1
|
Zheng H, Qu L, Yang L, Xie X, Song L, Xie Q. An injectable hydrogel loaded with Icariin attenuates cartilage damage in rabbit knee osteoarthritis via Wnt/β-catenin signaling pathway. Int Immunopharmacol 2025; 145:113725. [PMID: 39667046 DOI: 10.1016/j.intimp.2024.113725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Knee osteoarthritis (KOA) is a chronic disease characterized by joint wear and cartilage degeneration. Current clinical treatments are based on symptomatic relief and are not effective in regenerating cartilage, and inflammation-induced cartilage damage accelerates the progression of osteoarthritis, making the protection of articular cartilage important for controlling the development of knee osteoarthritis. In this study, a biodegradable hydrogel (HA-Ca-Alg@Ica) loaded with Icariin (Ica) was prepared by in situ cross-linking of hyaluronic acid-calcium complex (HA-Ca) and sodium alginate (Alg-Na) for local sustained delivery of Ica. The hydrogel promoted chondrocyte proliferation and inhibited the degradation of cartilage matrix by regulating key factors (Wnt3a, β-catenin and GSK-3β) in the Wnt/β-catenin signaling pathway. In addition, the hydrogel reduced the expression of inflammatory factors, including IL-1β, IL-6, TNF-α, COX-2, and MMP13, leading to a reduction in inflammation and pain relief. In summary, this hydrogel containing Icariin has shown significant effects in reducing chondrocyte degradation and promoting chondrocyte proliferation, which can play a role in delaying osteoarthritis by protecting chondrocytes. These findings offer innovative prospects for the therapeutic management of knee osteoarthritis.
Collapse
Affiliation(s)
- Hanxiao Zheng
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Limin Qu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lei Yang
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Xianmin Xie
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Ling Song
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiuen Xie
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China.
| |
Collapse
|
2
|
Eslamieh-Ei FM, Sharifimoghaddammood N, Poustchi Tousi SA, Basharkhah S, Mottaghipisheh J, Es-Haghi A, Taghavizadeh Yazdi ME, Iriti M. Synthesis and its characterisation of selenium/silver/chitosan and cellular toxicity against liver carcinoma cells studies. Nat Prod Res 2025; 39:135-143. [PMID: 37708315 DOI: 10.1080/14786419.2023.2256023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023]
Abstract
Liver cancer is one of the most common lethal malignancy in the world. To treat liver cancer, new cure options are crucial. The use of natural substances along nanosciences may provide healing with lower toxicity and a smaller amount of side properties. In this research, The three-component selenium-silver-chitosan nanocomposite (Se-Ag-CS NCs) were synthesised with the help of ultrasound in a stepwise manner. The as-synthesised Se-Ag-CS NCs were characterised accordingly by applying powder X-Ray diffraction (PXRD), Fourier transforms infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy dispersive x-ray analysis (EDX), transmission electron microscopy (TEM), dynamic light scattering (DLS) and potential. The PXRD demonstrated that the NCs were synthesised successfully and the grain sizes of 27.3 were obtained. The FESEM and TEM analyses have shown the NCs have a nano-sized structure with spherical and rod-like morphologies in a coating of CS. The DLS analysis also revealed that NCs were synthesised in nanoscale particles. The NCs' surface charge was also positive due to the presence of chitosan. Different concentrations of NCs (0, 0.125, 0.250, 0.500, and 1 mg/ml) were tested at different times (24, 48, and 72 h) to measure cytotoxicity against liver cancer cells. The results showed at a concentration of 1 mg/mL in 72 h, the most toxicity effects were applied to liver cancer cells. Moreover, the results indicated NCs can inhibit the growth of cancer cells in a dose-dependent manner, while the toxicity of nanocomposite on normal cells was less. It is important to create nanocomposites derived from natural polymers as a new strategy in cancer treatment that can fight cancer cells while having low toxicity for normal cells. Therefore, the present results can be considered in improving cancer-fighting methods.
Collapse
Affiliation(s)
| | | | | | - Samira Basharkhah
- Department of Biochemistry, Faculty of Science, Payame Noor University, Mashhad, Iran
| | - Javad Mottaghipisheh
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology, Firenze, Italy
| |
Collapse
|
3
|
Bhutta ZA, Choi KC. Phytochemicals as Novel Therapeutics for Triple-Negative Breast Cancer: A Comprehensive Review of Current Knowledge. Phytother Res 2025; 39:364-396. [PMID: 39533509 DOI: 10.1002/ptr.8376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/10/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Triple-negative breast cancer is a characteristic subtype of breast cancer that lacks the estrogen receptor, human epidermal growth factor receptor 2, and progesterone receptor. Because of its highly diverse subtypes, increased metastasis capability, and poor prognosis, the risk of mortality for people with triple-negative breast cancers is high as compared with other cancers. Chemotherapy is currently playing a major role in treating triple-negative breast cancer patients; however, poor prognosis due to drug resistance is causing serious concern. Recent studies on several phytochemicals derived from various plants being used in Traditional Chinese Medicine, Traditional Korean Medicine, Ayurveda (Traditional Indian Medicine), and so on, have demonstrated to be a promising agent as a viable therapy against triple-negative breast cancer. Phytochemicals categorized as alkaloids, polyphenols, terpenoids, phytosterols, and organosulfur compounds have been demonstrated to reduce cancer cell proliferation and metastasis by activating various molecular pathways, thereby reducing the spread of triple-negative breast cancer. This review analyzes the molecular mechanisms by which various phytochemicals fight triple-negative breast cancer and offers a perspective on the difficulties and potential prospects for treating triple-negative breast cancer with various phytochemicals.
Collapse
Affiliation(s)
- Zeeshan Ahmad Bhutta
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
4
|
Dai G, Xu C, Han B, Wang Z, Cai J, You W, Zhang Y. Treatment of bone-cartilage defects with dual-layer tissue-engineered scaffolds loaded with icariin and quercetin. J Biomed Mater Res A 2024; 112:2170-2186. [PMID: 38949056 DOI: 10.1002/jbm.a.37753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 07/02/2024]
Abstract
Over the past few decades, significant research has been conducted on tissue-engineered constructs for cartilage repair. However, there is a growing interest in addressing subchondral bone repair along with cartilage regeneration. This study focuses on a bilayer tissue engineering scaffold loaded with icariin (ICA) and quercetin (QU) for simultaneous treatment of knee joint cartilage and subchondral bone defects. The cytotoxicity of dual-layer scaffolds loaded with ICA and QU was assessed through live/dead cell staining. Subsequently, these dual-layer scaffolds loaded with ICA and QU were implanted into cartilage and subchondral bone defects in Sprague-Dawley (SD) rats. The repair effects were evaluated through macroscopic observation, computed tomography, and immunohistochemistry. After 12 weeks of implantation of dual-layer scaffolds loaded with ICA and QU into the cartilage and bone defects of SD rats, better repair effects were observed in both cartilage and bone defects compared to the blank control group. We found that the dual-layer tissue-engineered scaffold loaded with ICA and QU had excellent biocompatibility and could effectively repair articular cartilage and subchondral bone injuries, showing promising prospects for clinical applications.
Collapse
Affiliation(s)
- Guoda Dai
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen Xu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Baoguo Han
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhichen Wang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianpin Cai
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Wulin You
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yafeng Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Eid BG, Binmahfouz LS, Shaik RA, Bagher AM, Sirwi A, Abdel-Naim AB. Icariin inhibits cisplatin-induced ovarian toxicity via modulating NF-κB and PTEN/AKT/mTOR/AMPK axis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03395-y. [PMID: 39212737 DOI: 10.1007/s00210-024-03395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Cisplatin (CP) is a highly effective broad-spectrum chemotherapeutic agent for several solid tumors. However, its clinical use is associated with ovarian toxicity. Icariin (ICA) is a bioactive flavonoid of Epimedium brevicornum with reported protective activities against inflammation, oxidative stress and ovarian failure. This study aimed to explore the protective effects of ICA against CP-associated ovarian toxicity in rats. Rats were randomized into five groups and treated for 17 days: control, ICA (10 mg/kg/day, for 17 days. p.o.), CP (6 mg/kg, i.p. on days 7 and 14), CP + ICA (CP 6 mg/kg i.p. on days 7 and 14 and ICA 5 mg/kg p.o. daily), and CP + ICA (CP 6 mg/kg i.p. on days 7 and 14 and ICA 10 mg/kg p.o. daily). Our results indicated that ICA effectively improved ovarian reserve as indicated by attenuating CP-induced histolopathological changes and enhancing serum anti-müllerian hormone (AMH). Furthermore, co-administration of ICA with CP showed restoration of the oxidant-anti-oxidant balance in ovarian tissues, evidenced by decreased malondialdehyde (MDA) concentrations and elevated superoxide dismutase (SOD) and catalase (CAT) activities. Also, ICA suppressed ovarian inflammation as evidenced by down-regulation of the expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and nuclear factor kappa B (NF-κB). ICA inhibited ovarian apoptosis in CP-treated rats by down-regulation of CASP3 and Bax and up-regulation of Bcl-2 mRNA expression. Further, ICA enhanced PTEN, p-AKT, p-mTOR, and p-AMPKα expression. In conclusion, ICA possesses a protective activity against CP-induced ovarian toxicity in rats by exhibiting antioxidant, antiinflammatory, anti-apoptotic activities and modulating NF-κB expression and PTEN/AKT/mTOR/AMPK axis in ovarian tissues.
Collapse
Affiliation(s)
- Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Lenah S Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Rasheed A Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Amina M Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Alaa Sirwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
6
|
Es-Haghi A, Amiri MS, Taghavizadeh Yazdi ME. Ferula latisecta gels for synthesis of zinc/silver binary nanoparticles: antibacterial effects against gram-negative and gram-positive bacteria and physicochemical characteristics. BMC Biotechnol 2024; 24:51. [PMID: 39090578 PMCID: PMC11292920 DOI: 10.1186/s12896-024-00878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
This study explores the potential antibacterial applications of zinc oxide nanoparticles (ZnO NPs) enhanced with silver (Ag) using plant gel (ZnO-AgO NPs). The problem addressed is the increasing prevalence of pathogenic bacteria and the need for new, effective antimicrobial agents. ZnO NPs possess distinctive physicochemical properties that enable them to selectively target bacterial cells. Their small size and high surface area-to-volume ratio allow efficient cellular uptake and interaction with bacterial cells. In this study, the average size of the synthesized ZnO-Ag nanoparticles was 77.1 nm, with a significant standard deviation of 33.7 nm, indicating a wide size distribution. The nanoparticles demonstrated remarkable antibacterial efficacy against gram-negative and gram-positive bacteria, with inhibition zones of 14.33 mm for E. coli and 15.66 mm for B. subtilis at a concentration of 300 µg/ml. Minimum inhibitory concentrations (MIC) were determined to be 100 µg/ml for E. coli and 75 µg/ml for S. saprophyticus. Additionally, ZnO-Ag NPs exhibited excellent biocompatibility, making them appropriate for various pharmacological uses. This study utilizes Ferula latisecta gels, offering a sustainable and eco-friendly approach to nanoparticle synthesis. Incorporating of Ag into ZnO NPs significantly enhances their antimicrobial properties, with the combined results showing great inhibition effects on pathogenic microbes. The findings suggest that ZnO-Ag NPs could be a promising candidate for addressing the challenges posed by drug-resistant bacterial infections and enhancing antimicrobial treatments.
Collapse
Affiliation(s)
- Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | | | | |
Collapse
|
7
|
Shen P, Xue M, Hu Z, Han L, Deng X. Direct targeting of S100A9 with Icariin counteracted acetaminophen‑induced hepatotoxicity. Int Immunopharmacol 2024; 136:112296. [PMID: 38810310 DOI: 10.1016/j.intimp.2024.112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Acetaminophen (APAP) is a widely used antipyretic and analgesic medication, but its overdose can induce acute liver failure with lack of effective therapies. Icariin is a bioactive compound derived from the herb Epimedium that displays hepatoprotective activities. Here, we explored the protective effects and mechanism of icariin on APAP-induced hepatotoxicity. Icariin (25/50 mg/kg) or N-Acetylcysteine (NAC, 300 mg/kg) were orally administered in wild-type C57BL/6 mice for 7 consecutive days before the APAP administration. Icariin attenuated APAP-induced acute liver injury in mice, as measured by alleviated serum enzymes activities and hepatic apoptosis. In vitro, icariin pretreatment significantly inhibited hepatocellular damage and apoptosis by reducing the BAX/Bcl-2 ratio as well as the expression of cleaved-caspase 3 and cleaved-PARP depended on the p53 pathway. Moreover, icariin attenuated APAP-mediated inflammatory response and oxidative stress via the Nrf2 and NF-κB pathways. Importantly, icariin reduced the expression of S100A9, icariin interacts with S100A9 as a direct cellular target, which was supported by molecular dynamics simulation and surface plasmon resonance assay (equilibrium dissociation constant, KD = 1.14 μM). In addition, the genetic deletion and inhibition of S100A9 not only alleviated APAP-induced injury but also reduced the icariin's protective activity in APAP-mediated liver injury. These data indicated that icariin targeted S100A9 to alleviate APAP-induced liver damage via the following signaling pathways NF-κB, p53, and Nrf2.
Collapse
Affiliation(s)
- Pan Shen
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, China; Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Mei Xue
- Department of Endocrinology, Zhongnan Hospital, Wuhan University, China.
| | - Zhishuo Hu
- Department of Emergency, Wuhan No.1 Hospital, China.
| | - Liang Han
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Xuan Deng
- Department of Nephrology, Zhongnan Hospital, Wuhan University, China.
| |
Collapse
|
8
|
Es-Haghi A, Soltani M, Tabrizi MH, Noghondar MK, Khatamian N, Naeeni NB, Kharaghani M. The effect of EGCG/tyrosol-loaded chitosan/lecithin nanoparticles on hyperglycemia and hepatic function in streptozotocin-induced diabetic mice. Int J Biol Macromol 2024; 267:131496. [PMID: 38626839 DOI: 10.1016/j.ijbiomac.2024.131496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
We aimed to study the potential of epigallocatechin-3-gallate/tyrosol-loaded chitosan/lecithin nanoparticles (EGCG/tyrosol-loaded C/L NPs) in streptozotocin-induced type 2 diabetes mellitus (T2DM) mice. The EGCG/tyrosol-loaded C/L NPs were created using the self-assembly method. Dynamic light scattering, Field Emission Scanning Electron Microscopy, and Fourier transform infrared spectroscopy were utilized to characterize the nanoparticle. Furthermore, in streptozotocin-induced T2DM mice, treatment with EGCG/tyrosol-loaded C/L NPs on fasting blood sugar levels, the expression of PCK1 and G6Pase, and IL-1β in the liver, liver glutathione content, nanoparticle toxicity on liver cells, and liver reactive oxygen species were measured. Our findings showed that EGCG/tyrosol-loaded C/L NPs had a uniform size distribution, and encapsulation efficiencies of 84 % and 89.1 % for tyrosol and EGCG, respectively. The nanoparticles inhibited PANC-1 cells without affecting normal HFF cells. Furthermore, EGCG/tyrosol-loaded C/L NP treatment reduced fasting blood sugar levels, elevated hepatic glutathione levels, enhanced liver cell viability, and decreased reactive oxygen species levels in diabetic mice. The expression of gluconeogenesis-related genes (PCK1 and G6 Pase) and the inflammatory gene IL-1β was downregulated by EGCG/tyrosol-loaded C/L NPs. In conclusion, the EGCG/tyrosol-loaded C/L NPs reduced hyperglycemia, oxidative stress, and inflammation in diabetic mice. These findings suggest that EGCG/tyrosol-loaded C/L NPs could be a promising therapeutic option for type 2 diabetes management.
Collapse
Affiliation(s)
- Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Mozhgan Soltani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Maryam Karimi Noghondar
- Department of Nursing, Faculty of Nursing and Midwifery, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Niloufar Khatamian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Matin Kharaghani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
9
|
Mohammadzadeh M, Zarei M, Abbasi H, Webster TJ, Beheshtizadeh N. Promoting osteogenesis and bone regeneration employing icariin-loaded nanoplatforms. J Biol Eng 2024; 18:29. [PMID: 38649969 PMCID: PMC11036660 DOI: 10.1186/s13036-024-00425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
There is an increasing demand for innovative strategies that effectively promote osteogenesis and enhance bone regeneration. The critical process of bone regeneration involves the transformation of mesenchymal stromal cells into osteoblasts and the subsequent mineralization of the extracellular matrix, making up the complex mechanism of osteogenesis. Icariin's diverse pharmacological properties, such as anti-inflammatory, anti-oxidant, and osteogenic effects, have attracted considerable attention in biomedical research. Icariin, known for its ability to stimulate bone formation, has been found to encourage the transformation of mesenchymal stromal cells into osteoblasts and improve the subsequent process of mineralization. Several studies have demonstrated the osteogenic effects of icariin, which can be attributed to its hormone-like function. It has been found to induce the expression of BMP-2 and BMP-4 mRNAs in osteoblasts and significantly upregulate Osx at low doses. Additionally, icariin promotes bone formation by stimulating the expression of pre-osteoblastic genes like Osx, RUNX2, and collagen type I. However, icariin needs to be effectively delivered to bone to perform such promising functions.Encapsulating icariin within nanoplatforms holds significant promise for promoting osteogenesis and bone regeneration through a range of intricate biological effects. When encapsulated in nanofibers or nanoparticles, icariin exerts its effects directly at the cellular level. Recalling that inflammation is a critical factor influencing bone regeneration, icariin's anti-inflammatory effects can be harnessed and amplified when encapsulated in nanoplatforms. Also, while cell adhesion and cell migration are pivotal stages of tissue regeneration, icariin-loaded nanoplatforms contribute to these processes by providing a supportive matrix for cellular attachment and movement. This review comprehensively discusses icariin-loaded nanoplatforms used for bone regeneration and osteogenesis, further presenting where the field needs to go before icariin can be used clinically.
Collapse
Affiliation(s)
- Mahsa Mohammadzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Masoud Zarei
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Abbasi
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Program in Materials Science, UFPI, Teresina, Brazil
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
10
|
Bagherian MS, Zargham P, Zarharan H, Bakhtiari M, Mortezaee Ghariyeh Ali N, Yousefi E, Es-Haghi A, Taghavizadeh Yazdi ME. Antimicrobial and antibiofilm properties of selenium-chitosan-loaded salicylic acid nanoparticles for the removal of emerging contaminants from bacterial pathogens. World J Microbiol Biotechnol 2024; 40:86. [PMID: 38319399 DOI: 10.1007/s11274-024-03917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
In this study salicylic acid loaded containing selenium nanoparticles was synthesized and called SA@CS-Se NPs. the chitosan was used as a natural stabilizer during the synthesis process. Fourier transforms infrared spectroscopy (FTIR), Powder X-ray diffraction (XRD), field emission electron microscopy (FESEM), and transmission electron microscopy (TEM) were used to describe the physicochemical characteristics of the SA@CS-Se NPs. The PXRD examination revealed that the grain size was around 31.9 nm. TEM and FESEM techniques showed the spherical shape of SA@CS-Se NPs. Additionally, the analysis of experiments showed that SA@CS-Se NPs have antibacterial properties against 4 ATCC bacteria; So that with concentrations of 75, 125, 150, and 100 µg/ml, it inhibited the biofilm formation of Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus respectively. Also, at the concentration of 300 µg/ml, it removed 22.76, 23.2, 10.62, and 18.08% biofilm caused by E. coli, P. aeruginosa, B. subtilis, and S. aureus respectively. The synthesized SA@CS-Se NPs may find an application to reduce the unsafe influence of pathogenic microbes and, hence, eliminate microbial contamination.
Collapse
Affiliation(s)
| | - Parisa Zargham
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hoda Zarharan
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Maleknaz Bakhtiari
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ehsan Yousefi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Mohammad Ehsan Taghavizadeh Yazdi
- Department of Pharmacology, Medicinal Plants Pharmacological Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Alkwedhim MAH, Pouresmaeil V, Davoodi-Dehaghani F, Mahavar M, Homayouni Tabrizi M. Synthesis and evaluation of biological effects of modified graphene oxide nanoparticles containing Lawson (Henna extract) on gastric cancer cells. Mol Biol Rep 2023; 50:8971-8983. [PMID: 37715021 DOI: 10.1007/s11033-023-08797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
PURPOSE Targeted Graphene Oxide (GO) nanoparticles can play an important role in the treatment of cancer by increasing cancer cell targeting. This study was conducted to synthesize GO nanoparticles functionalized with chitosan-folate (CS-FA) to deliver a natural product Lawsone (LA) for cancer treatment. METHODS After characterization of the LA-GO-CS-FA, antioxidant activities of the nanoparticles were investigated by ABTS, DPPH, and FRAP tests. CAM assay was used to study the effect of nanoparticles on angiogenesis. The expression level of inflammatory and angiogenic genes in cells treated with nanoparticles was evaluated by real-time PCR. RESULTS The findings demonstrated the formation of nanoparticles with a size of 113.3 nm, a PDI of 0.31, and a surface charge of + 11.07 mV. The percentages of encapsulation efficiency were reported at 93%. Gastric cancer cells were reported as the most sensitive to treatment compared to the control, and the gastric cancer cells were used to study gene expression changes. The anti-angiogenic effects of nanoparticles were confirmed by reducing the average number and length of blood vessels and reducing the height and weight of embryos in the CAM assay. The reducing the expression of genes involved in angiogenesis in real-time PCR was demonstrated. Nanoparticles displayed high antioxidant properties by inhibiting DPPH and ABTS radicals and reducing iron ions in the FRAP method. The reduction of pro-inflammatory genes in AGS cells which were treated with nanoparticles indicates the anti-inflammatory properties of nanoparticles. CONCLUSION This study showed the efficacy of nanoparticles in inhibiting gastric cancer cells by relying on inhibiting angiogenesis.
Collapse
Affiliation(s)
| | - Vahid Pouresmaeil
- Department of Biochemistry, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran.
| | - Fatemeh Davoodi-Dehaghani
- Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mobina Mahavar
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
12
|
Zhang X, Tang B, Wen S, Wang Y, Pan C, Qu L, Yin Y, Wei Y. Advancements in the Biotransformation and Biosynthesis of the Primary Active Flavonoids Derived from Epimedium. Molecules 2023; 28:7173. [PMID: 37894651 PMCID: PMC10609448 DOI: 10.3390/molecules28207173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Epimedium is a classical Chinese herbal medicine, which has been used extensively to treat various diseases, such as sexual dysfunction, osteoporosis, cancer, rheumatoid arthritis, and brain diseases. Flavonoids, such as icariin, baohuoside I, icaritin, and epimedin C, are the main active ingredients with diverse pharmacological activities. Currently, most Epimedium flavonoids are extracted from Epimedium plants, but this method cannot meet the increasing market demand. Biotransformation strategies promised huge potential for increasing the contents of high-value Epimedium flavonoids, which would promote the full use of the Epimedium herb. Complete biosynthesis of major Epimedium flavonoids by microbial cell factories would enable industrial-scale production of Epimedium flavonoids. This review summarizes the structures, pharmacological activities, and biosynthesis pathways in the Epimedium plant, as well as the extraction methods of major Epimedium flavonoids, and advancements in the biotransformation and complete microbial synthesis of Epimedium flavonoids, which would provide valuable insights for future studies on Epimedium herb usage and the production of Epimedium flavonoids.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Zhengzhou 450003, China
| | - Bingling Tang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sijie Wen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yitong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chengxue Pan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China
| | - Yongjun Wei
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
13
|
Hou T, Guo Y, Han W, Zhou Y, Netala VR, Li H, Li H, Zhang Z. Exploring the Biomedical Applications of Biosynthesized Silver Nanoparticles Using Perilla frutescens Flavonoid Extract: Antibacterial, Antioxidant, and Cell Toxicity Properties against Colon Cancer Cells. Molecules 2023; 28:6431. [PMID: 37687260 PMCID: PMC10490294 DOI: 10.3390/molecules28176431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The present study reports the biomimetic synthesis of silver nanoparticles (AgNPs) using a simple, cost effective and eco-friendly method. In this method, the flavonoid extract of Perilla frutescens (PFFE) was used as a bioreduction agent for the reduction of metallic silver into nanosilver, called P. frutescens flavonoid extract silver nanoparticles (PFFE-AgNPs). The Ultraviolet-Visible (UV-Vis) spectrum showed a characteristic absorption peak at 440 nm that confirmed the synthesis of PFFE-AgNPs. A Fourier transform infrared spectroscopic (FTIR) analysis of the PFFE-AgNPs revealed that flavonoids are involved in the bioreduction and capping processes. X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns confirmed the face-centered cubic (FCC) crystal structure of PFFE-AgNPs. A transmission electron microscopic (TEM) analysis indicated that the synthesized PFFE-AgNPs are 20 to 70 nm in size with spherical morphology and without any aggregation. Dynamic light scattering (DLS) studies showed that the average hydrodynamic size was 44 nm. A polydispersity index (PDI) of 0.321 denotes the monodispersed nature of PFFE-AgNPs. Further, a highly negative surface charge or zeta potential value (-30 mV) indicates the repulsion, non-aggregation, and stability of PFFE-AgNPs. PFFE-AgNPs showed cytotoxic effects against cancer cell lines, including human colon carcinoma (COLO205) and mouse melanoma (B16F10), with IC50 concentrations of 59.57 and 69.33 μg/mL, respectively. PFFE-AgNPs showed a significant inhibition of both Gram-positive (Listeria monocytogens and Enterococcus faecalis) and Gram-negative (Salmonella typhi and Acinetobacter baumannii) bacteria pathogens. PFFE-AgNPs exhibited in vitro antioxidant activity by quenching 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) free radicals with IC50 values of 72.81 and 92.48 µg/mL, respectively. In this study, we also explained the plausible mechanisms of the biosynthesis, anticancer, and antibacterial effects of PFFE-AgNPs. Overall, these findings suggest that PFFE-AgNPs have potential as a multi-functional nanomaterial for biomedical applications, particularly in cancer therapy and infection control. However, it is important to note that further research is needed to determine the safety and efficacy of these nanoparticles in vivo, as well as to explore their potential in other areas of medicine.
Collapse
Affiliation(s)
- Tianyu Hou
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; (Y.G.); (W.H.); (Y.Z.); (V.R.N.); (H.L.); (H.L.)
| | | | | | | | | | | | | | - Zhijun Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; (Y.G.); (W.H.); (Y.Z.); (V.R.N.); (H.L.); (H.L.)
| |
Collapse
|
14
|
Al-Quwaie DA, Allohibi A, Aljadani M, Alghamdi AM, Alharbi AA, Baty RS, Qahl SH, Saleh O, Shakak AO, Alqahtani FS, Khalil OSF, El-Saadony MT, Saad AM. Characterization of Portulaca oleracea Whole Plant: Evaluating Antioxidant, Anticancer, Antibacterial, and Antiviral Activities and Application as Quality Enhancer in Yogurt. Molecules 2023; 28:5859. [PMID: 37570829 PMCID: PMC10421184 DOI: 10.3390/molecules28155859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Purslane (Portulaca oleracea L.) is rich in phenolic compounds, protein, and iron. This study aims to produce functional yogurt with enhanced antioxidant, anticancer, antiviral, and antimicrobial properties by including safe purslane extract in yogurt formulation; the yogurt was preserved for 30 days at 4 °C, and then biochemical fluctuations were monitored. The purslane extract (PuE) had high phenolic compounds and flavonoids of 250 and 56 mg/mL, respectively. Therefore, PuE had considerable antioxidant activity, which scavenged 93% of DPPH˙, inhibited the viability of MCF-7, HCT, and HeLa cell lines by 84, 82, and 80%, respectively, and inhibited 82% of the interaction between the binding between Spike and ACE2 compared to a SARS-CoV-2 inhibitor test kit. PuE (20-40 µg/mL) inhibited the growth of tested pathogenic bacteria and Candida strains, these strains isolated from spoild yogurt and identified at gene level by PCR. Caffeic acid glucoside and catechin were the main phenolic compounds in the HPLC profile, while the main flavor compound was carvone and limonene, representing 71% of total volatile compounds (VOCs). PuE was added to rats' diets at three levels (50, 150, and 250 µg/g) compared to butylated hydroxyanisole (BHA). The body weight of the rats fed the PuE diet (250 µg/g) increased 13% more than the control. Dietary PuE in rats' diets lowered the levels of low-density lipoprotein (LDL) levels by 72% and increased the levels of high-density lipoprotein (HDL) by 36%. Additionally, liver parameters in rats fed PuE (150 µg/g) decreased aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) levels by 50, 43, and 25%, respectively, while TP, TA, and GSH were increased by 20, 50, and 40%, respectively, compared to BHA. Additionally, PuE acts as a kidney protector by lowering creatinine and urea. PuE was added to yogurt at three concentrations (50, 150, and 250 µg/g) and preserved for 30 days compared to the control. The yogurt's pH reduced during storage while acidity, TSS, and fat content increased. Adding PuE increased the yogurt's water-holding capacity, so syneresis decreased and viscosity increased, which was attributed to enhancing the texture properties (firmness, consistency, and adhesiveness). MDA decreased in PuE yogurt because of the antioxidant properties gained by PuE. Additionally, color parameters L and b were enhanced by PuE additions and sensorial traits, i.e., color, flavor, sugary taste, and texture were enhanced by purslane extract compared to the control yogurt. Concerning the microbial content in the yogurt, the lactic acid bacteria (LAB) count was maintained as a control. Adding PuE at concentrations of 50, 150, and 250 µg/g to the yogurt formulation can enhance the quality of yogurt.
Collapse
Affiliation(s)
- Diana A. Al-Quwaie
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia (A.O.S.)
| | - Aminah Allohibi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia (A.O.S.)
| | - Majidah Aljadani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia;
| | - Amira M. Alghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.A.); (A.A.A.)
| | - Asmaa Ali Alharbi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.A.); (A.A.A.)
| | - Roua S. Baty
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Safa H. Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Ohud Saleh
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Amani Osman Shakak
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia (A.O.S.)
- Faculty of Medical Laboratory Sciences, University of Shendi, Shendi P.O. Box 142, Sudan
| | - Fatimah S. Alqahtani
- Department of Biology, Faculty of Sciences, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia;
| | - Osama S. F. Khalil
- Dairy Science and Technology Department, Faculty of Agriculture and Natural Resources, Aswan University, Aswan 81528, Egypt;
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
15
|
Zarharan H, Bagherian M, Shah Rokhi A, Ramezani Bajgiran R, Yousefi E, Heravian P, Niazi Khazrabig M, Es-haghi A, Taghavizadeh Yazdi ME. The anti-angiogenesis and antioxidant activity of chitosan-mediated synthesized selenium-gold nanostructure. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
16
|
Mousavi-Kouhi SM, Beyk-Khormizi A, Amiri MS, Mashreghi M, Hashemzadeh A, Mohammadzadeh V, Alavi F, Mottaghipisheh J, Sarafraz Ardakani MR, Taghavizadeh Yazdi ME. Plant Gel-Mediated Synthesis of Gold-Coated Nanoceria Using Ferula gummosa: Characterization and Estimation of Its Cellular Toxicity toward Breast Cancer Cell Lines. J Funct Biomater 2023; 14:332. [PMID: 37504827 PMCID: PMC10381807 DOI: 10.3390/jfb14070332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023] Open
Abstract
In this study, a novel method using Ferula gummosa gums as a capping agent was used to synthesize the nanoceria for the first time. The method was economical and performed at room temperature. Furthermore, it was coated with gold (Au/nanoceria) and fully characterized using X-ray powder diffraction (XRD), field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy (FESEM-EDX), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and zeta potential (ζ potential). The crystallite size obtained from the results was 28.09 nm for Au/nanoceria. The energy-dispersive X-ray spectroscopy (EDX) analysis of Au/nanoceria revealed the compositional constituents of the product, which display the purity of the Au/nanoceria. The cell toxicity properties of the non-doped and Au-coated nanoceria were identified by a MTT analysis on a breast cancer cell line (MCF7). Additionally, human foreskin fibroblast cells (HFF) were used as a normal cell line. The cytotoxicity results indicated that the toxicological effect of Au/nanoceria on cancer cells was significant while having little toxic effect on normal cells. The toxicity effect of nanoceria clearly shows the dependence on dose and time, so, with increasing the dose of Au/nanoceria, the death of cancer cells also increases.
Collapse
Affiliation(s)
| | | | | | - Mohammad Mashreghi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91778, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91778, Iran
| | - Alireza Hashemzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778, Iran
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778, Iran
| | - Fariba Alavi
- Department of Biology, Payame Noor University, Tehran 19395-4697, Iran
| | - Javad Mottaghipisheh
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala, Sweden
| | | | | |
Collapse
|
17
|
Khalil Abad MH, Nadaf M, Taghavizadeh Yazdi ME. Biosynthesis of ZnO.Ag 2O 3 using aqueous extract of Haplophyllum obtusifolium: Characterization and cell toxicity activity against liver carcinoma cells. MICRO & NANO LETTERS 2023; 18. [DOI: 10.1049/mna2.12170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/13/2023] [Indexed: 01/03/2025]
Abstract
AbstractThe zinc oxide‐silver oxide nanocomposite (ZnO.Ag2O3 particles) was prepared by using an aqueous plant extract of Haplophyllum obtusifolium for the first time. Powder X‐ray diffraction (PXRD), Fourier transforms spectroscopy (FTIR), field emission microscopy (FESEM), energy dispersive X‐ray analysis (EDX), and transmission electron microscopy (TEM) were applied to analyze the structure, functional groups, morphology, and purity of the prepared nanocomposite. PXRD revealed the formulation of ZnO.Ag2O3 for the particles. The investigation of functional groups has demonstrated the presence of some carbonated impurities along with absorbed water in the composition of the ZnO.Ag2O3 nanocomposite. Morphologically, particles have formed a petal‐like shape with different sizes. The EDX analysis also confirmed the composition of the prepared sample and the presence of 4.78% silver in the formula. Additionally, the TEM analysis revealed spherical and rectangular shapes with a particle size of 80.43 ± 46.73 nm. Moreover, the ZnO.Ag2O3 particles were used against cancer cells, which has shown synthesized NCs have a toxic effect against liver cancer cells in a concentration and time‐dependent manner.
Collapse
Affiliation(s)
| | - Mohabat Nadaf
- Department of Biology Payame Noor University Tehran Iran
| | | |
Collapse
|
18
|
Zhang Y, Jiang S, Xu D, Li Z, Guo J, Li Z, Cheng G. Application of Nanocellulose-Based Aerogels in Bone Tissue Engineering: Current Trends and Outlooks. Polymers (Basel) 2023; 15:polym15102323. [PMID: 37242898 DOI: 10.3390/polym15102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The complex or compromised bone defects caused by osteomyelitis, malignant tumors, metastatic tumors, skeletal abnormalities, and systemic diseases are difficult to be self-repaired, leading to a non-union fracture. With the increasing demands of bone transplantation, more and more attention has been paid to artificial bone substitutes. As biopolymer-based aerogel materials, nanocellulose aerogels have been widely utilized in bone tissue engineering. More importantly, nanocellulose aerogels not only mimic the structure of the extracellular matrix but could also deliver drugs and bioactive molecules to promote tissue healing and growth. Here, we reviewed the most recent literature about nanocellulose-based aerogels, summarized the preparation, modification, composite fabrication, and applications of nanocellulose-based aerogels in bone tissue engineering, as well as giving special focus to the current limitations and future opportunities of nanocellulose aerogels for bone tissue engineering.
Collapse
Affiliation(s)
- Yaoguang Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Shengjun Jiang
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430079, China
| | - Dongdong Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325015, China
| | - Zubing Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jie Guo
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Zhi Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Gu Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
19
|
Gan J, Deng X, Le Y, Lai J, Liao X. The Development of Naringin for Use against Bone and Cartilage Disorders. Molecules 2023; 28:3716. [PMID: 37175126 PMCID: PMC10180405 DOI: 10.3390/molecules28093716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Bone and cartilage disorders are the leading causes of musculoskeletal disability. There is no absolute cure for all bone and cartilage disorders. The exploration of natural compounds for the potential therapeutic use against bone and cartilage disorders is proving promising. Among these natural chemicals, naringin, a flavanone glycoside, is a potential candidate due to its multifaceted pharmacological activities in bone and cartilage tissues. Emerging studies indicate that naringin may promote osteogenic differentiation, inhibit osteoclast formation, and exhibit protective effects against osteoporosis in vivo and in vitro. Many signaling pathways, such as BMP-2, Wnt/β-catenin, and VEGF/VEGFR, participate in the biological actions of naringin in mediating the pathological development of osteoporosis. In addition, the anti-inflammatory, anti-oxidative stress, and anti-apoptosis abilities of naringin also demonstrate its beneficial effects against bone and cartilage disorders, including intervertebral disc degeneration, osteoarthritis, rheumatoid arthritis, bone and cartilage tumors, and tibial dyschondroplasia. Naringin exhibits protective effects against bone and cartilage disorders. However, more efforts are still needed due to, at least in part, the uncertainty of drug targets. Further biological and pharmacological evaluations of naringin and its applications in bone tissue engineering, particularly its therapeutic effects against osteoporosis, might result in developing potential drug candidates.
Collapse
Affiliation(s)
- Juwen Gan
- Department of Pulmonary and Critical Care Medicine, Ganzhou People’s Hospital, Ganzhou 341000, China
| | - Xiaolan Deng
- Department of Pharmacy, Haikou Affiliated Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China
| | - Yonghong Le
- Department of Pulmonary and Critical Care Medicine, Ganzhou People’s Hospital, Ganzhou 341000, China
| | - Jun Lai
- Department of Pharmacy, Ganzhou People’s Hospital, Ganzhou 341000, China
| | - Xiaofei Liao
- Department of Pharmacy, Ganzhou People’s Hospital, Ganzhou 341000, China
| |
Collapse
|