1
|
Mitra S, Werner CT, Shwani T, Lopez AG, Federico D, Higdon K, Li X, Gobira PH, Thomas SA, Martin JA, An C, Chandra R, Maze I, Neve R, Lobo MK, Gancarz AM, Dietz DM. A Novel Role for the Histone Demethylase JMJD3 in Mediating Heroin-Induced Relapse-Like Behaviors. Biol Psychiatry 2024:S0006-3223(24)01452-5. [PMID: 39019389 DOI: 10.1016/j.biopsych.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Epigenetic changes that lead to long-term neuroadaptations following opioid exposure are not well understood. We examined how histone demethylase JMJD3 in the nucleus accumbens (NAc) influences heroin seeking after abstinence from self-administration. METHODS Male Sprague Dawley rats were trained to self-administer heroin. Western blotting and quantitative polymerase chain reaction were performed to quantify JMJD3 and bone morphogenetic protein (BMP) pathway expression in the NAc (n = 7-11/group). Pharmacological inhibitors or viral expression vectors were microinfused into the NAc to manipulate JMJD3 or the BMP pathway member SMAD1 (n = 9-11/group). The RiboTag capture method (n = 3-5/group) and viral vectors (n = 7-8/group) were used in male transgenic rats to identify the contributions of D1- and D2-expressing medium spiny neurons in the NAc. Drug seeking was tested by cue-induced response previously paired with drug infusion. RESULTS Levels of JMJD3 and phosphorylated SMAD1/5 in the NAc were increased after 14 days of abstinence from heroin self-administration. Pharmacological and virus-mediated inhibition of JMJD3 or the BMP pathway attenuated cue-induced seeking. Pharmacological inhibition of BMP signaling reduced JMJD3 expression and H3K27me3 levels. JMJD3 bidirectionally affected seeking: expression of the wild-type increased cue-induced seeking whereas expression of a catalytic dead mutant decreased it. JMJD3 expression was increased in D2+ but not D1+ medium spiny neurons. Expression of the mutant JMJD3 in D2+ neurons was sufficient to decrease cue-induced heroin seeking. CONCLUSIONS JMJD3 mediates persistent cellular and behavioral adaptations that underlie heroin relapse, and this activity is regulated by the BMP pathway.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Craig T Werner
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Treefa Shwani
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Ana Garcia Lopez
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Dale Federico
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Kate Higdon
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Xiaofang Li
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Pedro H Gobira
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Shruthi A Thomas
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Jennifer A Martin
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Chunna An
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Neve
- Gene Technology Core, Massachusetts General Hospital, Cambridge, Massachusetts
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amy M Gancarz
- Department of Psychology, California State University, Bakersfield, Bakersfield, California
| | - David M Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York.
| |
Collapse
|
2
|
Garsetti DE, Sahay K, Wang Y, Rogers MB. Sex and the basal mRNA synthesis machinery. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1765. [PMID: 36195437 PMCID: PMC10070566 DOI: 10.1002/wrna.1765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 11/07/2022]
Abstract
Evolution and change generated an incredible diversity of organisms on this earth. Yet, some processes are so central to life that change is strongly selected against. Synthesis of the eukaryotic messenger RNA is one example. The assemblies that carry out transcription and processing (capping, polyadenylation, and splicing) are so conserved that most genes have recognizable orthologs in yeast and humans. Naturally, most would conclude transcription and processing are identical in both sexes. However, this is an assumption. Men and women vastly differ in their physiologies. The incidence of pathologies, symptom presentation, disease outcome, and therapeutic response in each sex vary enormously. Despite the harm ignorance causes women, biological research has been historically carried out without regard to sex. The male mouse was the default mammal. A cultured cell's sex was considered irrelevant. Attempts to fill this knowledge gap have revealed molecular dissimilarities. For example, the earliest embryonic male and female transcriptomes differ long before fetal sex hormones appear. We used public data to challenge the assumption of sameness by reviewing reports of sex-biased gene expression and gene targeting. We focused on 120 genes encoding nonregulatory proteins involved in mRNA synthesis. Remarkably, genes with recognizable orthologs in yeast and thus LEAST likely to differ, did differ between the sexes. The rapidly growing public databases can be used to compare the expression of any gene in male and female tissues. Appreciating the principles that drive sex differences will enrich our understanding of RNA biology in all humans-men and women. This article is categorized under: RNA in Disease and Development > RNA in Development RNA Evolution and Genomics > Computational Analyses of RNA.
Collapse
Affiliation(s)
- Diane E Garsetti
- Rutgers-New Jersey Medical School (NJMS), Department of Microbiology, Biochemistry, and Molecular Genetics, Newark, New Jersey, USA
| | - Khushboo Sahay
- Rutgers-New Jersey Medical School (NJMS), Department of Microbiology, Biochemistry, and Molecular Genetics, Newark, New Jersey, USA
| | - Yue Wang
- Rutgers-New Jersey Medical School (NJMS), Department of Microbiology, Biochemistry, and Molecular Genetics, Newark, New Jersey, USA
| | - Melissa B Rogers
- Rutgers-New Jersey Medical School (NJMS), Department of Microbiology, Biochemistry, and Molecular Genetics, Newark, New Jersey, USA
| |
Collapse
|
3
|
Zaidi M, Kim SM, Mathew M, Korkmaz F, Sultana F, Miyashita S, Gumerova AA, Frolinger T, Moldavski O, Barak O, Pallapati A, Rojekar S, Caminis J, Ginzburg Y, Ryu V, Davies TF, Lizneva D, Rosen CJ, Yuen T. Bone circuitry and interorgan skeletal crosstalk. eLife 2023; 12:83142. [PMID: 36656634 PMCID: PMC9851618 DOI: 10.7554/elife.83142] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of skeletal homeostasis and the mechanisms that mediate the loss of bone integrity in disease. Recent breakthroughs have arisen mainly from identifying disease-causing mutations and modeling human bone disease in rodents, in essence, highlighting the integrative nature of skeletal physiology. It has become increasingly clear that bone cells, osteoblasts, osteoclasts, and osteocytes, communicate and regulate the fate of each other through RANK/RANKL/OPG, liver X receptors (LXRs), EphirinB2-EphB4 signaling, sphingolipids, and other membrane-associated proteins, such as semaphorins. Mounting evidence also showed that critical developmental pathways, namely, bone morphogenetic protein (BMP), NOTCH, and WNT, interact each other and play an important role in postnatal bone remodeling. The skeleton communicates not only with closely situated organs, such as bone marrow, muscle, and fat, but also with remote vital organs, such as the kidney, liver, and brain. The metabolic effect of bone-derived osteocalcin highlights a possible role of skeleton in energy homeostasis. Furthermore, studies using genetically modified rodent models disrupting the reciprocal relationship with tropic pituitary hormone and effector hormone have unraveled an independent role of pituitary hormone in skeletal remodeling beyond the role of regulating target endocrine glands. The cytokine-mediated skeletal actions and the evidence of local production of certain pituitary hormones by bone marrow-derived cells displays a unique endocrine-immune-skeletal connection. Here, we discuss recently elucidated mechanisms controlling the remodeling of bone, communication of bone cells with cells of other lineages, crosstalk between bone and vital organs, as well as opportunities for treating diseases of the skeleton.
Collapse
Affiliation(s)
- Mone Zaidi
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Se-Min Kim
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Mehr Mathew
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Funda Korkmaz
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Farhath Sultana
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sari Miyashita
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anisa Azatovna Gumerova
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Tal Frolinger
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ofer Moldavski
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Orly Barak
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anusha Pallapati
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Satish Rojekar
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - John Caminis
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Yelena Ginzburg
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Vitaly Ryu
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Terry F Davies
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Daria Lizneva
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Tony Yuen
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
4
|
Jin F, Li Y, Wang X, Yang X, Li T, Xu H, Wei Z, Liu H. Effect of Sex Differences in Silicotic Mice. Int J Mol Sci 2022; 23:ijms232214203. [PMID: 36430681 PMCID: PMC9697950 DOI: 10.3390/ijms232214203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Mechanisms of silicosis, caused by the inhalation of silica are still unclear, and the effect of sex on silicosis has rarely been reported. The purpose of this study was to investigate whether sex affects the silicotic lesions and the progressive fibrotic responses in silicosis. Our study showed that sex had no significant effect on the area of silicon nodules and the collagen deposition after a one-time bronchial perfusion of silica. Immunohistochemical staining showed that CD68 and the transforming growth factor-β1 (TGF-β1) were positive in male and female silicotic mice. In addition, the western blot results showed that the fibrosis-related factors type I collagen (COL I), α-smooth muscle actin (α-SMA), vimentin, TGF-β1, p-SMAD2/3, inflammatory-related factors interleukin 6 (IL 6), interleukin 1β (IL 1β), and senescence-related factors p16 and p21 were up-regulated in silicotic mice and there was no difference between female or male mice exposed to silica. The expression of TGF-β1, p-SMAD2/3, p16, and p21 were downregulated in the early stage of female silicotic mice, compared to the males. Thus, despite differences in the expression of certain factors, there was no overall difference in the progressive fibrosis between female and male mice in silicosis. These results thus provide a new perspective for studying the pathological development of silicosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhongqiu Wei
- Correspondence: (Z.W.); (H.L.); Tel.: +86-0315-8816236 (Z.W.); +86-139-3349-9300 (H.L.)
| | - Heliang Liu
- Correspondence: (Z.W.); (H.L.); Tel.: +86-0315-8816236 (Z.W.); +86-139-3349-9300 (H.L.)
| |
Collapse
|
5
|
Fleury M, Annabi M, Voisine M, Hervault M, Boilard A, Shen M, Marette A, Côté N, Clavel M. Impact of sex and sex hormones on pathophysiology and progression of aortic stenosis in a murine model. Physiol Rep 2022; 10:e15433. [PMID: 36029186 PMCID: PMC9419154 DOI: 10.14814/phy2.15433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023] Open
Abstract
The lesions observed in AS have been shown to be sex specific, with women presenting extensive fibrotic remodeling while men developing more calcification deposit. We thus aimed to evaluate the influence of sex and sex hormones on the pathophysiology of aortic valve stenosis (AS) in our mouse model of AS. LDLr-/- ApoB100/100 IGF-II+/- mice (n = 210) were separated in six different groups: (1) intact male (IM), (2) intact female (IF), (3) castrated male (CM), (4) ovariectomized females (OF), (5) CM with testosterone supplementation (CMT), and (6) OF with 17β-estradiol supplementation (OFE). Mice were fed a high-fat/high-sucrose/high-cholesterol diet for 6 months. Hemodynamic progression of AS was followed by transthoracic echocardiography (at 12 and 36 weeks) and analyzed in all mice alive at 36 weeks. Aortic valves were collected for histological and digital droplet PCR* analysis. Increases in peak velocity were comparable in IF and IM (24.2 ± 5.7 vs. 25.8 ± 5.3 cm/s; p = 0.68), but IF presented with less severe AS. Between the three groups of male mice, AS progression was more important in IM (increase in peak velocity: 24.2 ± 5.7 cm/s; p < 0.001) compared to CM (6.2 ± 1.4; p = 0.42), and CMT (15.1 ± 3.5; p = 0.002). In the three groups of female mice, there were no statistical differences in AS progression. Digital PCR analysis revealed an important upregulation of the osteogenic gene RunX2 in IM (p < 0.0001) and downregulation of the pro-calcifying gene ALPL in IF (p < 0.05). Male sex and testosterone play an important role in upregulation of pro-calcifying genes and hemodynamic progression of AS. However, female mice appeared to be protected against calcification, characterized by downregulation of pro-osteogenic genes, but presented a similar AS hemodynamic progression.
Collapse
Affiliation(s)
- Marie‐Ange Fleury
- Institut universitaire de cardiologie et de pneumologie de Québec‐Université Laval / Québec Heart and Lung Institute, Université LavalQuébec cityCanada
| | - Mohamed‐Salah Annabi
- Institut universitaire de cardiologie et de pneumologie de Québec‐Université Laval / Québec Heart and Lung Institute, Université LavalQuébec cityCanada
| | - Martine Voisine
- Institut universitaire de cardiologie et de pneumologie de Québec‐Université Laval / Québec Heart and Lung Institute, Université LavalQuébec cityCanada
| | - Maxime Hervault
- Institut universitaire de cardiologie et de pneumologie de Québec‐Université Laval / Québec Heart and Lung Institute, Université LavalQuébec cityCanada
| | - Anne‐Julie Boilard
- Institut universitaire de cardiologie et de pneumologie de Québec‐Université Laval / Québec Heart and Lung Institute, Université LavalQuébec cityCanada
| | - Mylène Shen
- Institut universitaire de cardiologie et de pneumologie de Québec‐Université Laval / Québec Heart and Lung Institute, Université LavalQuébec cityCanada
| | - André Marette
- Institut universitaire de cardiologie et de pneumologie de Québec‐Université Laval / Québec Heart and Lung Institute, Université LavalQuébec cityCanada
| | - Nancy Côté
- Institut universitaire de cardiologie et de pneumologie de Québec‐Université Laval / Québec Heart and Lung Institute, Université LavalQuébec cityCanada
| | - Marie‐Annick Clavel
- Institut universitaire de cardiologie et de pneumologie de Québec‐Université Laval / Québec Heart and Lung Institute, Université LavalQuébec cityCanada
| |
Collapse
|
6
|
Pandey R, Garg A, Gupta K, Shukla P, Mandrah K, Roy S, Chattopadhyay N, Bandyopadhyay S. Arsenic Induces Differential Neurotoxicity in Male, Female, and E2-Deficient Females: Comparative Effects on Hippocampal Neurons and Cognition in Adult Rats. Mol Neurobiol 2022; 59:2729-2744. [PMID: 35175559 DOI: 10.1007/s12035-022-02770-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/03/2022] [Indexed: 02/06/2023]
Abstract
We earlier reported that arsenic induced hippocampal neuronal loss, causing cognitive dysfunctions in male rats. This neuronal damage mechanism involved an altered bone morphogenetic protein (BMP2)/Smad and brain-derived neurotrophic factor (BDNF)/TrkB signaling. Susceptibility to toxicants is often sex-dependent, and hence we studied the comparative effects of arsenic in adult male and female rats. We observed that a lower dose of arsenic reduced learning-memory ability, examined through passive avoidance and Y-maze tests, in male but not female rats. Again, male rats exhibited greater learning-memory loss at a higher dose of arsenic. Supporting this, arsenic-treated male rats demonstrated larger reduction in the hippocampal NeuN and %-surviving neurons, together with increased apoptosis and altered BMP2/Smad and BDNF/TrkB pathways compared to their female counterparts. Since the primary female hormone, estrogen (E2), regulates normal brain functions, we next probed whether endogenous E2 levels in females offered resistance against arsenic-induced neurotoxicity. We used ovariectomized (OVX) rat as the model for E2 deficiency. We primarily identified that OVX itself induced hippocampal neuronal damage and cognitive decline, involving an increased BMP2/Smad and reduced BDNF/TrkB. Further, these effects appeared greater in arsenic + OVX compared to arsenic + sham (ovary intact) or OVX rats alone. The OVX-induced adverse effects were significantly reduced by E2 treatment. Overall, our study suggests that adult males could be more susceptible than females to arsenic-induced neurotoxicity. It also indicates that endogenous E2 regulates hippocampal BMP and BDNF signaling and restrains arsenic-induced neuronal dysfunctions in females, which may be inhibited in E2-deficient conditions, such as menopause or ovarian failure.
Collapse
Affiliation(s)
- Rukmani Pandey
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Asmita Garg
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Keerti Gupta
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pallavi Shukla
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Somendu Roy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Naibedya Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Division of Endocrinology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, Uttar Pradesh, India
| | - Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Simancas Escorcia V, Guillou C, Abbad L, Derrien L, Rodrigues Rezende Costa C, Cannaya V, Benassarou M, Chatziantoniou C, Berdal A, Acevedo AC, Cases O, Cosette P, Kozyraki R. Pathogenesis of Enamel-Renal Syndrome Associated Gingival Fibromatosis: A Proteomic Approach. Front Endocrinol (Lausanne) 2021; 12:752568. [PMID: 34777248 PMCID: PMC8586505 DOI: 10.3389/fendo.2021.752568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
The enamel renal syndrome (ERS) is a rare disorder featured by amelogenesis imperfecta, gingival fibromatosis and nephrocalcinosis. ERS is caused by bi-allelic mutations in the secretory pathway pseudokinase FAM20A. How mutations in FAM20A may modify the gingival connective tissue homeostasis and cause fibromatosis is currently unknown. We here analyzed conditioned media of gingival fibroblasts (GFs) obtained from four unrelated ERS patients carrying distinct mutations and control subjects. Secretomic analysis identified 109 dysregulated proteins whose abundance had increased (69 proteins) or decreased (40 proteins) at least 1.5-fold compared to control GFs. Proteins over-represented were mainly involved in extracellular matrix organization, collagen fibril assembly, and biomineralization whereas those under-represented were extracellular matrix-associated proteins. More specifically, transforming growth factor-beta 2, a member of the TGFβ family involved in both mineralization and fibrosis was strongly increased in samples from GFs of ERS patients and so were various known targets of the TGFβ signaling pathway including Collagens, Matrix metallopeptidase 2 and Fibronectin. For the over-expressed proteins quantitative RT-PCR analysis showed increased transcript levels, suggesting increased synthesis and this was further confirmed at the tissue level. Additional immunohistochemical and western blot analyses showed activation and nuclear localization of the classical TGFβ effector phospho-Smad3 in both ERS gingival tissue and ERS GFs. Exposure of the mutant cells to TGFB1 further upregulated the expression of TGFβ targets suggesting that this pathway could be a central player in the pathogenesis of the ERS gingival fibromatosis. In conclusion our data strongly suggest that TGFβ -induced modifications of the extracellular matrix contribute to the pathogenesis of ERS. To our knowledge this is the first proteomic-based analysis of FAM20A-associated modifications.
Collapse
Affiliation(s)
- Victor Simancas Escorcia
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Oral Molecular Pathophysiology, Paris, France
| | - Clément Guillou
- Normandie Université, PISSARO Proteomic Facility, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
- Normandie Université, UMR670 Centre National de la Recherche Scientifique (CNRS), Mont-Saint-Aignan, France
| | - Lilia Abbad
- UMRS1155, INSERM, Sorbonne Université, Paris, France
| | - Louise Derrien
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Oral Molecular Pathophysiology, Paris, France
| | - Claudio Rodrigues Rezende Costa
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Vidjea Cannaya
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Oral Molecular Pathophysiology, Paris, France
| | - Mourad Benassarou
- Service de Chirurgie Maxillo-faciale et Stomatologie, Hôpital De la Pitié Salpétrière, Sorbonne Université, Paris, France
| | | | - Ariane Berdal
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Oral Molecular Pathophysiology, Paris, France
- Centre de Référence Maladies Rares (CRMR) O-RARES, Hôpital Rothshild, Unité de Formation et de Recherche (UFR) d’Odontologie-Garancière, Université de Paris, Paris, France
| | - Ana Carolina Acevedo
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Oral Molecular Pathophysiology, Paris, France
| | - Pascal Cosette
- Normandie Université, PISSARO Proteomic Facility, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
- Normandie Université, UMR670 Centre National de la Recherche Scientifique (CNRS), Mont-Saint-Aignan, France
| | - Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Oral Molecular Pathophysiology, Paris, France
- Centre de Référence Maladies Rares (CRMR) O-RARES, Hôpital Rothshild, Unité de Formation et de Recherche (UFR) d’Odontologie-Garancière, Université de Paris, Paris, France
| |
Collapse
|
8
|
Mank JE, Rideout EJ. Developmental mechanisms of sex differences: from cells to organisms. Development 2021; 148:272484. [PMID: 34647574 DOI: 10.1242/dev.199750] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Male-female differences in many developmental mechanisms lead to the formation of two morphologically and physiologically distinct sexes. Although this is expected for traits with prominent differences between the sexes, such as the gonads, sex-specific processes also contribute to traits without obvious male-female differences, such as the intestine. Here, we review sex differences in developmental mechanisms that operate at several levels of biological complexity - molecular, cellular, organ and organismal - and discuss how these differences influence organ formation, function and whole-body physiology. Together, the examples we highlight show that one simple way to gain a more accurate and comprehensive understanding of animal development is to include both sexes.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
9
|
Yero A, Shi T, Farnos O, Routy JP, Tremblay C, Durand M, Tsoukas C, Costiniuk CT, Jenabian MA. Dynamics and epigenetic signature of regulatory T-cells following antiretroviral therapy initiation in acute HIV infection. EBioMedicine 2021; 71:103570. [PMID: 34500304 PMCID: PMC8429924 DOI: 10.1016/j.ebiom.2021.103570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND HIV infection promotes the expansion of immunosuppressive regulatory T-cells (Tregs), contributing to immune dysfunction, tissue fibrosis and disease progression. Early antiretroviral treatment (ART) upon HIV infection improves CD4 count and decreases immune activation. However, Treg dynamics and their epigenetic regulation following early ART initiation remain understudied. METHODS Treg subsets were characterized by flow cytometry in 103 individuals, including untreated HIV-infected participants in acute and chronic phases, ART-treated in early infection, elite controllers (ECs), immunological controllers (ICs), and HIV-uninfected controls. The methylation status of six regulatory regions of the foxp3 gene was assessed using MiSeq technology. FINDINGS Total Treg frequency increased overtime during HIV infection, which was normalized in early ART recipients. Tregs in untreated individuals expressed higher levels of activation and immunosuppressive markers (CD39, and LAP(TGF-β1)), which remained unchanged following early ART. Expression of gut migration markers (CCR9, Integrin-β7) by Tregs was elevated during untreated HIV infection, while they declined with the duration of ART but not upon early ART initiation. Notably, gut-homing Tregs expressing LAP(TGF-β1) and CD39 remained higher despite early treatment. Additionally, the increase in LAP(TGF-β1)+ Tregs overtime were consistent with higher demethylation of conserved non-coding sequence (CNS)-1 in the foxp3 gene. Remarkably, LAP(TGF-β1)-expressing Tregs in ECs were significantly higher than in uninfected subjects, while the markers of Treg activation and gut migration were not different. INTERPRETATION Early ART initiation was unable to control the levels of immunosuppressive Treg subsets and their gut migration potential, which could ultimately contribute to gut tissue fibrosis and HIV disease progression. FUNDING This study was funded by the Canadian Institutes of Health Research (CIHR, grant MOP 142294) and in part by the AIDS and Infectious Diseases Network of the Réseau SIDA et maladies infectieuses du Fonds de recherche du Québec-Santé (FRQ-S).
Collapse
Affiliation(s)
- Alexis Yero
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Tao Shi
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Omar Farnos
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Jean-Pierre Routy
- Research Institute of McGill University Health Centre, Montreal, QC, Canada; Chronic Viral Illness Service, Division of Infectious Disease, Department of Medicine, Glen Site, McGill University Health Centre, Montreal, QC, Canada
| | - Cécile Tremblay
- CHUM Research Centre, Montreal, QC, Canada; Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | | | - Christos Tsoukas
- Research Institute of McGill University Health Centre, Montreal, QC, Canada; Division of Clinical Immunology and Allergy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Cecilia T Costiniuk
- Research Institute of McGill University Health Centre, Montreal, QC, Canada; Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada; Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Chan SM, Weininger G, Langford J, Jane-Wit D, Dardik A. Sex Differences in Inflammation During Venous Remodeling of Arteriovenous Fistulae. Front Cardiovasc Med 2021; 8:715114. [PMID: 34368264 PMCID: PMC8335484 DOI: 10.3389/fcvm.2021.715114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
Vascular disorders frequently have differing clinical presentations among women and men. Sex differences exist in vascular access for hemodialysis; women have reduced rates of arteriovenous fistula (AVF) maturation as well as fistula utilization compared with men. Inflammation is increasingly implicated in both clinical studies and animal models as a potent mechanism driving AVF maturation, especially in vessel dilation and wall thickening, that allows venous remodeling to the fistula environment to support hemodialysis. Sex differences have long been recognized in arterial remodeling and diseases, with men having increased cardiovascular events compared with pre-menopausal women. Many of these arterial diseases are driven by inflammation that is similar to the inflammation during AVF maturation. Improved understanding of sex differences in inflammation during vascular remodeling may suggest sex-specific vascular therapies to improve AVF success.
Collapse
Affiliation(s)
- Shin Mei Chan
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States
| | - Gabe Weininger
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States
| | - John Langford
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States.,Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Daniel Jane-Wit
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States.,Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States.,Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States.,Department of Surgery, Yale School of Medicine, New Haven, CT, United States.,Department of Surgery, Veterans Affairs (VA) Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
11
|
Ziller N, Kotolloshi R, Esmaeili M, Liebisch M, Mrowka R, Baniahmad A, Liehr T, Wolf G, Loeffler I. Sex Differences in Diabetes- and TGF-β1-Induced Renal Damage. Cells 2020; 9:E2236. [PMID: 33023010 PMCID: PMC7600610 DOI: 10.3390/cells9102236] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/25/2022] Open
Abstract
While females are less affected by non-diabetic kidney diseases compared to males, available data on sex differences in diabetic nephropathy (DN) are controversial. Although there is evidence for an imbalance of sex hormones in diabetes and hormone-dependent mechanisms in transforming growth factor β1 (TGF-β1) signaling, causes and consequences are still incompletely understood. Here we investigated the influence of sex hormones and sex-specific gene signatures in diabetes- and TGF-β1-induced renal damage using various complementary approaches (a db/db diabetes mouse model, ex vivo experiments on murine renal tissue, and experiments with a proximal tubular cell line TKPTS). Our results show that: (i) diabetes affects sex hormone concentrations and renal expression of their receptors in a sex-specific manner; (ii) sex, sex hormones and diabetic conditions influence differences in expression of TGF-β1, its receptor and bone morphogenetic protein 7 (BMP7); (iii) the sex and sex hormones, in combination with variable TGF-β1 doses, determine the net outcome in TGF-β1-induced expression of connective tissue growth factor (CTGF), a profibrotic cytokine. Altogether, these results suggest complex crosstalk between sex hormones, sex-dependent expression pattern and profibrotic signals for the precise course of DN development. Our data may help to better understand previous contradictory findings regarding sex differences in DN.
Collapse
Affiliation(s)
- Nadja Ziller
- Department of Internal Medicine III, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (N.Z.); (M.L.); (R.M.)
| | - Roland Kotolloshi
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (R.K.); (M.E.); (A.B.); (T.L.)
| | - Mohsen Esmaeili
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (R.K.); (M.E.); (A.B.); (T.L.)
| | - Marita Liebisch
- Department of Internal Medicine III, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (N.Z.); (M.L.); (R.M.)
| | - Ralf Mrowka
- Department of Internal Medicine III, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (N.Z.); (M.L.); (R.M.)
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (R.K.); (M.E.); (A.B.); (T.L.)
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (R.K.); (M.E.); (A.B.); (T.L.)
| | - Gunter Wolf
- Department of Internal Medicine III, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (N.Z.); (M.L.); (R.M.)
| | - Ivonne Loeffler
- Department of Internal Medicine III, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (N.Z.); (M.L.); (R.M.)
| |
Collapse
|
12
|
Tang Y, Shah TA, Yurkow EJ, Rogers MB. MicroRNA Profiles in Calcified and Healthy Aorta Differ: Therapeutic Impact of miR-145 and miR-378. Physiol Genomics 2020; 52:517-529. [PMID: 32956022 DOI: 10.1152/physiolgenomics.00074.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our goal was to elucidate microRNAs (miRNAs) that may repress the excess bone morphogenetic protein (BMP) signaling observed during pathological calcification in the Klotho mouse model of kidney disease. We hypothesized that restoring healthy levels of miRNAs that post-transcriptionally repress osteogenic calcific factors may decrease aortic calcification. Our relative abundance profiles of miRNAs in healthy aorta differ greatly from those in calcified mouse aorta. Many of these miRNAs are predicted to regulate proteins involved in BMP signaling and may control osteogenesis. Two differentially regulated miRNAs, miR-145 and miR-378, were selected based on three criteria: reduced levels in calcified aorta, the ability to target more than one protein in the BMP signaling pathway, and conservation of targeted sequences between humans and mice. Forced expression using a lentiviral vector demonstrated that restoring normal levels repressed the synthesis of BMP2 and other pro-osteogenic proteins and inhibited pathological aortic calcification in Klotho mice with renal insufficiency. This study identified miRNAs that may impact BMP signaling in both sexes and demonstrated the efficacy of selected miRNAs in reducing aortic calcification in vivo. Calcification of the aorta and the aortic valve resulting from abnormal osteogenesis is common in those with kidney disease, diabetes, and high cholesterol. Such vascular osteogenesis is a clinically significant feature. The calcification modulating miRNAs described here are candidates for biomarkers and "miRNA replacement therapies" in the context of chronic kidney disease and other pro-calcific conditions.
Collapse
Affiliation(s)
- Ying Tang
- Rutgers - New Jersey Medical School, Microbiology, Biochemistry, & Molecular Genetics, Newark, NJ, United States
| | - Tapan A Shah
- Rutgers - New Jersey Medical School, Microbiology, Biochemistry, & Molecular Genetics, Newark, NJ, United States
| | - Edward J Yurkow
- Rutgers University Molecular Imaging Center (RUMIC), Rutgers University, Piscataway, NJ, United States
| | - Melissa B Rogers
- Rutgers - New Jersey Medical School, Microbiology, Biochemistry, & Molecular Genetics, Newark, NJ, United States
| |
Collapse
|
13
|
Zhang B, Miller VM, Miller JD. Influences of Sex and Estrogen in Arterial and Valvular Calcification. Front Endocrinol (Lausanne) 2019; 10:622. [PMID: 31620082 PMCID: PMC6763561 DOI: 10.3389/fendo.2019.00622] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/27/2019] [Indexed: 01/14/2023] Open
Abstract
Vascular and cardiac valvular calcification was once considered to be a degenerative and end stage product in aging cardiovascular tissues. Over the past two decades, however, a critical mass of data has shown that cardiovascular calcification can be an active and highly regulated process. While the incidence of calcification in the coronary arteries and cardiac valves is higher in men than in age-matched women, a high index of calcification associates with increased morbidity, and mortality in both sexes. Despite the ubiquitous portending of poor outcomes in both sexes, our understanding of mechanisms of calcification under the dramatically different biological contexts of sex and hormonal milieu remains rudimentary. Understanding how the critical context of these variables inform our understanding of mechanisms of calcification-as well as innovative strategies to target it therapeutically-is essential to advancing the fields of both cardiovascular disease and fundamental mechanisms of aging. This review will explore potential sex and sex-steroid differences in the basic biological pathways associated with vascular and cardiac valvular tissue calcification, and potential strategies of pharmacological therapy to reduce or slow these processes.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Virginia M. Miller
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Jordan D. Miller
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Jordan D. Miller
| |
Collapse
|