1
|
Vodyashkin A, Stoinova A, Kezimana P. Promising biomedical systems based on copper nanoparticles: Synthesis, characterization, and applications. Colloids Surf B Biointerfaces 2024; 237:113861. [PMID: 38552288 DOI: 10.1016/j.colsurfb.2024.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Copper and copper oxide nanoparticles (CuNPs) have unique physicochemical properties that make them highly promising for biomedical applications. This review discusses the application of CuNPs in biomedicine, including diagnosis, therapy, and theranostics. Recent synthesis methods, with an emphasis on green approaches, are described, and the latest techniques for nanoparticle characterization are critically analyzed. CuNPs, including Cu2O, CuO, and Cu, have significant potential as anti-cancer agents, drug delivery systems, and photodynamic therapy enhancers, among other applications. While challenges such as ensuring biocompatibility and stability must be addressed, the state-of-the-art research reviewed here provides strong evidence for the efficacy and versatility of CuNPs. These multifunctional properties have been extensively researched and documented, showcasing the immense potential of CuNPs in biomedicine. Overall, the evidence suggests that CuNPs are a promising avenue for future research and development in biomedicine. We strongly support further progress in the development of synthesis and application strategies to enhance the effectiveness and safety of CuNPs for clinical purposes.
Collapse
Affiliation(s)
| | - Anastasia Stoinova
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| | - Parfait Kezimana
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| |
Collapse
|
2
|
Bagherian MS, Zargham P, Zarharan H, Bakhtiari M, Mortezaee Ghariyeh Ali N, Yousefi E, Es-Haghi A, Taghavizadeh Yazdi ME. Antimicrobial and antibiofilm properties of selenium-chitosan-loaded salicylic acid nanoparticles for the removal of emerging contaminants from bacterial pathogens. World J Microbiol Biotechnol 2024; 40:86. [PMID: 38319399 DOI: 10.1007/s11274-024-03917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
In this study salicylic acid loaded containing selenium nanoparticles was synthesized and called SA@CS-Se NPs. the chitosan was used as a natural stabilizer during the synthesis process. Fourier transforms infrared spectroscopy (FTIR), Powder X-ray diffraction (XRD), field emission electron microscopy (FESEM), and transmission electron microscopy (TEM) were used to describe the physicochemical characteristics of the SA@CS-Se NPs. The PXRD examination revealed that the grain size was around 31.9 nm. TEM and FESEM techniques showed the spherical shape of SA@CS-Se NPs. Additionally, the analysis of experiments showed that SA@CS-Se NPs have antibacterial properties against 4 ATCC bacteria; So that with concentrations of 75, 125, 150, and 100 µg/ml, it inhibited the biofilm formation of Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus respectively. Also, at the concentration of 300 µg/ml, it removed 22.76, 23.2, 10.62, and 18.08% biofilm caused by E. coli, P. aeruginosa, B. subtilis, and S. aureus respectively. The synthesized SA@CS-Se NPs may find an application to reduce the unsafe influence of pathogenic microbes and, hence, eliminate microbial contamination.
Collapse
Affiliation(s)
| | - Parisa Zargham
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hoda Zarharan
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Maleknaz Bakhtiari
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ehsan Yousefi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Mohammad Ehsan Taghavizadeh Yazdi
- Department of Pharmacology, Medicinal Plants Pharmacological Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Hosseini SA, Khatami M, Asadollahi A, Yaghoobi H. Cerium Oxide Nanoparticles Synthesis using Alhagi Maurorum Leaf Extract and Evaluation of Their Cytotoxic Effect on Breast Cancer Cell Lines and Antibacterial Effects. Anticancer Agents Med Chem 2024; 24:1056-1062. [PMID: 38685807 DOI: 10.2174/0118715206296523240424072939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Green synthesis offers a fast, simple, and economical method for producing metallic nanoparticles.The basis of this method is to obtain nanoparticles using natural materials, such as plants, fungi, and bacteria, instead of harmful and expensive chemical-reducing agents. In this study, CeO2NPs were produced using Alhagi maurorum extract, and their anticancer and antibacterial activities were evaluated. METHODS Alhagi maurorum extract was prepared according to a previously described protocol, and CeO2NPs were synthesized from the salt of this extract. The resulting nanoparticles were characterized using Transmission electron microscopy (TEM), scanning electron microscope (SEM), and X-ray diffraction (XRD) techniques. The antibacterial and cytotoxic effects of the nanoparticles were measured by MIC, MBC, and MTT assays, respectively. The results were analyzed using one-way analysis of variance (ANOVA) using Prism software. RESULTS The MTT assay on breast cancer cell lines showed that the cytotoxic effect of CeO2NPs on cell lines was concentration-dependent. In addition, this nanoparticle was more effective against Gram-positive bacteria. CONCLUSION These nanoparticles can be used as cancer drug delivery systems with specific targeting at low concentrations in addition to anticancer treatments. It can also have biological and medicinal applications, such as natural food preservation and wound dressing.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirkian Asadollahi
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
4
|
Moshirian Farahi SM, Taghavizadeh Yazdi ME, Einafshar E, Akhondi M, Ebadi M, Azimipour S, Mahmoodzadeh H, Iranbakhsh A. The effects of titanium dioxide (TiO 2) nanoparticles on physiological, biochemical, and antioxidant properties of Vitex plant ( Vitex agnus - Castus L). Heliyon 2023; 9:e22144. [PMID: 38034643 PMCID: PMC10685375 DOI: 10.1016/j.heliyon.2023.e22144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/20/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Titanium dioxide nanoparticles (TiO2NPs) are widely used in agriculture in order to increase the yield and growth characteristics of plants. This study investigated the effects of TiO2NPs on photosynthetic pigments and several biochemical activities and antioxidant enzymes of the Vitex plant. Different concentrations of nanoparticles (0, 200, 400, 600 and 800 ppm) at five levels were sprayed on Vitex plants on the 30th day of the experiment. TiO2NPs at different concentrations had positive effects on root and shoot dry weight and a negative effect on leaf dry weight. The amount of chlorophyll increased with the concentration of TiO2NPs; however, the amount of chlorophyll b showed a decreasing trend while the total chlorophyll had a constant trend. The highest amount of soluble sugar was obtained in the treatment of 200 ppm nanoparticles. The application of TiO2NPs did not have any effect on the content of proline and soluble proteins of Vitex plant. The effects of foliar TiO2NPs, compared to the control, showed a significant increase in the activity of antioxidant enzymes. In general, TiO2NPs had a favorable effect on dry matter production and some antioxidant and biochemical properties of the Vitex plant.
Collapse
Affiliation(s)
| | | | - Elham Einafshar
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Akhondi
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Shahrouz Azimipour
- Faculty of Chemistry, Semnan Branch, Islamic Azad University, Semnan, Iran
| | - Homa Mahmoodzadeh
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Eslamieh-Ei FM, Sharifimoghaddammood N, Poustchi Tousi SA, Basharkhah S, Mottaghipisheh J, Es-Haghi A, Taghavizadeh Yazdi ME, Iriti M. Synthesis and its characterisation of selenium/silver/chitosan and cellular toxicity against liver carcinoma cells studies. Nat Prod Res 2023:1-9. [PMID: 37708315 DOI: 10.1080/14786419.2023.2256023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023]
Abstract
Liver cancer is one of the most common lethal malignancy in the world. To treat liver cancer, new cure options are crucial. The use of natural substances along nanosciences may provide healing with lower toxicity and a smaller amount of side properties. In this research, The three-component selenium-silver-chitosan nanocomposite (Se-Ag-CS NCs) were synthesised with the help of ultrasound in a stepwise manner. The as-synthesised Se-Ag-CS NCs were characterised accordingly by applying powder X-Ray diffraction (PXRD), Fourier transforms infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy dispersive x-ray analysis (EDX), transmission electron microscopy (TEM), dynamic light scattering (DLS) and potential. The PXRD demonstrated that the NCs were synthesised successfully and the grain sizes of 27.3 were obtained. The FESEM and TEM analyses have shown the NCs have a nano-sized structure with spherical and rod-like morphologies in a coating of CS. The DLS analysis also revealed that NCs were synthesised in nanoscale particles. The NCs' surface charge was also positive due to the presence of chitosan. Different concentrations of NCs (0, 0.125, 0.250, 0.500, and 1 mg/ml) were tested at different times (24, 48, and 72 h) to measure cytotoxicity against liver cancer cells. The results showed at a concentration of 1 mg/mL in 72 h, the most toxicity effects were applied to liver cancer cells. Moreover, the results indicated NCs can inhibit the growth of cancer cells in a dose-dependent manner, while the toxicity of nanocomposite on normal cells was less. It is important to create nanocomposites derived from natural polymers as a new strategy in cancer treatment that can fight cancer cells while having low toxicity for normal cells. Therefore, the present results can be considered in improving cancer-fighting methods.
Collapse
Affiliation(s)
| | | | | | - Samira Basharkhah
- Department of Biochemistry, Faculty of Science, Payame Noor University, Mashhad, Iran
| | - Javad Mottaghipisheh
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology, Firenze, Italy
| |
Collapse
|
6
|
Azizi H, Akbari N, Kheirandish F, Sepahvand A. Biogenic synthesized copper oxide nanoparticles by Bacillus subtilis: Investigating antibacterial activity on the mexAB-oprM efflux pump genes and cytotoxic effect on MCF-7 cells. J Basic Microbiol 2023; 63:960-970. [PMID: 37189220 DOI: 10.1002/jobm.202200718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/19/2023] [Accepted: 03/04/2023] [Indexed: 05/17/2023]
Abstract
One of the main characteristics of Pseudomonas aeruginosa is remarkable intrinsic antibiotic resistance which is associated with production of β-lactamases and the expression of inducible efflux pumps. Nanoparticles (NPs) are a novel option for coping with this resistant bacteria. Hence, the aim of present study was production of CuO NPs via Bacillus subtilis and applied them to deal with resistant bacteria. For this purpose, first NPs were synthesized and were analyzed with different standard techniques containing scanning electron microscope, Fourier-transform infrared spectroscopy, and X-ray powder diffraction. Microdilution Broth Method and real-time polymerase chain reaction were used to antibacterial properties of the CuO NPs and expression of mexAB-oprM in clinical samples of P. aeruginosa, respectively. The cytotoxic effect of CuO NPs was also evaluated on MCF7 as a breast cancer cell line. Finally, the data were analyzed by one-way analysis of variance and Tukey's tests. The size of CuO NPs was in the range of 17-26 nm and showed antibacterial effect at <1000 μg/mL concentrations. Our evidence noted that the antibacterial effects of the CuO NPs occurred through the downregulation of mexAB-oprM and upregulation of mexR. The interesting point was that CuO NPs had an inhibitory effect on MCF7 cell lines with the optimal inhibition concentration at IC50 = 25.73 µg/mL. Therefore, CuO NPs can be considered as a promising medical candidate in the pharmaceutical industry.
Collapse
Affiliation(s)
- Hossein Azizi
- Department of Microbiology, Arak Branch, Islamic Azad University, Arak, Iran
| | - Neda Akbari
- Department of Microbiology, Arak Branch, Islamic Azad University, Arak, Iran
| | - Farnaz Kheirandish
- Department of Microbiology, Arak Branch, Islamic Azad University, Arak, Iran
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Khorramabad, Iran
| | - Asghar Sepahvand
- Department of Microbiology, Arak Branch, Islamic Azad University, Arak, Iran
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
7
|
Zarharan H, Bagherian M, Shah Rokhi A, Ramezani Bajgiran R, Yousefi E, Heravian P, Niazi Khazrabig M, Es-haghi A, Taghavizadeh Yazdi ME. The anti-angiogenesis and antioxidant activity of chitosan-mediated synthesized selenium-gold nanostructure. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
8
|
Mousavi-Kouhi SM, Beyk-Khormizi A, Amiri MS, Mashreghi M, Hashemzadeh A, Mohammadzadeh V, Alavi F, Mottaghipisheh J, Sarafraz Ardakani MR, Taghavizadeh Yazdi ME. Plant Gel-Mediated Synthesis of Gold-Coated Nanoceria Using Ferula gummosa: Characterization and Estimation of Its Cellular Toxicity toward Breast Cancer Cell Lines. J Funct Biomater 2023; 14:332. [PMID: 37504827 PMCID: PMC10381807 DOI: 10.3390/jfb14070332] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023] Open
Abstract
In this study, a novel method using Ferula gummosa gums as a capping agent was used to synthesize the nanoceria for the first time. The method was economical and performed at room temperature. Furthermore, it was coated with gold (Au/nanoceria) and fully characterized using X-ray powder diffraction (XRD), field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy (FESEM-EDX), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and zeta potential (ζ potential). The crystallite size obtained from the results was 28.09 nm for Au/nanoceria. The energy-dispersive X-ray spectroscopy (EDX) analysis of Au/nanoceria revealed the compositional constituents of the product, which display the purity of the Au/nanoceria. The cell toxicity properties of the non-doped and Au-coated nanoceria were identified by a MTT analysis on a breast cancer cell line (MCF7). Additionally, human foreskin fibroblast cells (HFF) were used as a normal cell line. The cytotoxicity results indicated that the toxicological effect of Au/nanoceria on cancer cells was significant while having little toxic effect on normal cells. The toxicity effect of nanoceria clearly shows the dependence on dose and time, so, with increasing the dose of Au/nanoceria, the death of cancer cells also increases.
Collapse
Affiliation(s)
| | | | | | - Mohammad Mashreghi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91778, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91778, Iran
| | - Alireza Hashemzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778, Iran
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778, Iran
| | - Fariba Alavi
- Department of Biology, Payame Noor University, Tehran 19395-4697, Iran
| | - Javad Mottaghipisheh
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala, Sweden
| | | | | |
Collapse
|
9
|
Gan L, Ji P, Zhang JX, Chen H, Yao YS, Ren ZK. Drug delivery system for the extended-release of larotrectinib based on a biocompatible Fe-based metal-organic framework: synthesis, characterization, in vitro release properties and antitumor evaluation. Front Bioeng Biotechnol 2023; 11:1197484. [PMID: 37324434 PMCID: PMC10267385 DOI: 10.3389/fbioe.2023.1197484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Larotrectinib (Lar) is an orally administered tropomyosin receptor kinase (Trk) inhibitor with broad-spectrum antitumor activity that is available in clinical dosage forms as capsules and oral solutions. Currently, corresponding research is focused on developing new extended-release formulation systems for Lar. In this study, a biocompatible Fe-based metal-organic framework (Fe-MOF) carrier was synthesized by a solvent-based method, and a sustained-release drug delivery system (Lar@Fe-MOF) was constructed by nanoprecipitation and Lar loading. Lar@Fe-MOF was characterized by transmission electron microscopy (TEM), differential scanning calorimetry (DSC), fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA), and its drug loading capacity and drug release properties were measured by ultraviolet-visible (UV-vis) spectroscopy. Then, the toxicity and biocompatibility of the Fe-MOF carriers were evaluated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and hemocompatibility assays. Finally, the anticancer potential of Lar@Fe-MOF was investigated. The TEM results showed that Lar@Fe-MOF had a homogeneous fusiform nanostructural morphology. The DSC and FTIR results showed that Fe-MOF carriers were successfully synthesized and loaded with Lar, which was mainly in an amorphous form. Lar@Fe-MOF showed a large drug loading capacity (-10%) and significant slow-release properties in vitro. The MTT assay results showed that Lar@Fe-MOF had good dose-dependent anticancer activity. The in vivo pharmacodynamic assay results showed that Fe-MOF significantly increased the anticancer activity of Lar and was biocompatible. In conclusion, the Lar@Fe-MOF system developed in this study is a promising drug delivery platform because it is easy to manufacture, has high biocompatibility and ideal drug release and accumulation, can effectively eliminate tumors with improved safety and is expected to further expand therapeutic applications.
Collapse
Affiliation(s)
- Lu Gan
- The Third Affiliated Hospital of Jinzhou Medical University, Jin Zhou, China
| | - Peng Ji
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Jin-xiang Zhang
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Hao Chen
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Yan-sheng Yao
- The Affiliated Taixing People’s Hospital of Medical College, Yangzhou University, Yangzhou, China
| | - Zhen-kun Ren
- The Third Affiliated Hospital of Jinzhou Medical University, Jin Zhou, China
| |
Collapse
|
10
|
Elmehrath S, Nguyen HL, Karam SM, Amin A, Greish YE. BioMOF-Based Anti-Cancer Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:953. [PMID: 36903831 PMCID: PMC10005089 DOI: 10.3390/nano13050953] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
A variety of nanomaterials have been developed specifically for biomedical applications, such as drug delivery in cancer treatment. These materials involve both synthetic and natural nanoparticles and nanofibers of varying dimensions. The efficacy of a drug delivery system (DDS) depends on its biocompatibility, intrinsic high surface area, high interconnected porosity, and chemical functionality. Recent advances in metal-organic framework (MOF) nanostructures have led to the achievement of these desirable features. MOFs consist of metal ions and organic linkers that are assembled in different geometries and can be produced in 0, 1, 2, or 3 dimensions. The defining features of MOFs are their outstanding surface area, interconnected porosity, and variable chemical functionality, which enable an endless range of modalities for loading drugs into their hierarchical structures. MOFs, coupled with biocompatibility requisites, are now regarded as highly successful DDSs for the treatment of diverse diseases. This review aims to present the development and applications of DDSs based on chemically-functionalized MOF nanostructures in the context of cancer treatment. A concise overview of the structure, synthesis, and mode of action of MOF-DDS is provided.
Collapse
Affiliation(s)
- Sandy Elmehrath
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Ha L. Nguyen
- Department of Chemistry University of California—Berkeley, Kavli Energy Nanoscience Institute at UC Berkeley, and Berkeley Global Science Institute, Berkeley, CA 94720, USA
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Sherif M. Karam
- Department of Anatomy, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Amr Amin
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Department of Biology, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Yaser E. Greish
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
11
|
Atlı Şekeroğlu Z, Şekeroğlu V, Aydın B, Kontaş Yedier S. Cerium oxide nanoparticles exert antitumor effects and enhance paclitaxel toxicity and activity against breast cancer cells. J Biomed Mater Res B Appl Biomater 2023; 111:579-589. [PMID: 36221929 DOI: 10.1002/jbm.b.35175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2023]
Abstract
Cerium oxide nanoparticles (CeONPs) displayed cytotoxic properties against some cancer cells. However, there is very limited data about the possible antitumoral potential of them in breast cancer cells when used alone and/or together with a chemotherapeutic drug. We investigated the effects of CeONPs alone or in combination with paclitaxel (PAC) on healthy or carcinoma breast cells. After human breast cancer cells (MCF-7) treated with CeONPs alone or together with PAC for 24, 48, and 72 h, the effects of CeONPs on cell viability, apoptosis, migration, and adhesion were investigated. All cell viability and IC50 values of CeONPs and PAC treatments in healthy breast cells (HTERT-HME1) were higher than MCF-7 cells. They showed higher cytotoxicity against MCF-7 cells. CeONPs (10, 20, and 30 mM) and/or abraxane (AB) (2 μM) significantly decreased cell viability values in MCF-7 cells. All CeONPs concentrations increased the number of apoptotic MCF-7 cells. CeONPs (20 and 30 mM) alone or in combination with AB for 72 h treatment also significantly increased the apoptosis in compared to AB alone. CeONPs and/or AB can significantly inhibit the migratory ability of breast cancer cells. The migration rates in co-treated groups with CeONPs and AB were lower than CeONPs treatments. Higher concentrations of CeONPs alone or together with AB inhibited cell adhesion. Our results showed CeONPs can increase cytotoxicity and apoptosis and decrease cell migration and cell adhesion when used alone or together with AB. Therefore, combination of chemotherapeutics with CeONPs may provide a good strategy against cancer.
Collapse
Affiliation(s)
- Zülal Atlı Şekeroğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Ordu University, Ordu, Turkey
| | - Vedat Şekeroğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Ordu University, Ordu, Turkey
| | - Birsen Aydın
- Department of Biology, Faculty of Medicine, Faculty of Science and Letters, Amasya University, Amasya, Turkey
| | - Seval Kontaş Yedier
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Ordu University, Ordu, Turkey
| |
Collapse
|
12
|
Barani M, Hajinezhad MR, Shahraki S, Mirinejad S, Razlansari M, Sargazi S, Rahdar A, Díez-Pascual AM. Preparation, characterization, and toxicity assessment of carfilzomib-loaded nickel-based metal-organic framework: Evidence from in-vivo and in-vitro experiments. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
13
|
Seyedi Z, Amiri MS, Mohammadzadeh V, Hashemzadeh A, Haddad-Mashadrizeh A, Mashreghi M, Qayoomian M, Hashemzadeh MR, Simal-Gandara J, Taghavizadeh Yazdi ME. Icariin: A Promising Natural Product in Biomedicine and Tissue Engineering. J Funct Biomater 2023; 14:44. [PMID: 36662090 PMCID: PMC9862744 DOI: 10.3390/jfb14010044] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
Among scaffolds used in tissue engineering, natural biomaterials such as plant-based materials show a crucial role in cellular function due to their biocompatibility and chemical indicators. Because of environmentally friendly behavior and safety, green methods are so important in designing scaffolds. A key bioactive flavonoid of the Epimedium plant, Icariin (ICRN), has a broad range of applications in improving scaffolds as a constant and non-immunogenic material, and in stimulating the cell growth, differentiation of chondrocytes as well as differentiation of embryonic stem cells towards cardiomyocytes. Moreover, fusion of ICRN into the hydrogel scaffolds or chemical crosslinking can enhance the secretion of the collagen matrix and proteoglycan in bone and cartilage tissue engineering. To scrutinize, in various types of cancer cells, ICRN plays a decisive role through increasing cytochrome c secretion, Bax/Bcl2 ratio, poly (ADP-ribose) polymerase as well as caspase stimulations. Surprisingly, ICRN can induce apoptosis, reduce viability and inhibit proliferation of cancer cells, and repress tumorigenesis as well as metastasis. Moreover, cancer cells no longer grow by halting the cell cycle at two checkpoints, G0/G1 and G2/M, through the inhibition of NF-κB by ICRN. Besides, improving nephrotoxicity occurring due to cisplatin and inhibiting multidrug resistance are the other applications of this biomaterial.
Collapse
Affiliation(s)
- Zahra Seyedi
- Department of Stem Cells and Regenerative Medicine, Royesh Stem Cell Biotechnology Institute, Mashhad 9188758156, Iran
- Department of Cancer and Oncology, Royesh Stem Cell Biotechnology Institute, Mashhad 9188758156, Iran
| | | | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778, Iran
| | - Alireza Hashemzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778, Iran
| | - Aliakbar Haddad-Mashadrizeh
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mohammad Mashreghi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778, Iran
| | - Mohsen Qayoomian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 91778, Iran
| | - Mohammad Reza Hashemzadeh
- Department of Stem Cells and Regenerative Medicine, Royesh Stem Cell Biotechnology Institute, Mashhad 9188758156, Iran
- Department of Cancer and Oncology, Royesh Stem Cell Biotechnology Institute, Mashhad 9188758156, Iran
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| | | |
Collapse
|
14
|
Shalaby EA, Shanab SMM, El-Raheem WMA, Hanafy EA. Biological activities and antioxidant potential of different biosynthesized nanoparticles of Moringa oleifera. Sci Rep 2022; 12:18400. [PMID: 36319823 PMCID: PMC9626474 DOI: 10.1038/s41598-022-23164-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022] Open
Abstract
The science of nanotechnology is expanding daily and has the potential to benefit people. Moringa oleifera is an abundant source of phenolic compounds, which are bioactive substances. It is recognised as a necessary plant because of its medicinal potential and a wide variety of health benefits. The aim of the current study is to examine the antioxidant, antibacterial, and cytotoxicity effects of five nanoparticles (La2O3, CuO, Fe2O3, Ag, and ZnO) made using bioactive chemicals in the aqueous extract of Moringa oleifera leaves on four human cell lines (T47D, HepG2, A549, and Wi38). The UV-visible spectroscopy analysis with a surface plasmon peak in the 300-490 nm range and the value of the zeta potential of the various biosynthesized nanoparticles ranged from + 31 to + 37 mV, indicated the repulsion between the particles and the stability of the formulation nanoparticles confirmed the formation of all nanoparticles. Additionally, the DPPH method was used to assess the antioxidant activity of five distinct metal nanoparticles. The results show that this method works in parallel and is dependent on both the concentration of NPs and the incubation time. The anticancer effect of synthesized nanoparticles against four different cell lines has been tested. The cytotoxicity assay showed a dose-dependent and time-dependent effect of nanoparticles. The obtained results conclude that acceptable potency against T47D and A549 cell lines with IC50 ranged from 38 to 210 μg/mL and 26 to 115 μg/mL, respectively. However, HepG2 and Wi38 cell lines showed relatively higher resistance against all tested nanoparticles when compared with Doxorubicin. Moreover, the antibacterial results revealed that silver nanoparticles exhibited the highest antibacterial activity against both Enterococcus faecalis and Staphylococcus aureus. Nanoparticles' high therapeutic activity at low concentrations opens up new avenues for the development of novel therapeutic approaches against human pathogens.
Collapse
Affiliation(s)
- Emad A. Shalaby
- grid.7776.10000 0004 0639 9286Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, 12613 Egypt
| | - Sanaa M. M. Shanab
- grid.7776.10000 0004 0639 9286Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Walaa M. Abd El-Raheem
- grid.412659.d0000 0004 0621 726XDepartment of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Eman A. Hanafy
- grid.7776.10000 0004 0639 9286Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, 12613 Egypt
| |
Collapse
|
15
|
Alabyadh T, Albadri R, Es-haghi A, Yazdi MET, Ajalli N, Rahdar A, Thakur VK. ZnO/CeO 2 Nanocomposites: Metal-Organic Framework-Mediated Synthesis, Characterization, and Estimation of Cellular Toxicity toward Liver Cancer Cells. J Funct Biomater 2022; 13:jfb13030139. [PMID: 36135574 PMCID: PMC9503907 DOI: 10.3390/jfb13030139] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The Zinc-doped cerium oxide nanocomposite (ZnO/CeO2 NC) was synthesized using a metal-organic framework as a precursor through the combustion method. It was characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), field emission electron microscopy (FESEM), energy dispersive analysis (EDX), transmission electron microscopy (TEM), dynamic light scattering (DLS), and ξ-potential. The PXRD demonstrated the successful synthesis of ZnO/CeO2 NC with a crystallite size of 31.9 nm. FESEM and TEM images displayed hexagonal and spherical morphologies, and the solid-phase size was 65.03 ± 30.86 nm for ZnO/CeO2 NCs. DLS, TEM, and FESEM showed that the NCs have a high tendency for agglomeration/aggregation in both aqueous media and solid phase. The anticancer attributes of ZnO/CeO2 NC were investigated against Liver cancer cells (HepG2), which showed inhibition of cancer cell growth on a concentration-dependent gradient. The cell toxicity effects of ZnO/CeO2 nanocomposites were also studied toward NIH-3T3, in which the data displayed the lower toxicity of NC compared to the HepG2 cell line.
Collapse
Affiliation(s)
- Toqa Alabyadh
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad 91871-47578, Iran
| | - Riyadh Albadri
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad 91871-47578, Iran
| | - Ali Es-haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad 91871-47578, Iran
- Correspondence: (A.E.-h.); (M.E.T.Y.); (A.R.); (V.K.T.)
| | - Mohammad Ehsan Taghavizadeh Yazdi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
- Correspondence: (A.E.-h.); (M.E.T.Y.); (A.R.); (V.K.T.)
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
- Correspondence: (A.E.-h.); (M.E.T.Y.); (A.R.); (V.K.T.)
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
- Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
- Correspondence: (A.E.-h.); (M.E.T.Y.); (A.R.); (V.K.T.)
| |
Collapse
|
16
|
Azeem MNA, Ahmed OM, Shaban M, Elsayed KNM. In vitro antioxidant, anticancer, anti-inflammatory, anti-diabetic and anti-Alzheimer potentials of innovative macroalgae bio-capped silver nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59930-59947. [PMID: 35397021 PMCID: PMC9399188 DOI: 10.1007/s11356-022-20039-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/29/2022] [Indexed: 05/13/2023]
Abstract
The antagonistic side effects of chemical medications led to the search for safe strategies such as biogenic agents. Correspondingly, this study aims to create biogenic, appropriate, auspicious and innovative therapeutic agents like Galaxaura elongata {GE}, Turbinaria ornata {TO} and Enteromorpha flexuosa {EF} macroalgae-based silver nanoparticles (Ag-NPs). The Ag+ reduction and the creation of Ag[GE]-NPs, Ag[TO]-NPs and Ag[EF]-NPs have been validated using UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and zeta potential analysis, and the chemical composition of macroalgae crude extracts was estimated through gas chromatography-mass spectrometry (GC-MS). Further, macroalgae-based Ag-NPs were tested for their free radical scavenging activity DPPH, ABTS, anticancer activity in human liver carcinoma (HepG2) cell line, distinctive inflammation forms and elevated α-amylase. Results showed that the biosynthesized Ag-NPs have unique mechanical and physicochemical characters attributed to their high relative surface area, nanosized dimensions and spherical shape. At dose of 200 µg/mL, the DPPH radical scavenging capacity was maximized with Ag[TO]-NPs (67.26%); however, Ag[EF]-NPs was the most potent as ABTs scavenger (97.74%). Additionally, Ag[GE]-NPs had the maximum proteinase inhibitory action with 59.78%. The 1000 µg/mL of Ag[GE]-NPs, Ag[TO]-NPs and Ag[EF]-NPs revealed significant inhibitions of cell growth of HepG2 resulting in cell viabilities 5.92%, 4.44% and 11.33%, respectively. These findings suggest that macroalgae bio-capped Ag-NPs have magnificent biological potentials for safe biomedical applications.
Collapse
Affiliation(s)
- Manal N Abdel Azeem
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Osama M Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed Shaban
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
- Department of Physics, Faculty of Science, Islamic University in Almadinah Almonawara, 42351, Almadinah Almonawara, Saudi Arabia
| | - Khaled N M Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
17
|
Mobaraki F, Momeni M, Jahromi M, Kasmaie FM, Barghbani M, Yazdi MET, Meshkat Z, Shandiz FH, Hosseini SM. Apoptotic, antioxidant and cytotoxic properties of synthesized AgNPs using green tea against human testicular embryonic cancer stem cells. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Arshad R, Fatima I, Sargazi S, Rahdar A, Karamzadeh-Jahromi M, Pandey S, Díez-Pascual AM, Bilal M. Novel Perspectives towards RNA-Based Nano-Theranostic Approaches for Cancer Management. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3330. [PMID: 34947679 PMCID: PMC8708502 DOI: 10.3390/nano11123330] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 12/19/2022]
Abstract
In the fight against cancer, early diagnosis is critical for effective treatment. Traditional cancer diagnostic technologies, on the other hand, have limitations that make early detection difficult. Therefore, multi-functionalized nanoparticles (NPs) and nano-biosensors have revolutionized the era of cancer diagnosis and treatment for targeted action via attaching specified and biocompatible ligands to target the tissues, which are highly over-expressed in certain types of cancers. Advancements in multi-functionalized NPs can be achieved via modifying molecular genetics to develop personalized and targeted treatments based on RNA interference. Modification in RNA therapies utilized small RNA subunits in the form of small interfering RNAs (siRNA) for overexpressing the specific genes of, most commonly, breast, colon, gastric, cervical, and hepatocellular cancer. RNA-conjugated nanomaterials appear to be the gold standard for preventing various malignant tumors through focused diagnosis and delivering to a specific tissue, resulting in cancer cells going into programmed death. The latest advances in RNA nanotechnology applications for cancer diagnosis and treatment are summarized in this review.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 45320, Pakistan;
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | | | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China;
| |
Collapse
|