1
|
Dey P, Haldar D, Sharma C, Chopra J, Chakrabortty S, Dilip KJ. Innovations in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and nanocomposites for sustainable food packaging via biochemical biorefinery platforms: A comprehensive review. Int J Biol Macromol 2024; 283:137574. [PMID: 39542313 DOI: 10.1016/j.ijbiomac.2024.137574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The substantial build-up of non-biodegradable plastic waste from packaging sector not only poses severe environmental threats but also hastens the depletion of natural petroleum-based resources. Presently, poly (3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV), received enormous attention as ideal alternatives for such traditional petroleum-derived plastics based on their biocompatibility and superior mechanical properties. However, high cost of such copolymer, due to expensive nature of feedstock, inefficient microbial processes and unfavorable downstream processing strategies restricts its large-scale commercial feasibility in the packaging sector. This review explores merits and challenges associated with using potent agricultural and industrial waste biomasses as sustainable feedstocks alongside improved fermentation and downstream processing strategies for the biopolymer in terms of biorefinery concept. Despite PHBV's attractive properties, its inherent shortcomings like weak thermal stability, poor mechanical properties, processability difficulty, substantial hydrophobicity and comparatively higher water vapor permeability (WVP) demand the development of its composites based on the application. Based on this fact, the review assessed properties and potential applications of PHBV-based composite materials having natural raw materials, nanomaterials and synthetic biodegradable polymers. Besides, the review also enlightens sustainability, future prospects, and challenges associated with PHBV-based composites in the field of food packaging while considering insights about economic evaluation and life cycle assessment.
Collapse
Affiliation(s)
- Pinaki Dey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India
| | - Chhavi Sharma
- Department of Biotechnology, University Centre for Research and Development (UCRD), Chandigarh University, Mohali 140413, India
| | - Jayita Chopra
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani K.K. Birla Goa Campus, 403726, India
| | - Sankha Chakrabortty
- School of Chemical Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India
| | | |
Collapse
|
2
|
Shi J, Wu S, Xue Y, Xie Q, Danzeng Q, Liu C, Zhou CH. Fluorescence/colorimetric dual-signal sensor based on carbon dots and gold nanoparticles for visual quantification of Cr 3. Mikrochim Acta 2024; 191:571. [PMID: 39223328 DOI: 10.1007/s00604-024-06645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
A convenient and sensitive dual-signal visualization method is constructed for detection of trivalent chromium ions (Cr3+) based on fluorescent carbon dots (CDs) and glutathione-modified gold nanoparticles (GSH-Au NPs). The fluorescence of CDs can be quenched by GSH-Au NPs due to the inner filter effect. Cr3+ induces aggregation of GSH-Au NPs because of the coordination with GSH on the surface of Au NPs, leading to the red shift of surface plasmon resonance absorption of Au NPs that provides a "turn-on" fluorescence and colorimetric assay for Cr3+. The fluorescence/colorimetric dual signal detection shows high sensitivity for Cr3+ with wide detection linear ranges (0.5-70 μM for fluorescence detection and 2-50 μM for colorimetric detection) and low detection limits (0.31 μM for fluorescence detection and 0.30 μM for colorimetric detection). Besides, the method has high selectivity for Cr3+ and can be used for detection of Cr3+ in lake water and tap water samples, showing great potential for visual detection of environmental Cr3+.
Collapse
Affiliation(s)
- Jinyu Shi
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Suyi Wu
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yu Xue
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Qing Xie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Qunzeng Danzeng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Cui Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Chuan-Hua Zhou
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
3
|
Matesun J, Petrik L, Musvoto E, Ayinde W, Ikumi D. Limitations of wastewater treatment plants in removing trace anthropogenic biomarkers and future directions: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116610. [PMID: 38909392 DOI: 10.1016/j.ecoenv.2024.116610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/31/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
This review highlights the limitations faced by conventional wastewater treatment plants (WWTPs) in effectively removing contaminants of emerging concern (CECs), heavy metals (HMs), and Escherichia coli (E. coli). This emphasises the limitations of current treatment methods and advocates for innovative approaches to enhance the removal efficiency. By following the PRISMA guidelines, the study systematically reviewed relevant literature on detecting and remedying these pollutants in wastewater treatment facilities. Conventional wastewater treatment plants struggle to eliminate CECs, HMs, and E. coli owing to their small size, persistence, and complex nature. The review suggests upgrading WWTPs with advanced tertiary processes to significantly improve contaminant removal. This calls for cost-effective treatment parameters and standardised assessment techniques to enhance the fate of MPs in WWTPs and WRRFs. It recommends integrating insights from mass-balance model studies on MPs in WWTP to overcome modelling challenges and ensure model reliability. In conclusion, this review underscores the urgent need for advancements in wastewater treatment processes to mitigate the environmental impact of trace anthropogenic biomarkers. Future efforts should focus on conducting comprehensive studies, implementing advanced treatment methods, and optimising management practices in WWTPs and WRRFs.
Collapse
Affiliation(s)
- Joshua Matesun
- Water Research Group, New Engineering Building, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| | - Leslie Petrik
- Environmental and NanoScience Research Group, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| | - Eustina Musvoto
- TruSense Consulting Services (Pty) Ltd, 191 Hartley Street Pretoria, South Africa
| | - Wasiu Ayinde
- Water Research Group, New Engineering Building, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - David Ikumi
- Water Research Group, New Engineering Building, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| |
Collapse
|
4
|
Wang X, Li Y, Zhang X, Chen X, Wang X, Yu D, Ge B. The extracellular polymeric substances (EPS) accumulation of Spirulina platensis responding to Cadmium (Cd 2+) exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134244. [PMID: 38598879 DOI: 10.1016/j.jhazmat.2024.134244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Spirulina platensis can secrete extracellular polymeric substances (EPS) helping to protect damage from stress environment, such as cadmium (Cd2+) exposure. However, the responding mechanism of S. platensis and the secreted EPS to exposure of Cd2+ is still unclear. This research focuses on the effects of Cd2+ on the composition and structure of the EPS and the response mechanism of EPS secretion from S. platensis for Cd2+ exposure. S. platensis can produce 261.37 mg·g-1 EPS when exposing to 20 mg·L-1 CdCl2, which was 2.5 times higher than the control group. The S. platensis EPS with and without Cd2+ treatment presented similar and stable irregularly fibrous structure. The monosaccharides composition of EPS in Cd2+ treated group are similar with control group but with different monosaccharides molar ratios, especially for Rha, Gal, Glc and Glc-UA. And the Cd2+ treatment resulted in a remarkable decline of humic acid and fulvic acid content. The antioxidant ability of S. platensis EPS increased significantly when exposed to 20 mg·L-1 CdCl2, which could be helpful for S. platensis protecting damage from high concentration of Cd2+. The transcriptome analysis showed that sulfur related metabolic pathways were up-regulated significantly, which promoted the synthesis of sulfur-containing amino acids and the secretion of large amounts of EPS.
Collapse
Affiliation(s)
- Xiufeng Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yuhui Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xiaojing Zhang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xin Chen
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xin Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
5
|
Wang N, Wang X, Chen L, Liu H, Wu Y, Huang M, Fang L. Biological roles of soil microbial consortium on promoting safe crop production in heavy metal(loid) contaminated soil: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168994. [PMID: 38043809 DOI: 10.1016/j.scitotenv.2023.168994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Heavy metal(loid) (HM) pollution of agricultural soils is a growing global environmental concern that affects planetary health. Numerous studies have shown that soil microbial consortia can inhibit the accumulation of HMs in crops. However, our current understanding of the effects and mechanisms of inhibition is fragmented. In this review, we summarise extant studies and knowledge to provide a comprehensive view of HM toxicity on crop growth and development at the biological, cellular and the molecular levels. In a meta-analysis, we find that microbial consortia can improve crop resistance and reduce HM uptake, which in turn promotes healthy crop growth, demonstrating that microbial consortia are more effective than single microorganisms. We then review three main mechanisms by which microbial consortia reduce the toxicity of HMs to crops and inhibit HMs accumulation in crops: 1) reducing the bioavailability of HMs in soil (e.g. biosorption, bioaccumulation and biotransformation); 2) improving crop resistance to HMs (e.g. facilitating the absorption of nutrients); and 3) synergistic effects between microorganisms. Finally, we discuss the prospects of microbial consortium applications in simultaneous crop safety production and soil remediation, indicating that they play a key role in sustainable agricultural development, and conclude by identifying research challenges and future directions for the microbial consortium to promote safe crop production.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangxiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongjie Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yanfang Wu
- Palm Eco-Town Development Co., Ltd., Zhengzhou 450000, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
6
|
Momin SC, Pradhan RB, Nath J, Lalmuanzeli R, Kar A, Mehta SK. Metal sequestration by Microcystis extracellular polymers: a promising path to greener water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11192-11213. [PMID: 38217816 DOI: 10.1007/s11356-023-31755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/23/2023] [Indexed: 01/15/2024]
Abstract
The problem of heavy metal pollution in water bodies poses a significant threat to both the environment and human health, as these toxic substances can persist in aquatic ecosystems and accumulate in the food chain. This study investigates the promising potential of using Microcystis aeruginosa extracellular polymeric substances (EPS) as an environmentally friendly, highly efficient solution for capturing copper (Cu2+) and nickel (Ni2+) ions in water treatment, emphasizing their exceptional ability to promote green technology in heavy metal sequestration. We quantified saccharides, proteins, and amino acids in M. aeruginosa biomass and isolated EPS, highlighting their metal-chelating capabilities. Saccharide content was 36.5 mg g-1 in biomass and 21.4 mg g-1 in EPS, emphasizing their metal-binding ability. Proteins and amino acids were also prevalent, particularly in EPS. Scanning electron microscopy (SEM) revealed intricate 3D EPS structures, with pronounced porosity and branching configurations enhancing metal sorption. Elemental composition via energy dispersive X-ray analysis (EDAX) identified essential elements in both biomass and EPS. Fourier transform infrared (FTIR) spectroscopy unveiled molecular changes after metal treatment, indicating various binding mechanisms, including oxygen atom coordination, π-electron interactions, and electrostatic forces. Kinetic studies showed EPS expedited and enhanced Cu2+ and Ni2+ sorption compared to biomass. Thermodynamic analysis confirmed exothermic, spontaneous sorption. Equilibrium biosorption studies displayed strong binding and competitive interactions in binary metal systems. Importantly, EPS exhibited impressive maximum sorption capacities of 44.81 mg g-1 for Ni2+ and 37.06 mg g-1 for Cu2+. These findings underscore the potential of Microcystis EPS as a highly efficient sorbent for heavy metal removal in water treatment, with significant implications for environmental remediation and sustainable water purification.
Collapse
Affiliation(s)
- Sengjrang Ch Momin
- Laboratory of Algal Physiology and Biochemistry, Department of Botany, Mizoram University, Aizawl, 796004, India
| | - Ran Bahadur Pradhan
- Laboratory of Algal Physiology and Biochemistry, Department of Botany, Mizoram University, Aizawl, 796004, India
| | - Jyotishma Nath
- Laboratory of Algal Physiology and Biochemistry, Department of Botany, Mizoram University, Aizawl, 796004, India
| | - Ruthi Lalmuanzeli
- Laboratory of Algal Physiology and Biochemistry, Department of Botany, Mizoram University, Aizawl, 796004, India
| | - Agniv Kar
- Laboratory of Algal Physiology and Biochemistry, Department of Botany, Mizoram University, Aizawl, 796004, India
| | - Surya Kant Mehta
- Laboratory of Algal Physiology and Biochemistry, Department of Botany, Mizoram University, Aizawl, 796004, India.
| |
Collapse
|
7
|
Ojo GJ, Onile OS, Momoh AO, Oyeyemi BF, Omoboyede V, Fadahunsi AI, Onile T. Physiochemical analyses and molecular characterization of heavy metal-resistant bacteria from Ilesha gold mining sites in Nigeria. J Genet Eng Biotechnol 2023; 21:172. [PMID: 38133697 PMCID: PMC10746654 DOI: 10.1186/s43141-023-00607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The contribution of the processes involved and waste generated during gold mining to the increment of heavy metals concentration in the environment has been well established. While certain heavy metals are required for the normal functioning of an organism, certain heavy metals have been identified for their deleterious effects on the ecosystem and non-physiological roles in organisms. Hence, efforts aimed at reducing their concentration level are crucial. To this end, soil and water samples were collected from Ilesha gold mining, Osun State, Nigeria, and they were subjected to various analyses aimed at evaluating their various physicochemical parameters, heavy metal concentration, heavy metal-resistant bacteria isolation, and other analyses which culminated in the molecular characterization of heavy metal-resistant bacteria. RESULTS Notably, the results obtained from this study revealed that the concentration of heavy metal in the water samples around the mining site was in the order Co > Zn > Cd > Pb > Hg while that of the soil samples was in the order Co > Cd > Pb > Hg > Zn. A minimum inhibitory concentration test performed on the bacteria isolates from the samples revealed some of the isolates could resist as high as 800 ppm of Co, Cd, and Zn, 400 ppm, and 100 ppm of Pb and Hg respectively. Molecular characterization of the isolates revealed them as Priestia aryabhattai and Enterobacter cloacae. CONCLUSION Further analysis revealed the presence of heavy metal-resistant genes (HMRGs) including merA, cnrA, and pocC in the isolated Enterobacter cloacae. Ultimately, the bacteria identified in this study are good candidates for bioremediation and merit further investigation in efforts to bioremediate heavy metals in gold mining sites.
Collapse
Affiliation(s)
- Glory Jesutomisin Ojo
- Department of Biological Sciences, Biotechnology Programme, Elizade University, P.M.B, 002 Ilara-Mokin, Ilara-Mokin, 340271, Nigeria.
| | - Olugbenga Samson Onile
- Department of Biological Sciences, Biotechnology Programme, Elizade University, P.M.B, 002 Ilara-Mokin, Ilara-Mokin, 340271, Nigeria
| | - Abdul Onoruoiza Momoh
- Department of Biological Sciences, Microbiology Programme, Elizade University, Ilara Mokin, P.M.B, 002, Ilara-Mokin, 340271, Nigeria
| | - Bolaji Fatai Oyeyemi
- Department of Science Laboratory Technology, Molecular Biology Group, The Federal Polytechnic, Ado-Ekiti, Ekiti, Nigeria
| | - Victor Omoboyede
- Department of Biochemistry, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria
| | - Adeyinka Ignatius Fadahunsi
- Department of Biological Sciences, Biotechnology Programme, Elizade University, P.M.B, 002 Ilara-Mokin, Ilara-Mokin, 340271, Nigeria
| | - Tolulope Onile
- Department of Biological Sciences, Microbiology Programme, Elizade University, Ilara Mokin, P.M.B, 002, Ilara-Mokin, 340271, Nigeria
| |
Collapse
|
8
|
Paper M, Jung P, Koch M, Lakatos M, Nilges T, Brück TB. Stripped: contribution of cyanobacterial extracellular polymeric substances to the adsorption of rare earth elements from aqueous solutions. Front Bioeng Biotechnol 2023; 11:1299349. [PMID: 38173874 PMCID: PMC10762542 DOI: 10.3389/fbioe.2023.1299349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
The transformation of modern industries towards enhanced sustainability is facilitated by green technologies that rely extensively on rare earth elements (REEs) such as cerium (Ce), neodymium (Nd), terbium (Tb), and lanthanum (La). The occurrence of productive mining sites, e.g., is limited, and production is often costly and environmentally harmful. As a consequence of increased utilization, REEs enter our ecosystem as industrial process water or wastewater and become highly diluted. Once diluted, they can hardly be recovered by conventional techniques, but using cyanobacterial biomass in a biosorption-based process is a promising eco-friendly approach. Cyanobacteria can produce extracellular polymeric substances (EPS) that show high affinity to metal cations. However, the adsorption of REEs by EPS has not been part of extensive research. Thus, we evaluated the role of EPS in the biosorption of Ce, Nd, Tb, and La for three terrestrial, heterocystous cyanobacterial strains. We cultivated them under N-limited and non-limited conditions and extracted their EPS for compositional analyses. Subsequently, we investigated the metal uptake of a) the extracted EPS, b) the biomass extracted from EPS, and c) the intact biomass with EPS by comparing the amount of sorbed REEs. Maximum adsorption capacities for the tested REEs of extracted EPS were 123.9-138.2 mg g-1 for Komarekiella sp. 89.12, 133.1-137.4 mg g-1 for Desmonostoc muscorum 90.03, and 103.5-129.3 mg g-1 for Nostoc sp. 20.02. A comparison of extracted biomass with intact biomass showed that 16% (Komarekiella sp. 89.12), 28% (Desmonostoc muscorum 90.03), and 41% (Nostoc sp. 20.02) of REE adsorption was due to the biosorption of the extracellular EPS. The glucose- rich EPS (15%-43% relative concentration) of all three strains grown under nitrogen-limited conditions showed significantly higher biosorption rates for all REEs. We also found a significantly higher maximum adsorption capacity of all REEs for the extracted EPS compared to cells without EPS and untreated biomass, highlighting the important role of the EPS as a binding site for REEs in the biosorption process. EPS from cyanobacteria could thus be used as efficient biosorbents in future applications for REE recycling, e.g., industrial process water and wastewater streams.
Collapse
Affiliation(s)
- Michael Paper
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Patrick Jung
- Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Max Koch
- Synthesis and Characterization of Innovative Materials, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Michael Lakatos
- Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Tom Nilges
- Synthesis and Characterization of Innovative Materials, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Thomas B. Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Department of Aerospace and Geodesy, TUM AlgaeTec Center, Ludwig Bölkow Campus, Taufkirchen, Germany
| |
Collapse
|
9
|
Goswami L, Kushwaha A, Napathorn SC, Kim BS. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Int J Biol Macromol 2023; 247:125743. [PMID: 37423435 DOI: 10.1016/j.ijbiomac.2023.125743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) are encouraging biodegradable polymers, which may ease the environmental problems caused by petroleum-derived plastics. However, there is a growing waste removal problem and the high price of pure feedstocks for PHA biosynthesis. This has directed to the forthcoming requirement to upgrade waste streams from various industries as feedstocks for PHA production. This review covers the state-of-the-art progress in utilizing low-cost carbon substrates, effective upstream and downstream processes, and waste stream recycling to sustain entire process circularity. This review also enlightens the use of various batch, fed-batch, continuous, and semi-continuous bioreactor systems with flexible results to enhance the productivity and simultaneously cost reduction. The life-cycle and techno-economic analyses, advanced tools and strategies for microbial PHA biosynthesis, and numerous factors affecting PHA commercialization were also covered. The review includes the ongoing and upcoming strategies viz. metabolic engineering, synthetic biology, morphology engineering, and automation to expand PHA diversity, diminish production costs, and improve PHA production with an objective of "zero-waste" and "circular bioeconomy" for a sustainable future.
Collapse
Affiliation(s)
- Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
10
|
Ciani M, Adessi A. Cyanoremediation and phyconanotechnology: cyanobacteria for metal biosorption toward a circular economy. Front Microbiol 2023; 14:1166612. [PMID: 37323915 PMCID: PMC10266413 DOI: 10.3389/fmicb.2023.1166612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Cyanobacteria are widespread phototrophic microorganisms that represent a promising biotechnological tool to satisfy current sustainability and circularity requirements. They are potential bio-factories of a wide range of compounds that can be exploited in several fields including bioremediation and nanotechnology sectors. This article aims to illustrate the most recent trends in the use of cyanobacteria for the bioremoval (i.e., cyanoremediation) of heavy metals and metal recovery and reuse. Heavy metal biosorption by cyanobacteria can be combined with the consecutive valorization of the obtained metal-organic materials to get added-value compounds, including metal nanoparticles, opening the field of phyconanotechnology. It is thus possible that the use of combined approaches could increase the environmental and economic feasibility of cyanobacteria-based processes, promoting the transition toward a circular economy.
Collapse
|
11
|
Ahammed MS, Baten MA, Ali MA, Mahmud S, Islam MS, Thapa BS, Islam MA, Miah MA, Tusher TR. Comparative Evaluation of Chlorella vulgaris and Anabaena variabilis for Phycoremediation of Polluted River Water: Spotlighting Heavy Metals Detoxification. BIOLOGY 2023; 12:biology12050675. [PMID: 37237489 DOI: 10.3390/biology12050675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023]
Abstract
This study investigated the phycoremediation abilities of Chlorella vulgaris (microalga) and Anabaena variabilis (cyanobacterium) for the detoxification of polluted river water. Lab-scale phycoremediation experiments were conducted for 20 days at 30 °C using the microalgal and cyanobacterial strains and water samples collected from the Dhaleswari river in Bangladesh. The physicochemical properties such as electrical conductivity (EC), total dissolved solids (TDS), biological oxygen demand (BOD), hardness ions, and heavy metals of the collected water samples indicated that the river water is highly polluted. The results of the phycoremediation experiments demonstrated that both microalgal and cyanobacterial species significantly reduced the pollutant load and heavy metal concentrations of the river water. The pH of the river water was significantly raised from 6.97 to 8.07 and 8.28 by C. vulgaris and A. variabilis, respectively. A. variabilis demonstrated higher efficacy than C. vulgaris in reducing the EC, TDS, and BOD of the polluted river water and was more effective at reducing the pollutant load of SO42- and Zn. In regard to hardness ions and heavy metal detoxification, C. vulgaris performed better at removing Ca2+, Mg2+, Cr, and Mn. These findings indicate that both microalgae and cyanobacteria have great potential to remove various pollutants, especially heavy metals, from the polluted river water as part of a low-cost, easily controllable, environmentally friendly remediation strategy. Nevertheless, the composition of polluted water should be assessed prior to the designing of microalgae- or cyanobacteria-based remediation technology, since the pollutant removal efficiency is found to be species dependent.
Collapse
Affiliation(s)
- Md Shakir Ahammed
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Abdul Baten
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Muhammad Aslam Ali
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shahin Mahmud
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Sirajul Islam
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Bhim Sen Thapa
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Md Aminul Islam
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Alim Miah
- Department of Environmental Science and Engineering, Jatiya Kabi Kazi Nazrul Islam University, Trishal, Mymensingh 2224, Bangladesh
| | - Tanmoy Roy Tusher
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
12
|
Carreira ARF, Veloso T, Macário IPE, Pereira JL, Ventura SPM, Passos H, Coutinho JAP. The role of biomass elemental composition and ion-exchange in metal sorption by algae. CHEMOSPHERE 2023; 314:137675. [PMID: 36586444 DOI: 10.1016/j.chemosphere.2022.137675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/17/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
The use of macroalgae, microalgae and cyanobacteria for metal sorption has been widely reported. Still, there are no studies allowing a direct comparison of the performance of these biomasses, especially while evaluating metal competition. The simultaneous sorption of Co2+, Cu2+, Ni2+ and Zn2+ present in a multi-elemental solution by six macroalgae, two microalgae and three cyanobacteria was evaluated. Brown macroalgae were shown to be the most promising biosorbent, with Undaria pinnatifida having a total metal sorption capacity of 0.6 mmol g-1. Overall, macroalgae performed better than microalgae, followed by cyanobacteria. Carboxyl groups were identified as being the main functional groups involved in metal sorption, and all biomass samples were found to be selective to Cu2+. This was linked not only to its higher complexation constant value with relevant functional groups when compared to the remaining metals, but also the Irving-Williams series. The release of K+ and Ca2+ to the aqueous solution during the metal sorption was followed. The obtained results suggest they are readily exchanged with metals in the solution, indicating the occurrence of an ion-exchange mechanism in metal sorption by most biomass. Red macroalgae are an exception to the reported trends, suggesting that their metal sorption mechanism may differ from the other biomass types.
Collapse
Affiliation(s)
- Ana R F Carreira
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Telma Veloso
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal; Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Inês P E Macário
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal; Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Joana L Pereira
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal; Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Sónia P M Ventura
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Helena Passos
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - João A P Coutinho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
13
|
Paper M, Koch M, Jung P, Lakatos M, Nilges T, Brück TB. Rare earths stick to rare cyanobacteria: Future potential for bioremediation and recovery of rare earth elements. Front Bioeng Biotechnol 2023; 11:1130939. [PMID: 36926689 PMCID: PMC10011134 DOI: 10.3389/fbioe.2023.1130939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/31/2023] [Indexed: 03/04/2023] Open
Abstract
Biosorption of metal ions by phototrophic microorganisms is regarded as a sustainable and alternative method for bioremediation and metal recovery. In this study, 12 cyanobacterial strains, including 7 terrestrial and 5 aquatic cyanobacteria, covering a broad phylogenetic diversity were investigated for their potential application in the enrichment of rare earth elements through biosorption. A screening for the maximum adsorption capacity of cerium, neodymium, terbium, and lanthanum was conducted in which Nostoc sp. 20.02 showed the highest adsorption capacity with 84.2-91.5 mg g-1. Additionally, Synechococcus elongatus UTEX 2973, Calothrix brevissima SAG 34.79, Desmonostoc muscorum 90.03, and Komarekiella sp. 89.12 were promising candidate strains, with maximum adsorption capacities of 69.5-83.4 mg g-1, 68.6-83.5 mg g-1, 44.7-70.6 mg g-1, and 47.2-67.1 mg g-1 respectively. Experiments with cerium on adsorption properties of the five highest metal adsorbing strains displayed fast adsorption kinetics and a strong influence of the pH value on metal uptake, with an optimum at pH 5 to 6. Studies on binding specificity with mixed-metal solutions strongly indicated an ion-exchange mechanism in which Na+, K+, Mg2+, and Ca2+ ions are replaced by other metal cations during the biosorption process. Depending on the cyanobacterial strain, FT-IR analysis indicated the involvement different functional groups like hydroxyl and carboxyl groups during the adsorption process. Overall, the application of cyanobacteria as biosorbent in bioremediation and recovery of rare earth elements is a promising method for the development of an industrial process and has to be further optimized and adjusted regarding metal-containing wastewater and adsorption efficiency by cyanobacterial biomass.
Collapse
Affiliation(s)
- Michael Paper
- Werner Siemens-Chair of Synthetic Biotechnology, School of Natural Sciences, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Max Koch
- Synthesis and Characterization of Innovative Materials, School of Natural Sciences, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Patrick Jung
- Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Michael Lakatos
- Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Tom Nilges
- Synthesis and Characterization of Innovative Materials, School of Natural Sciences, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Thomas B Brück
- Werner Siemens-Chair of Synthetic Biotechnology, School of Natural Sciences, Department of Chemistry, Technical University of Munich, Garching, Germany.,TUM AlgaeTec Center, Ludwig Bölkow Campus, Department of Aerospace and Geodesy, Taufkirchen, Germany
| |
Collapse
|
14
|
Kushwaha A, Hans N, Giri BS, Rene ER, Rani R. Uncovering the phytochemicals of root exudates and extracts of lead (Pb) tolerant Chrysopogon zizanioides (L.) Roberty in response to lead contamination and their effect on the chemotactic behavior of rhizospheric bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44998-45012. [PMID: 35146608 DOI: 10.1007/s11356-022-18887-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
The chemical composition of root exudates and root extracts from Chrysopogon zizanioides (L.) Roberty cv KS-1 was determined in the presence of lead [Pb(II)]. Hitherto, no information is available in the literature concerning the phytochemical components of root exudates of C. zizanioides. Significantly higher concentrations of total carbohydrates (26.75 and 42.62% in root exudates and root extract, respectively), reducing sugars (21.46 and 56.11% in root exudates and root extract, respectively), total proteins (9.22 and 23.70% in root exudates and root extract, respectively), total phenolic acids (14.69 and 8.33% in root exudates and root extract, respectively), total flavonoids (14.30 and 12.28% in root exudates and root extract, respectively), and total alkaloids (12.48 and 7.96% in root exudates and root extract, respectively) were observed in samples from plants growing under Pb(II) stress in comparison to the respective controls. GC-MS profiling showed the presence of a diverse group of compounds in root exudates and extracts, including terpenes, alkaloids, flavonoids, carotenoids, plant hormones, carboxylic/organic acids, and fatty acids. Among the detected compounds, many have an important role in plant development, regulating rhizosphere microbiota and allelopathy. Furthermore, the results indicated that C. zizanioides exudates possess a chemotactic response for rhizospheric bacterial strains Bacillus licheniformis, Bacillus subtilis, and Acinetobacter junii Pb1.
Collapse
Affiliation(s)
- Anamika Kushwaha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, Prayagraj-211004, Teliyarganj, India
| | - Nidhi Hans
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, Prayagraj-211004, Teliyarganj, India
| | - Balendu Shekher Giri
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, 2611AX, Delft, the Netherlands
| | - Radha Rani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, Prayagraj-211004, Teliyarganj, India.
| |
Collapse
|
15
|
Yuan B, Huang L, Liu X, Bai L, Liu H, Jiang H, Zhu P, Xiao Y, Geng J, Liu Q, Hao X. Application of mixotrophic acidophiles for the bioremediation of cadmium-contaminated soils elevates cadmium removal, soil nutrient availability, and rice growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113499. [PMID: 35405525 DOI: 10.1016/j.ecoenv.2022.113499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
A major challenge in radically alleviating the threats posed by Cd-contaminated paddy fields to human health is to reduce the Cd levels in both soils and rice grains. In this study, the microbial extraction (ME) treatment using a mixotrophic acidophilic consortium was used for the bioremediation of Cd-contaminated soils. The results showed that the ME treatment enhanced the total Cd (40%) and diethylenetriamine pentaacetic acid-soluble Cd (DTPA-Cd, 64%) removal efficiencies in contaminated soils. In addition, ME treatment decreased the levels of Cd acid-soluble and reducible fractions and thereby reduced Cd uptake in rice tissues. Microbial community analysis indicated that the indigenous soil microbial diversity and composition were not changed after the ME treatment, but the relative abundance of functional microbes associated with Cd removal was improved. Notably, soil available nutrient levels were elevated upon inoculation with mixotrophic acidophiles, resulting in an increase in rice growth and grain weight. This study provides a scientific basis for the potential application and evaluation of ME treatment in the field for remediating Cd-contaminated paddy soils.
Collapse
Affiliation(s)
- Baoxing Yuan
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China
| | - Lihua Huang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Lianyang Bai
- Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Huidan Jiang
- Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ping Zhu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jibiao Geng
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China
| | - Qianjin Liu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China
| | - Xiaodong Hao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| |
Collapse
|
16
|
Nano-Biochar as a Sustainable Catalyst for Anaerobic Digestion: A Synergetic Closed-Loop Approach. Catalysts 2022. [DOI: 10.3390/catal12020186] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nowadays, the valorization of organic wastes using various carbon-capturing technologies is a prime research area. The anaerobic digestion (AD) technology is gaining much consideration in this regard that simultaneously deals with waste valorization and bioenergy production sustainably. Biochar, a well-recognized carbonaceous pyrogenic material and possessing a broad range of inherent physical and chemical properties, has diverse applications in the fields of agriculture, health-care, sensing, catalysis, carbon capture, the environment and energy. The nano-biochar-amended anaerobic digestion approach has intensively been explored for the past few years. However, an inclusive study of multi-functional roles of biochar and the mechanism involved for enhancing the biogas production via the AD process still need to be evaluated. The present review inspects the significant role of biochar addition and the kinetics involved, further focusing on the limitations, perspectives, and challenges of the technology. Additionally, the techno-economic analysis and life-cycle assessment of biochar-aided AD process for the closed-loop integration of biochar and AD and possible improvement practices are discussed.
Collapse
|
17
|
Gautam A, Kushwaha A, Rani R. Reduction of Hexavalent Chromium [Cr(VI)] by Heavy Metal Tolerant Bacterium Alkalihalobacillus clausii CRA1 and Its Toxicity Assessment Through Flow Cytometry. Curr Microbiol 2021; 79:33. [PMID: 34952958 DOI: 10.1007/s00284-021-02734-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 12/03/2021] [Indexed: 12/01/2022]
Abstract
A chromate-resistant bacterial strain was isolated from tannery effluent; based on morphological, biochemical, and 16S rRNA gene sequencing, it was identified as Alkalihalobacillus clausii and designated A. clausii CRA1. It was found to be halophilic, alkaliphilic, and resistant to multiple heavy metals like Cr(VI), Cd(II), As(II), Pb(II), Ni(II), Hg(II), Cu(II), Zn(II), and Fe(II). The strain was found to reduce 72% of chromate in 6 days in Cr(VI) spiked Luria Bertani medium with unaffected bacterial growth at an initial C(VI) concentration of 50 mg L-1. Chromate reductase activity of culture supernatant (cultivated in LB broth) and cell lysate of the bacterium was found to be 23 and 43U, where 1U is µmol of Cr(VI) reduced/min/mg protein. Flow cytometry studies revealed that no significant effect of Cr(VI) on cell viability was observed till 12 h of exposure at 100, 200, 400 mg L-1 concentrations, indicated by non-significant cell death (propidium iodide positive cells). However, at 800 and 1000 mg L-1 Cr(VI) concentration, toxicity (cell death) was observed after 12 h of exposure. FACs studies also indicated that exposure to Cr(VI) increases cell size and cell granularity, which was also confirmed in SEM and TEM images of Cr(VI) treated cells. The presence of Cr(III) species in EDX spectra of Cr(VI) treated cells confirms that reduction of Cr(VI) to Cr(III) is the primary mechanism of Cr(VI) removal by the bacterium. Therefore, the bacterium A. clausii has potential for application in chromate removal from industrial waste effluents.
Collapse
Affiliation(s)
- Aishvarya Gautam
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Teliyarganj, Prayagraj, Uttar Pradesh, 211004, India
| | - Anamika Kushwaha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Teliyarganj, Prayagraj, Uttar Pradesh, 211004, India
| | - Radha Rani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Teliyarganj, Prayagraj, Uttar Pradesh, 211004, India.
| |
Collapse
|
18
|
Rebello S, Sivaprasad MS, Anoopkumar AN, Jayakrishnan L, Aneesh EM, Narisetty V, Sindhu R, Binod P, Pugazhendhi A, Pandey A. Cleaner technologies to combat heavy metal toxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113231. [PMID: 34252850 DOI: 10.1016/j.jenvman.2021.113231] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 05/21/2023]
Abstract
Heavy metals frequently occur as silent poisons present in our daily diet, the environment we live and the products we use, leaving us victims to various associated drastic health and ecological bad effects even in meagre quantities. The prevalence of heavy metals can be traced from children's toys, electronic goods, industrial effluents, pesticide preparation, and even in drinking water in some instances; necessitating methods to remediate them. The current review discusses the various physicochemical and biological methods employed to tackle the problem of heavy metal pollution. Apart from the conventional methods following the principles of adsorption, precipitation, coagulation, and various separation techniques, the advancements made in the directions of biological heavy metal detoxification using microbes, plants, algae have been critically analyzed to identify the specific utility of different agents for specific heavy metal removal. The review paper is a nutshell of different heavy metal remediation strategies, their merits, demerits, and modifications done to alleviate process of heavy metal pollution.
Collapse
Affiliation(s)
| | - M S Sivaprasad
- University of Calicut, Kerala Police Academy, Thrissur, Kerala, India
| | | | | | | | - Vivek Narisetty
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, Kerala, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research, Lucknow, 226 001, Uttar Pradesh, India; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
19
|
Huang S, Rao G, Ashraf U, Deng Q, Dong H, Zhang H, Mo Z, Pan S, Tang X. Ultrasonic seed treatment improved morpho-physiological and yield traits and reduced grain Cd concentrations in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112119. [PMID: 33714137 DOI: 10.1016/j.ecoenv.2021.112119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/07/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Rice cultivation under cadmium (Cd) contaminated soil often results in reduced growth with excess grain Cd concentrations. A pot experiment was conducted to assess the potential of ultrasonic seed treatment to alleviate Cd stress in rice. Seeds of two aromatic rice cultivars i.e., Xiangyaxiangzhan and Meixiangzhan 2 and two non-aromatic rice cultivars i.e., Huahang 31 and Guangyan 1 were exposed to ultrasonic waves for 1.5 min in 20-40 KHz mixing frequency. The experimental treatments were comprised of untreated seeds (U0) and ultrasonic treated seeds (U1) transplanted in un-contaminated soil (H0) and Cd-contaminated soil (H1). Results revealed that Cd contents and Cd accumulation in grain in U1 were 33.33-42.31% and 12.86-57.58% lower than U0 for fragrant rice cultivars under H1. Meanwhile, biomass production was higher in U1 than U0 under H0 and better yield was assessed in U1 for all cultivars under H1. The activity of peroxidase (POD) in flag leaves was increased by 8.28-115.65% for all cultivars while malondialdehyde (MDA) contents were significantly decreased in U1 compared with U0 under H0. Conclusively, ultrasonic treatment modulated Cd distribution and accumulation in different parts while improved physiological performance as well as yield and grain quality of rice under Cd contaminated conditions.
Collapse
Affiliation(s)
- Suihua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Gangshun Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Umair Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China; Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770 Punjab, Pakistan
| | - Quanqing Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Hao Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Huailin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Shenggang Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China.
| |
Collapse
|