1
|
Zamani S, Besharat S, Behnampour N, Behnam A, Asgari N, Mortazavi N. Bacteroides fragilis in saliva: investigating links with ulcerative colitis. Braz J Microbiol 2024:10.1007/s42770-024-01484-x. [PMID: 39155343 DOI: 10.1007/s42770-024-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a long-term bowel inflammation of unknown cause. Recent research points to gut microbiota, especially Enterotoxigenic Bacteroides fragilis (ETBF), in UC's development. This study examined the presence of Bacteroides fragilis (B. fragilis) and ETBF in the saliva of UC patients and Healthy Controls (HCs) in Iran. METHODS A total of 40 UC patients and 40 healthy controls were included in the study. Saliva samples were collected and analyzed for the presence of B. fragilis and ETBF using real-time polymerase chain reaction (PCR). RESULTS B. fragilis was more prevalent in HCs (70%) than UC patients (67.5%), but not significantly (p = 0.809). ETBF was significantly more prevalent in UC patients (50%) than HCs (10%) (p < 0.0001). The mean count of B. fragilis was higher in UC patients, but not significantly (p = 0.47). However, the mean count of ETBF was significantly higher in UC patients (p = 0.000089). In terms of gender, the number of B. fragilis in women was not significant (p = 0.16), but the number of ETBF was significantly higher in women with UC (p = 0.000458). For men, no significant differences were observed. CONCLUSIONS The present study suggest a higher prevalence of B. fragilis observed in UC patients compared to HCs. Further research is needed to confirm these findings and explore potential mechanisms underlying this association.
Collapse
Affiliation(s)
- Samin Zamani
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sima Besharat
- Golestan Research Center of Gastroentrology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nasser Behnampour
- Health Management and Social Development Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Armina Behnam
- Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Negar Asgari
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nazanin Mortazavi
- Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Golestan University of Medical Sciences, PO Box 4916953363, Gorgan, Iran.
| |
Collapse
|
2
|
Gutiérrez-Gómez ML, Ruíz Z, Gamboa F, Roa NS, Cardozo C, Ariza B, Aristizábal A, Lugo A, Bolívar S, Henao D, García-Robayo DA. SARS-CoV-2 diagnosis in saliva samples: Usefulness and limitations. Diagn Microbiol Infect Dis 2024; 109:116320. [PMID: 38678688 DOI: 10.1016/j.diagmicrobio.2024.116320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Saliva samples are important for diagnosis, because they are noninvasive and easy to acquire. The objective of this cross-sectional study was to investigate the value saliva samples have in detecting SARS-CoV-2 in comparison to nasal swabs and a new system named CovidCheck. A standard methodology identified the virus in 185 nasopharyngeal swabs and saliva samples revealing a sensitivity, specificity and positive and negative predictive values of 82,100,100 and 94.67%, respectively for saliva samples. Viral presence in saliva samples with the standard methodology in comparison to the CovidCheck system was evaluated in 67 samples with sensitivity, specificity and positive and negative predictive values of 68, 81, 68 and 81%, respectively. In conclusion, our results highlight the usefulness saliva samples have in detecting respiratory viral infections. However, presence of viral inhibitors and viral load in saliva, and the patient's clinical status should be considered as they might affect amplifying systems results.
Collapse
Affiliation(s)
- María-Lucía Gutiérrez-Gómez
- Department of Morphological Sciences, School of Medicine, Pontificia Universidad Javeriana, Bogotá D.C, Colombia; Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.
| | - Zulema Ruíz
- Clinical Laboratory, San Ignacio University Hospital, Bogotá, D.C., Colombia
| | - Fredy Gamboa
- Center for Dental Research, School of Dentistry, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Department of Microbiology, School of Sciences, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Nelly S Roa
- Center for Dental Research, School of Dentistry, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Department of Buccal System, School of Dentistry, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Claudia Cardozo
- Clinical Laboratory, San Ignacio University Hospital, Bogotá, D.C., Colombia
| | - Beatriz Ariza
- Clinical Laboratory, San Ignacio University Hospital, Bogotá, D.C., Colombia
| | - Andrés Aristizábal
- Department of Nutrition and Biochemistry, School of Sciences, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Andrés Lugo
- Department of Respiratory Care, respIRA group, San Ignacio University Hospital, Bogotá, D.C., Colombia
| | - Stevenson Bolívar
- Department of Industrial Engineering, School of Engineering, Pontificia Universidad Javeriana, Bogotá, D. C., Colombia
| | - Daniel Henao
- Department of Dental System, School of Dentistry, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Dabeiba-Adriana García-Robayo
- Center for Dental Research, School of Dentistry, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Department of Buccal System, School of Dentistry, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia.
| |
Collapse
|
3
|
Wint WY, Miyanohara M, Yamada H, Nakatsuka T, Okamoto M, Ryo K, Tanaka T, Hanada N, Murata T. Rapid multiplex real-time PCR assay using a portable device for the detection of oral pathogens. Diagn Microbiol Infect Dis 2024; 109:116214. [PMID: 38402755 DOI: 10.1016/j.diagmicrobio.2024.116214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Colonization by several oral pathogens and the onset of oral diseases, such as dental caries and periodontal diseases, are closely related. Therefore, the analysis of pathogens in oral specimens would be helpful for the risk assessment of oral diseases. We developed a rapid multiplex real-time polymerase chain reaction (PCR) method using a portable device and newly designed probe/primer sets to detect the oral pathogens Streptococcus mutans, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. The theoretical minimum detectable cell numbers of S. mutans, P. gingivalis, T. denticola, and T. forsythia were 1, 1, 4, and 3, respectively. The multiplex real-time PCR system simultaneously detected the colonization of S. mutans and P. gingivalis in human saliva. These results suggest that the multiplex real-time PCR system may be useful for the risk assessment of oral diseases.
Collapse
Affiliation(s)
- Wit Yee Wint
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, 230-8501 Yokohama, Japan
| | - Mayu Miyanohara
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, 230-8501 Yokohama, Japan
| | - Hidenori Yamada
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, 230-8501 Yokohama, Japan
| | - Takako Nakatsuka
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, 230-8501 Yokohama, Japan
| | - Masaaki Okamoto
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, 230-8501 Yokohama, Japan
| | - Koufuchi Ryo
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, 230-8501 Yokohama, Japan
| | - Tomoko Tanaka
- Department of Oral Health, School of Life Dentistry at Tokyo, Nippon Dental University, Fujimi, Chiyoda-ku, Tokyo, 102-8159 Japan
| | - Nobuhiro Hanada
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, 230-8501 Yokohama, Japan
| | - Takatoshi Murata
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, 230-8501 Yokohama, Japan.
| |
Collapse
|
4
|
Ichikawa K, Iitani K, Kawase G, Toma K, Arakawa T, Dao DV, Mitsubayashi K. Mouthguard-Type Wearable Sensor for Monitoring Salivary Turbidity to Assess Oral Hygiene. SENSORS (BASEL, SWITZERLAND) 2024; 24:1436. [PMID: 38474972 DOI: 10.3390/s24051436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
Salivary turbidity is a promising indicator for evaluating oral hygiene. This study proposed a wearable mouthguard-type sensor for continuous and unconstrained measurement of salivary turbidity. The sensor evaluated turbidity by measuring the light transmittance of saliva with an LED and a phototransistor sealed inside a double-layered mouthguard. The sensor was also embedded with a Bluetooth wireless module, enabling the wireless measurement of turbidity. The mouthguard materials (polyethylene terephthalate-glycol and ethylene-vinyl acetate) and the wavelength of the LED (405 nm) were experimentally determined to achieve high sensitivity in salivary turbidity measurement. The turbidity quantification characteristic of the proposed sensor was evaluated using a turbidity standard solution, and the sensor was capable of turbidity quantification over a wide dynamic range of 1-4000 FTU (formazine turbidity unit), including reported salivary turbidity (400-800 FTU). In vitro turbidity measurement using a saliva sample showed 553 FTU, which is equivalent to the same sample measured with a spectrophotometer (576 FTU). Moreover, in vivo experiments also showed results equivalent to that measured with a spectrophotometer, and wireless measurement of salivary turbidity was realized using the mouthguard-type sensor. Based on these results, the proposed mouthguard-type sensor has promising potential for the unconstrained continuous evaluation of oral hygiene.
Collapse
Affiliation(s)
- Kenta Ichikawa
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Kenta Iitani
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Gentaro Kawase
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Koji Toma
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
- Department of Electronic Engineering, College of Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan
| | - Takahiro Arakawa
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
- Department of Electric and Electronic Engineering, Tokyo University of Technology, Tokyo 192-0982, Japan
| | - Dzung Viet Dao
- School of Engineering and Built Environment, Griffith University, Southport 4222, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan 4111, Australia
| | - Kohji Mitsubayashi
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| |
Collapse
|
5
|
Ishii K, Venkataiah VS, Kajiwara T, Umezawa K, Suzuki S, Nakano M, Sawaguchi M, Yahata Y, Saito M. Salivary leukocyte esterase activity by SillHa is a risk indicator of periodontal disease. BMC Oral Health 2023; 23:187. [PMID: 36998066 PMCID: PMC10062687 DOI: 10.1186/s12903-023-02874-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND There is increasing evidence that diagnostic salivary tests measuring inflammatory biomarkers are being developed to assess inflammatory status for early detection, prevention, and progression of periodontal disease. Therefore, the aim of the present study was to investigate and identify the salivary biomarker that can predict the inflammatory status of periodontal disease. METHODS A total of 36 patients (28 women and 8 men) with an average age of 57 years were investigated. Unstimulated saliva was collected from the recruited subjects and analyzed using SillHa, a saliva-testing device that measures bacteria count, saliva buffer capacity, acidity, leukocyte esterase, protein, and ammonia. Periodontal parameters were then obtained by clinical examination and initial periodontal therapy was performed. Data obtained with SillHa were compared with clinical periodontal parameters at baseline, re-examination (three months from baseline), and final examination (six months from re-examination). RESULTS Leukocyte esterase activity in saliva measured by SillHa; BOP and PCR measured by clinical examination showed a significant difference between baseline and final examination and between re-examination and final examination. Patients in the lower median group (group 1) had a significant difference in leukocyte esterase activity between baseline and final examination and re-examination and final examination. In addition, patients in Group 1 had significantly lower BOP between baseline and final examination. While patients in the higher median group (group 2) showed a modest decrease in leukocyte esterase activity, which was significant only between baseline and final examination, no significant changes were observed concerning BOP. Furthermore, the associated systemic disease was observed in 30% and 81.2% of group 1 and 2 patients, respectively. CONCLUSION The results suggest that leukocyte esterase activity in saliva measured by SillHa could serve as a reliable diagnostic marker for monitoring inflammatory status in periodontal disease.
Collapse
Affiliation(s)
- Kyoko Ishii
- Division of Restorative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Venkata Suresh Venkataiah
- Division of Restorative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Takako Kajiwara
- Division of Restorative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Kouta Umezawa
- Division of Restorative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Shigeto Suzuki
- Division of Restorative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Masato Nakano
- Division of Restorative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Mayu Sawaguchi
- Division of Restorative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Yoshio Yahata
- Division of Restorative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Masahiro Saito
- Division of Restorative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan.
| |
Collapse
|
6
|
Bostanci N, Belibasakis GN. Precision periodontal care: from omics discoveries to chairside diagnostics. Clin Oral Investig 2023; 27:971-978. [PMID: 36723713 PMCID: PMC9985578 DOI: 10.1007/s00784-023-04878-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/22/2023] [Indexed: 02/02/2023]
Abstract
The interface of molecular science and technology is guiding the transformation of personalized to precision healthcare. The application of proteomics, genomics, transcriptomics, and metabolomics is shaping the suitability of biomarkers for disease. Prior validation of such biomarkers in large and diverse patient cohorts helps verify their clinical usability. Incorporation of molecular discoveries into routine clinical practice relies on the development of customized assays and devices that enable the rapid delivery of analytical data to the clinician, while the patient is still in session. The present perspective review addresses this topic under the prism of precision periodontal care. Selected promising research attempts to innovate technological platforms for oral diagnostics are brought forward. Focus is placed on (a) the suitability of saliva as a conveniently sampled biological specimen for assessing periodontal health, (b) proteomics as a high-throughput approach for periodontal disease biomarker identification, and (c) chairside molecular diagnostic assays as a technological funnel for transitioning from the laboratory benchtop to the clinical point-of-care.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels alle 8, 141 52, Huddinge, Stockholm, Sweden.
| | - Georgios N Belibasakis
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels alle 8, 141 52, Huddinge, Stockholm, Sweden.
| |
Collapse
|
7
|
qPCR Detection and Quantification of Aggregatibacter actinomycetemcomitans and Other Periodontal Pathogens in Saliva and Gingival Crevicular Fluid among Periodontitis Patients. Pathogens 2023; 12:pathogens12010076. [PMID: 36678429 PMCID: PMC9861831 DOI: 10.3390/pathogens12010076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE The detection of special bacterial species in patients with periodontitis is considered useful for clinical diagnosis and treatment. The aim of this study was to investigate the presence of specific periopathogens and investigate whether there is a correlation between the results of different bacterial species in whole saliva and pooled subgingival plaque samples (healthy and diseased sites) from individuals with periodontitis and periodontally healthy subjects. MATERIALS AND METHODS In total, 52 patients were recruited and divided into two groups: non-periodontitis and periodontitis patients. For each group, the following periodontal pathogens were detected using real-time polymerase chain reaction: A. actinomycetemcomitans JP2 clone, A. actinomycetemcomitans non JP2 clone, Porphyromonasgingivalis, and total eubacteria. RESULTS Higher levels of the various studied bacteria were present in both saliva and plaque samples from the periodontitis group in comparison to non-periodontitis subjects. There were significant differences in P. gingivalis and A. actinomycetemcomitans JP2 clones in the saliva of periodontitis patient compared to the control group. Subgingival plaque of diseased sites presented a significant and strong positive correlation between A. actinomycetemcomitans and P. gingivalis. In saliva samples, there was a significant positive correlation between A. actinomycetemcomitans JP2 clone and P. gingivalis (p ≤ 0.002). CONCLUSION Quantifying and differentiating these periodontal species from subgingival plaque and saliva samples showed a good potential as diagnostic markers for periodontal disease. Regarding the prevalence of the studied bacteria, specifically A. actinomycetemcomitans JP2 clone, found in this work, and the high rate of susceptibility to periodontal species in Africa, future larger studies are recommended.
Collapse
|
8
|
Paqué PN, Hjerppe J, Zuercher AN, Jung RE, Joda T. Salivary biomarkers as key to monitor personalized oral healthcare and precision dentistry: A scoping review. FRONTIERS IN ORAL HEALTH 2022; 3:1003679. [PMID: 36338569 PMCID: PMC9632857 DOI: 10.3389/froh.2022.1003679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/01/2022] [Indexed: 11/15/2022] Open
Abstract
Personalized Oral Healthcare has recently become the new trend word in medicine and dentistry. In this context, saliva diagnostics using various biomarkers seem to be the gateway to personalized dental diagnostics and therapy. But the terminology is not (yet) uniformly defined, furthermore it is unclear to what extent which salivary markers play a relevant role in the therapeutic decision making. In this Scoping Review, an electronic search was conducted in PubMed and Web of Science databases using medical subject headings (MESH terms) “saliva”, “biomarker”, “personality/persons”, and “dentistry”. Only human studies were included, in which repeated salivary measurements were performed to analyze monitoring effects with at least ten patients per group. PRISMA-ScR and Tricco guidelines were followed: (i) to examine what salivary biomarkers have been explored in terms of personalized oral healthcare and precision dentistry, (ii) to investigate the clinical relevance for oral health and its correlation to systemic health, and (iii) to summarize an outlook for future developments based on these results. Out of 899 studies, a total of 57 were included for data extraction in this Scoping Review, mainly focusing on periodontal therapy and patient monitoring. Salivary biomarkers have shown the potential to change the field of dentistry in all dental disciplines as a key for personalized workflows. The increasing interest in dental research is obvious, demonstrated by the growing number of publications in recent years. At this time, however, the predominant discipline is periodontology, which allows biomarker-based monitoring of the disease prevention and progression. The studies included showed heterogeneous methods using manifolds biomarkers. Therefore, no uniformly accepted concept can be presented today. Further clinical research with well-defined outcomes including standardized procedures is necessary.
Collapse
Affiliation(s)
- Pune Nina Paqué
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Jenni Hjerppe
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Anina N. Zuercher
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Ronald E. Jung
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Tim Joda
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- Department of Reconstructive Dentistry, University Center of Dental Medicine, University of Basel, Basel, Switzerland
- Correspondence: Tim Joda
| |
Collapse
|
9
|
Baumgartner D, Johannsen B, Specht M, Lüddecke J, Rombach M, Hin S, Paust N, von Stetten F, Zengerle R, Herz C, Peham JR, Paqué PN, Attin T, Jenzer JS, Körner P, Schmidlin PR, Thurnheer T, Wegehaupt FJ, Kaman WE, Stubbs A, Hays JP, Rusu V, Michie A, Binsl T, Stejskal D, Karpíšek M, Bao K, Bostanci N, Belibasakis GN, Mitsakakis K. OralDisk: A Chair-Side Compatible Molecular Platform Using Whole Saliva for Monitoring Oral Health at the Dental Practice. BIOSENSORS 2021; 11:bios11110423. [PMID: 34821641 PMCID: PMC8615610 DOI: 10.3390/bios11110423] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 05/04/2023]
Abstract
Periodontitis and dental caries are two major bacterially induced, non-communicable diseases that cause the deterioration of oral health, with implications in patients' general health. Early, precise diagnosis and personalized monitoring are essential for the efficient prevention and management of these diseases. Here, we present a disk-shaped microfluidic platform (OralDisk) compatible with chair-side use that enables analysis of non-invasively collected whole saliva samples and molecular-based detection of ten bacteria: seven periodontitis-associated (Aggregatibacter actinomycetemcomitans, Campylobacter rectus, Fusobacterium nucleatum, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola) and three caries-associated (oral Lactobacilli, Streptococcus mutans, Streptococcus sobrinus). Each OralDisk test required 400 µL of homogenized whole saliva. The automated workflow included bacterial DNA extraction, purification and hydrolysis probe real-time PCR detection of the target pathogens. All reagents were pre-stored within the disk and sample-to-answer processing took < 3 h using a compact, customized processing device. A technical feasibility study (25 OralDisks) was conducted using samples from healthy, periodontitis and caries patients. The comparison of the OralDisk with a lab-based reference method revealed a ~90% agreement amongst targets detected as positive and negative. This shows the OralDisk's potential and suitability for inclusion in larger prospective implementation studies in dental care settings.
Collapse
Affiliation(s)
- Desirée Baumgartner
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
- Laboratory for MEMS Applications, IMTEK–Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Correspondence: (K.M.); (D.B.); Tel.: +49-761-203-73252 (K.M.); +49-761-203-98724 (D.B.)
| | - Benita Johannsen
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
| | - Mara Specht
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
| | - Jan Lüddecke
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
| | - Markus Rombach
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
| | - Sebastian Hin
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
| | - Nils Paust
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
- Laboratory for MEMS Applications, IMTEK–Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Felix von Stetten
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
- Laboratory for MEMS Applications, IMTEK–Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
- Laboratory for MEMS Applications, IMTEK–Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Christopher Herz
- AIT Austrian Institute of Technology, Molecular Diagnostics, Giefinggasse 4, 1210 Wien, Austria; (C.H.); (J.R.P.)
| | - Johannes R. Peham
- AIT Austrian Institute of Technology, Molecular Diagnostics, Giefinggasse 4, 1210 Wien, Austria; (C.H.); (J.R.P.)
| | - Pune N. Paqué
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Joël S. Jenzer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Philipp Körner
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Patrick R. Schmidlin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Thomas Thurnheer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Florian J. Wegehaupt
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Wendy E. Kaman
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre Rotterdam (Erasmus MC), 3015 CN Rotterdam, The Netherlands; (W.E.K.); (J.P.H.)
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Free University of Amsterdam and University of Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Andrew Stubbs
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Centre Rotterdam (Erasmus MC), 3015 CN Rotterdam, The Netherlands;
| | - John P. Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre Rotterdam (Erasmus MC), 3015 CN Rotterdam, The Netherlands; (W.E.K.); (J.P.H.)
| | - Viorel Rusu
- Magtivio B.V., Daelderweg 9, 6361 HK Nuth, The Netherlands;
| | - Alex Michie
- ClinicaGeno Ltd., 11 Station Approach, Coulsdon CR5 2NR, UK; (A.M.); (T.B.)
| | - Thomas Binsl
- ClinicaGeno Ltd., 11 Station Approach, Coulsdon CR5 2NR, UK; (A.M.); (T.B.)
| | - David Stejskal
- Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300 Ostrava, Czech Republic;
- Institute of Laboratory Diagnostics, University Hospital Ostrava, 17. Listopadu 1790/5, 70800 Ostrava, Czech Republic
| | - Michal Karpíšek
- BioVendor-Laboratorní Medicína a.s., Research & Diagnostic Products Division, Karasek 1767/1, Reckovice, 62100 Brno, Czech Republic;
- Faculty of Pharmacy, Masaryk University, Palackeho trida 1946/1, 61242 Brno, Czech Republic
| | - Kai Bao
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden; (K.B.); (N.B.); (G.N.B.)
| | - Nagihan Bostanci
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden; (K.B.); (N.B.); (G.N.B.)
| | - Georgios N. Belibasakis
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden; (K.B.); (N.B.); (G.N.B.)
| | - Konstantinos Mitsakakis
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
- Laboratory for MEMS Applications, IMTEK–Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Correspondence: (K.M.); (D.B.); Tel.: +49-761-203-73252 (K.M.); +49-761-203-98724 (D.B.)
| |
Collapse
|
10
|
Zehnder M, Belibasakis GN. A critical analysis of research methods to study clinical molecular biomarkers in Endodontic research. Int Endod J 2021; 55 Suppl 1:37-45. [PMID: 34655496 PMCID: PMC9298367 DOI: 10.1111/iej.13647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/14/2021] [Indexed: 12/22/2022]
Abstract
The authors of this narrative review aimed to address various experimental methods and make recommendations for how research should move forward in the context of studying biomarkers in clinical Endodontic research. The approach adopted is exemplified using two prominent clinical problems, namely (a) the ‘reversible’ versus ‘irreversible’ pulpitis conundrum and (b) persistent idiopathic dentoalveolar pain (PIDAP). Pulpitis under deep caries or dentinal cracks is understood from a histological perspective, but clinical assessment tools to indicate irreversibly inflamed aspects of the dental pulp are elusive. PIDAP, on the other hand, is a diagnosis of exclusion; its pathophysiology is complex and not understood sufficiently to avoid unnecessary dental treatments. This review addresses how diagnostic biomarkers could further our understanding of those and other clinical problems, and how issues can be tackled from a methodological point of view. Hence, different methodological approaches to identify suitable diagnostic biomarker(s) or use known biomarkers are presented. The importance of asking a relevant research question, collecting the most suitable fluid and using the ideal collection vehicle for the research question under investigation is discussed based on the defined clinical problems.
Collapse
Affiliation(s)
- Matthias Zehnder
- Clinic of Conservative and Preventive Dentistry, University of Zürich Center of Dental Medicine, Zürich, Switzerland
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
11
|
Zanatta CAR, Fritz PC, Comelli EM, Ward WE. Intervention with inulin prior to and during sanative therapy to further support periodontal health: study protocol for a randomized controlled trial. Trials 2021; 22:527. [PMID: 34376241 PMCID: PMC8353927 DOI: 10.1186/s13063-021-05504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Background Periodontal disease is a chronic state of inflammation that can destroy the supporting tissues around the teeth, leading to the resorption of alveolar bone. The initial strategy for treating periodontal disease is non-surgical sanative therapy (ST). Periodontal disease can also induce dysbiosis in the gut microbiota and contribute to low-grade systemic inflammation. Prebiotic fibers such as inulin can selectively alter the intestinal microbiota and support homeostasis by improving gut barrier functions and preventing inflammation. Providing an inulin supplement prior to and post-ST may influence periodontal health while providing insight into the complex relationship between periodontal disease and the gut microbiota. The primary objective is to determine if inulin is more effective than the placebo at improving clinical periodontal outcomes including probing depth (PD) and bleeding on probing (BOP). Secondary objectives include determining the effects of inulin supplementation pre- and post-ST on salivary markers of inflammation and periodontal-associated pathogens, as these outcomes reflect more rapid changes that can occur. Methods We will employ a single-center, randomized, double-blind, placebo-controlled study design and recruit and randomize 170 participants who are receiving ST to manage the periodontal disease to the intervention (inulin) or placebo (maltodextrin) group. A pilot study will be embedded within the randomized controlled trial using the first 48 participants to test the feasibility for the larger, powered trial. The intervention period will begin 4 weeks before ST through to their follow-up appointment at 10 weeks post-ST. Clinical outcomes of periodontal disease including the number of sites with PD ≥ 4 mm and the presence of BOP will be measured at baseline and post-ST. Salivary markers of inflammation, periodontal-associated pathogens, body mass index, and diet will be measured at baseline, pre-ST (after 4 weeks of intervention), and post-ST (after 14 weeks of intervention). Discussion We expect that inulin will enhance the positive effect of ST on the management of periodontal disease. The results of the study will provide guidance regarding the use of prebiotics prior to and as a supportive adjunct to ST for periodontal health. Trial registration ClinicalTrials.gov NCT04670133. Registered on 17 December 2020.
Collapse
Affiliation(s)
- Carly A R Zanatta
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,Center for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Peter C Fritz
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,Center for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,Periodontal Wellness & Implant Surgery, Fonthill, ON, Canada
| | - Elena M Comelli
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,Department of Nutritional Sciences and Joannah and Brian Lawson Centre for Child Nutrition, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Wendy E Ward
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada. .,Center for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
12
|
Mitsakakis K. Novel lab-on-a-disk platforms: a powerful tool for molecular fingerprinting of oral and respiratory tract infections. Expert Rev Mol Diagn 2021; 21:523-526. [PMID: 33902369 DOI: 10.1080/14737159.2021.1920400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Konstantinos Mitsakakis
- Hahn-Schickard, Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Salivary Biomarkers for Dental Caries Detection and Personalized Monitoring. J Pers Med 2021; 11:jpm11030235. [PMID: 33806927 PMCID: PMC8004821 DOI: 10.3390/jpm11030235] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
This study investigated the potential of salivary bacterial and protein markers for evaluating the disease status in healthy individuals or patients with gingivitis or caries. Saliva samples from caries- and gingivitis-free individuals (n = 18), patients with gingivitis (n = 17), or patients with deep caries lesions (n = 38) were collected and analyzed for 44 candidate biomarkers (cytokines, chemokines, growth factors, matrix metalloproteinases, a metallopeptidase inhibitor, proteolytic enzymes, and selected oral bacteria). The resulting data were subjected to principal component analysis and used as a training set for random forest (RF) modeling. This computational analysis revealed four biomarkers (IL-4, IL-13, IL-2-RA, and eotaxin/CCL11) to be of high importance for the correct depiction of caries in 37 of 38 patients. The RF model was then used to classify 10 subjects (five caries-/gingivitis-free and five with caries), who were followed over a period of six months. The results were compared to the clinical assessments of dental specialists, revealing a high correlation between the RF prediction and the clinical classification. Due to the superior sensitivity of the RF model, there was a divergence in the prediction of two caries and four caries-/gingivitis-free subjects. These findings suggest IL-4, IL-13, IL-2-RA, and eotaxin/CCL11 as potential salivary biomarkers for identifying noninvasive caries. Furthermore, we suggest a potential association between JAK/STAT signaling and dental caries onset and progression.
Collapse
|
14
|
Oral Diagnostic Methods for the Detection of Periodontal Disease. Diagnostics (Basel) 2021; 11:diagnostics11030571. [PMID: 33810094 PMCID: PMC8005070 DOI: 10.3390/diagnostics11030571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Periodontitis is a common immune-inflammatory oral disease. Early detection plays an important role in its prevention and progression. Saliva is a reliable medium that mirrors periodontal health and is easily obtainable for identifying periodontal biomarkers in point-of-care diagnostics. The aim of this study is to evaluate the effectiveness of diagnostic salivary tests to determine periodontal status. Whole saliva (stimulated/unstimulated) from twenty healthy and twenty stage III grade B generalized periodontitis patients was tested for lactoferrin, alkaline phosphatase, calcium, density, osmolarity, pH, phosphate, buffer capacity, salivary flow rate and dynamic viscosity. A semi-quantitative urinary strip test was used to evaluate markers of inflammation in saliva (erythrocytes, leukocytes, urobilinogen, nitrite, glucose, bilirubin, and ketones), clinical periodontal parameters and pathogenic bacteria. Concentrations of lactoferrin, hemoglobin, and leukocytes were found to be significantly higher in the stimulated and unstimulated saliva in periodontitis patients compared to healthy patients, whereas alkaline phosphatase levels were higher in unstimulated saliva of periodontitis patients (p < 0.05). Periodontal biomarker analysis using test strips may be considered rapid and easy tool for distinguishing between periodontitis and healthy patients. The increase in lactoferrin, hemoglobin, and leucocytes-determined by strip tests-may provide a non-invasive method of periodontal diagnosis.
Collapse
|
15
|
Kim EH, Kim S, Kim HJ, Jeong HO, Lee J, Jang J, Joo JY, Shin Y, Kang J, Park AK, Lee JY, Lee S. Prediction of Chronic Periodontitis Severity Using Machine Learning Models Based On Salivary Bacterial Copy Number. Front Cell Infect Microbiol 2020; 10:571515. [PMID: 33304856 PMCID: PMC7701273 DOI: 10.3389/fcimb.2020.571515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is a widespread chronic inflammatory disease caused by interactions between periodontal bacteria and homeostasis in the host. We aimed to investigate the performance and reliability of machine learning models in predicting the severity of chronic periodontitis. Mouthwash samples from 692 subjects (144 healthy controls and 548 generalized chronic periodontitis patients) were collected, the genomic DNA was isolated, and the copy numbers of nine pathogens were measured using multiplex qPCR. The nine pathogens are as follows: Porphyromonas gingivalis (Pg), Tannerella forsythia (Tf), Treponema denticola (Td), Prevotella intermedia (Pi), Fusobacterium nucleatum (Fn), Campylobacter rectus (Cr), Aggregatibacter actinomycetemcomitans (Aa), Peptostreptococcus anaerobius (Pa), and Eikenella corrodens (Ec). By adding the species one by one in order of high accuracy to find the optimal combination of input features, we developed an algorithm that predicts the severity of periodontitis using four machine learning techniques. The accuracy was the highest when the models classified “healthy” and “moderate or severe” periodontitis (H vs. M-S, average accuracy of four models: 0.93, AUC = 0.96, sensitivity of 0.96, specificity of 0.81, and diagnostic odds ratio = 112.75). One or two red complex pathogens were used in three models to distinguish slight chronic periodontitis patients from healthy controls (average accuracy of 0.78, AUC = 0.82, sensitivity of 0.71, and specificity of 0.84, diagnostic odds ratio = 12.85). Although the overall accuracy was slightly reduced, the models showed reliability in predicting the severity of chronic periodontitis from 45 newly obtained samples. Our results suggest that a well-designed combination of salivary bacteria can be used as a biomarker for classifying between a periodontally healthy group and a chronic periodontitis group.
Collapse
Affiliation(s)
- Eun-Hye Kim
- Department of R&D, Helixco Inc., Ulsan, South Korea.,College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| | - Seunghoon Kim
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.,Korean Genomics Center, UNIST, Ulsan, South Korea
| | - Hyun-Joo Kim
- Department of Periodontology, Dental and Life Science Institute, Pusan National University, School of Dentistry, Yangsan, South Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, South Korea
| | - Hyoung-Oh Jeong
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.,Korean Genomics Center, UNIST, Ulsan, South Korea
| | - Jaewoong Lee
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.,Korean Genomics Center, UNIST, Ulsan, South Korea
| | - Jinho Jang
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.,Korean Genomics Center, UNIST, Ulsan, South Korea
| | - Ji-Young Joo
- Department of Periodontology, Dental and Life Science Institute, Pusan National University, School of Dentistry, Yangsan, South Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, South Korea
| | - Yerang Shin
- Department of R&D, Helixco Inc., Ulsan, South Korea
| | - Jihoon Kang
- Department of R&D, Helixco Inc., Ulsan, South Korea
| | - Ae Kyung Park
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| | - Ju-Youn Lee
- Department of Periodontology, Dental and Life Science Institute, Pusan National University, School of Dentistry, Yangsan, South Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, South Korea
| | - Semin Lee
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.,Korean Genomics Center, UNIST, Ulsan, South Korea
| |
Collapse
|
16
|
Belibasakis GN, Lund BK, Krüger Weiner C, Johannsen B, Baumgartner D, Manoil D, Hultin M, Mitsakakis K. Healthcare Challenges and Future Solutions in Dental Practice: Assessing Oral Antibiotic Resistances by Contemporary Point-Of-Care Approaches. Antibiotics (Basel) 2020; 9:E810. [PMID: 33202544 PMCID: PMC7696509 DOI: 10.3390/antibiotics9110810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Antibiotic resistance poses a global threat, which is being acknowledged at several levels, including research, clinical implementation, regulation, as well as by the World Health Organization. In the field of oral health, however, the issue of antibiotic resistances, as well as of accurate diagnosis, is underrepresented. Oral diseases in general were ranked third in terms of expenditures among the EU-28 member states in 2015. Yet, the diagnosis and patient management of oral infections, in particular, still depend primarily on empiric means. On the contrary, on the global scale, the field of medical infections has more readily adopted the integration of molecular-based systems in the diagnostic, patient management, and antibiotic stewardship workflows. In this perspective review, we emphasize the clinical significance of supporting in the future antibiotic resistance screening in dental practice with novel integrated and point-of-care operating tools that can greatly support the rapid, accurate, and efficient administration of oral antibiotics.
Collapse
Affiliation(s)
- Georgios N. Belibasakis
- Department of Dental Medicine, Karolinska Institutet, Alfred Nobels allè 8, 14104 Stockholm, Sweden; (B.K.L.); (C.K.W.); (D.M.); (M.H.)
| | - Bodil K. Lund
- Department of Dental Medicine, Karolinska Institutet, Alfred Nobels allè 8, 14104 Stockholm, Sweden; (B.K.L.); (C.K.W.); (D.M.); (M.H.)
- Department of Clinical Dentistry, University of Bergen, 5009 Bergen, Norway
- Department of Oral and Maxillofacial Surgery, Haukeland University Hospital, 5021 Bergen, Norway
| | - Carina Krüger Weiner
- Department of Dental Medicine, Karolinska Institutet, Alfred Nobels allè 8, 14104 Stockholm, Sweden; (B.K.L.); (C.K.W.); (D.M.); (M.H.)
- Department of Oral and Maxillofacial Surgery, Folktandvården Stockholm, Eastman Institutet, 11324 Stockholm, Sweden
| | - Benita Johannsen
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany;
| | - Desirée Baumgartner
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany;
| | - Daniel Manoil
- Department of Dental Medicine, Karolinska Institutet, Alfred Nobels allè 8, 14104 Stockholm, Sweden; (B.K.L.); (C.K.W.); (D.M.); (M.H.)
| | - Margareta Hultin
- Department of Dental Medicine, Karolinska Institutet, Alfred Nobels allè 8, 14104 Stockholm, Sweden; (B.K.L.); (C.K.W.); (D.M.); (M.H.)
| | - Konstantinos Mitsakakis
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany;
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany;
| |
Collapse
|