: 37297501 DOI: 10.3390/foods12112257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Gymnema inodorum (GI) is a leafy green vegetable found in the northern region of Thailand. A GI leaf extract has been developed as a dietary supplement for metabolic diabetic control. However, the active compounds in the GI leaf extract are relatively nonpolar. This study aimed to develop phytosome formulations of the GI extract to improve the efficiencies of their phytonutrients in terms of anti-inflammatory and anti-insulin-resistant activities in macrophages and adipocytes, respectively. Our results showed that the phytosomes assisted the GI extract's dispersion in an aqueous solution. The GI phytocompounds were assembled into a phospholipid bilayer membrane as spherical nanoparticles about 160-180 nm in diameter. The structure of the phytosomes allowed phenolic acids, flavonoids and triterpene derivatives to be embedded in the phospholipid membrane. The existence of GI phytochemicals in phytosomes significantly changed the particle's surface charge from neutral to negative within the range of -35 mV to -45 mV. The phytosome delivery system significantly exhibited the anti-inflammatory activity of the GI extract, indicated by the lower production of nitric oxide from inflamed macrophages compared to the non-encapsulated extract. However, the phospholipid component of phytosomes slightly interfered with the anti-insulin-resistant effects of the GI extract by decreasing the glucose uptake activity and increasing the lipid degradation of adipocytes. Altogether, the nano-phytosome is a potent carrier for transporting GI phytochemicals to prevent an early stage of T2DM.
Collapse
Affiliation(s)
- Onanong Nuchuchua
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Ratchanon Inpan
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wanwisa Srinuanchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arisa Imsumran
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
Gumpper-Fedus K, Crowe O, Hart PA, Pita-Grisanti V, Velez-Bonet E, Belury MA, Ramsey M, Cole RM, Badi N, Culp S, Hinton A, Lara L, Krishna SG, Conwell DL, Cruz-Monserrate Z. Changes in Plasma Fatty Acid Abundance Related to Chronic Pancreatitis: A Pilot Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522899. [PMID: 36711757 PMCID: PMC9881940 DOI: 10.1101/2023.01.05.522899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Objectives Chronic pancreatitis (CP) is an inflammatory disease that affects the absorption of nutrients like fats. Molecular signaling in pancreatic cells can be influenced by fatty acids (FAs) and changes in FA abundance could impact CP-associated complications. Here, we investigated FA abundance in CP compared to controls and explored how CP-associated complications and risk factors affect FA abundance. Methods Blood and clinical parameters were collected from subjects with (n=47) and without CP (n=22). Plasma was analyzed for relative FA abundance using gas chromatography and compared between controls and CP. Changes in FA abundance due to clinical parameters were also assessed in both groups. Results Decreased relative abundance of polyunsaturated fatty acids (PUFAs) and increased monounsaturated fatty acids (MUFAs) were observed in subjects with CP in a sex-dependent manner. The relative abundance of linoleic acid increased, and oleic acid decreased in CP subjects with exocrine pancreatic dysfunction and a history of substance abuse. Conclusions Plasma FAs like linoleic acid are dysregulated in CP in a sex-dependent manner. Additionally, risk factors and metabolic dysfunction further dysregulate FA abundance in CP. These results enhance our understanding of CP and highlight potential novel targets and metabolism-related pathways for treating CP.
Collapse
|
14
|
Huang X, Wang YJ, Xiang Y. Bidirectional communication between brain and visceral white adipose tissue: Its potential impact on Alzheimer's disease. EBioMedicine 2022; 84:104263. [PMID: 36122553 PMCID: PMC9490488 DOI: 10.1016/j.ebiom.2022.104263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
A variety of axes between brain and abdominal organs have been reported, but the interaction between brain and visceral white adipose tissue (vWAT) remains unclear. In this review, we summarized human studies on the association between brain and vWAT, and generalized their interaction and the underlying mechanisms according to animal and cell experiments. On that basis, we come up with the concept of the brain-vWAT axis (BVA). Furthermore, we analyzed the potential mechanisms of involvement of BVA in the pathogenesis of Alzheimer's disease (AD), including vWAT-derived fatty acids, immunological properties of vWAT, vWAT-derived retinoic acid and vWAT-regulated insulin resistance. The proposal of BVA may expand our understanding to some extent of how the vWAT impacts on brain health and diseases, and provide a novel approach to study the pathogenesis and treatment strategies of neurodegenerative disorders.
Collapse
|
15
|
Farag MA, Gad MZ. Omega-9 fatty acids: potential roles in inflammation and cancer management. J Genet Eng Biotechnol 2022; 20:48. [PMID: 35294666 PMCID: PMC8927560 DOI: 10.1186/s43141-022-00329-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022]
Abstract
Background Omega-9 fatty acids represent one of the main mono-unsaturated fatty acids (MUFA) found in plant and animal sources. They are synthesized endogenously in humans, though not fully compensating all body requirements. Consequently, they are considered as partially essential fatty acids. MUFA represent a healthier alternative to saturated animal fats and have several health benefits, including anti-inflammatory and anti-cancer characters. The main body of the abstract This review capitalizes on the major omega-9 pharmacological activities in context of inflammation management for its different natural forms in different dietary sources. The observed anti-inflammatory effects reported for oleic acid (OA), mead acid, and erucic acid were directed to attenuate inflammation in several physiological and pathological conditions such as wound healing and eye inflammation by altering the production of inflammatory mediators, modulating neutrophils infiltration, and altering VEGF effector pathway. OA action mechanisms as anti-tumor agent in different cancer types are compiled for the first time based on its anti- and pro-carcinogenic actions. Conclusion We conclude that several pathways are likely to explain the anti-proliferative activity of OA including suppression of migration and proliferation of breast cancer cells, as well stimulation of tumor suppressor genes. Such action mechanisms warrant for further supportive clinical and epidemiological studies to confirm the beneficial outcomes of omega-9 consumption especially over long-term intervention.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B, Cairo, 11562, Egypt.
| | - Mohamed Z Gad
- Department of Biochemistry, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Cairo, Egypt
| |
Collapse
|
16
|
Differential effects of single fatty acids and fatty acid mixtures on the phosphoinositide 3-kinase/Akt/eNOS pathway in endothelial cells. Eur J Nutr 2022; 61:2463-2473. [PMID: 35157107 PMCID: PMC9279250 DOI: 10.1007/s00394-022-02821-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/25/2022] [Indexed: 12/30/2022]
Abstract
SCOPE Dietary fat composition is an important modulator of vascular function. Non-esterified fatty acids (NEFA) enriched in saturated fatty acids (SFA) are thought to reduce vascular reactivity by attenuating insulin signalling via vasodilator pathways (phosphoinositide 3-kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS)) and enhancing signalling via pro-inflammatory pathways. METHODS To examine the effects of fatty acids on these pathways, human aortic endothelial cells were incubated with single fatty acids, and mixtures of these fatty acids to mimic typical NEFA composition and concentrations achieved in our previous human study. RNA was extracted to determine gene expression using real-time RT-PCR and cell lysates prepared to assess protein phosphorylation by Western blotting. RESULTS Oleic acid (OA, 100 µM) was shown to down regulate expression of the insulin receptor, PTEN and a PI3K catalytic (p110β) and regulatory (p85α) subunit compared to palmitic, linoleic and stearic acids (P < 0.04), and promote greater eNOS phosphorylation at Ser1177. Both concentration and composition of the SFA and SFA plus n-3 polyunsaturated fatty acids (PUFA) mixtures had significant effects on genes involved in the PI3K/Akt pathway. Greater up-regulation was found with 800 than 400 µM concentration (respective of concentrations in insulin resistant and normal individuals), whereas greater down-regulation was evident with SFA plus n-3 PUFA than SFA mixture alone. CONCLUSION Our findings provide novel insights into the modulation of the PI3K/Akt/eNOS pathway by single fatty acids and fatty acid mixtures. In particular, OA appears to promote signalling via this pathway, with further work required to determine the primary molecular site(s) of action.
Collapse
|
17
|
Grigorova N, Ivanova Z, Vachkova E, Tacheva T, Penchev Georgiev I. Co-administration of oleic and docosahexaenoic acids enhances glucose uptake rather than lipolysis in mature 3T3-L1 adipocytes cell culture. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2022. [DOI: 10.15547/bjvm.2390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study investigated the effect of different types of long-chain fatty acids and their combination on the triglyceride accumulation, glucose utilisation, and lipolysis in already obese adipocytes. 3T3-L1 MBX cells were first differentiated into mature adipocytes using adipogenic inducers (3-isobutyl-1-methylxanthine, dexamethasone, indomethacin, insulin, and high glucose), then 100 µM 0.1% ethanol extracts of palmitic (PA), oleic (OA), or docosahexaenoic acid (DHA) were applied for nine days. Unsaturated fatty acids decreased the intracellular lipid accumulation while maintaining glucose utilisation levels. However, unlike OA, self-administration of DHA only intensified lipolysis by 25% vs induced untreated control (IC), which may have a direct detrimental impact on the whole body’s metabolic state. DHA applied in equal proportion with PA elevated triglyceride accumulation by 10% compared to IC, but applied with OA, enhanced glucose uptake without any significant changes in the lipogenic drive and the lipolytic rate, suggesting that this unsaturated fatty acids combination may offer a considerable advantage in amelioration of obesity-related disorders.
Collapse
Affiliation(s)
- N. Grigorova
- Department of Animal Physiology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Zh. Ivanova
- Department of Animal Physiology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - E. Vachkova
- Department of Animal Physiology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - T. Tacheva
- Department of Biochemistry, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| | - I. Penchev Georgiev
- Department of Animal Physiology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
18
|
Renganathan S, Manokaran S, Vasanthakumar P, Singaravelu U, Kim PS, Kutzner A, Heese K. Phytochemical Profiling in Conjunction with In Vitro and In Silico Studies to Identify Human α-Amylase Inhibitors in Leucaena leucocephala (Lam.) De Wit for the Treatment of Diabetes Mellitus. ACS OMEGA 2021; 6:19045-19057. [PMID: 34337243 PMCID: PMC8320072 DOI: 10.1021/acsomega.1c02350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/05/2021] [Indexed: 05/12/2023]
Abstract
Bioactive constituents from natural sources are of great interest as alternatives to synthetic compounds for the treatment of various diseases, including diabetes mellitus. In the present study, phytochemicals present in Leucaena leucocephala (Lam.) De Wit leaves were identified by gas chromatography-mass spectrometry and further examined by qualitative and quantitative methods. α-Amylase enzyme activity assays were performed and revealed that L. leucocephala (Lam.) De Wit leaf extract inhibited enzyme activity in a dose-dependent manner, with efficacy similar to that of the standard α-amylase inhibitor acarbose. To determine which phytochemicals were involved in α-amylase enzyme inhibition, in silico virtual screening of the absorption, distribution, metabolism, excretion, and toxicity properties was performed and pharmacophore dynamics were assessed. We identified hexadecenoic acid and oleic acid ((Z)-octadec-9-enoic acid) as α-amylase inhibitors. The binding stability of α-amylase to those two fatty acids was confirmed in silico by molecular docking and a molecular dynamics simulation performed for 100 ns. Together, our findings indicate that L. leucocephala (Lam.) De Wit-derived hexadecanoic acid and oleic acid are natural product-based antidiabetic compounds that can potentially be used to manage diabetes mellitus.
Collapse
Affiliation(s)
- Senthil Renganathan
- Department
of Bioinformatics, Marudupandiyar College, Thanjavur 613403, Tamil Nadu, India
| | - Sakthivel Manokaran
- Department
of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Preethi Vasanthakumar
- Department
of Biotechnology, Bharath College of Science
and Management, Thanjavur 613005, Tamil Nadu, India
| | - Usha Singaravelu
- Department
of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Pok-Son Kim
- Department
of Mathematics, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702, Republic of Korea
| | - Arne Kutzner
- Department
of Information Systems, College of Computer Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Klaus Heese
- Graduate
School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| |
Collapse
|
19
|
Mohammed MA, Attia HN, El-Gengaihi SE, Maklad YA, Ahmed KA, Kachlicki P. Comprehensive metabolomic, lipidomic and pathological profiles of baobab (Adansonia digitata) fruit pulp extracts in diabetic rats. J Pharm Biomed Anal 2021; 201:114139. [PMID: 34000580 DOI: 10.1016/j.jpba.2021.114139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/25/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
Baobab fruit pulp Adansonia digitata (AD) has received attention due to its numerous nutritional and medicinal values. In the current study, tentative identification was performed due to limited information available on its phytochemical composition. Phytochemicals from AD fruit pulp were obtained using successive organic solvent fractionation. The LC-MSMS analysis led to identification of 91 metabolites from methanol, butanol and ethyl acetate extracts. Moreover, 20 compounds were identified in the petroleum ether extract based on high resolution ion masses. In vitro antidiabetic and antioxidant properties of selected extracts were investigated using enzyme activity and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, respectively. Biological screening of the antidiabetic effects of target extracts was performed against streptozotocin-induced diabetes in experimental animals, following daily oral treatment for 3 successive weeks. Serum glucose, insulin, adiponectin, superoxide dismutase (SOD), lipid peroxide, cholesterol and HDL levels were measured. Finally, histopathological and immunohistochemical examinations of pancreas were carried out. Results revealed that animal groups treated daily with butanol (BuOH) and petroleum ether extracts of AD (oil) exhibited a significant improvement in carbohydrate and lipid metabolism as well as antioxidant effect. Both extracts revealed superior effects with respect to the total (TT) and ethyl acetate (EtOAc) extracts. Histopathological and immunohistochemical findings supported these results, showing marked protection of the pancreas. Thus, baobab oil and butanolic extract of the fruit pulp protected animals against STZ-induced diabetic changes, in addition to attenuation of lipid peroxidation, hypercholesterolemia and oxidation.
Collapse
Affiliation(s)
- Mona A Mohammed
- Medicinal and Aromatic Plants Research Department, Pharmaceutical Industries Research Division, National Research Centre, Giza, Egypt.
| | - Hanan Naeim Attia
- Medicinal and Pharmaceutical Chemistry Department (Pharmacology Group), Pharmaceutical Industries Research Division, National Research Centre, Giza, Egypt.
| | - Souad E El-Gengaihi
- Medicinal and Aromatic Plants Research Department, Pharmaceutical Industries Research Division, National Research Centre, Giza, Egypt
| | - Yousreya A Maklad
- Medicinal and Pharmaceutical Chemistry Department (Pharmacology Group), Pharmaceutical Industries Research Division, National Research Centre, Giza, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Piotr Kachlicki
- Institute of Plant Genetics of the Polish Academy of Sciences (Metabolomics Group), Poznan, Poland
| |
Collapse
|
20
|
Pietrzyk N, Zakłos-Szyda M, Koziołkiewicz M, Podsędek A. Viburnum opulus L. fruit phenolic compounds protect against FFA-induced steatosis of HepG2 cells via AMPK pathway. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|