1
|
Shokri M, Kharaziha M, Ahmadi Tafti H, Dalili F, Mehdinavaz Aghdam R, Ghiassi SR, Baghaban Eslaminejad M. Melatonin-loaded mesoporous zinc- and gallium-doped hydroxyapatite nanoparticles to control infection and bone repair. Biomater Sci 2024; 12:4194-4210. [PMID: 38980095 DOI: 10.1039/d4bm00377b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Effective treatment of infected bone defects resulting from multi-drug resistant bacteria (MDR) has emerged as a significant clinical challenge, highlighting the pressing demand for potent antibacterial bone graft substitutes. Mesoporous nanoparticles have been introduced as a promising class of biomaterials offering significant properties for treating bone infections. Herein, we synthesize antibacterial mesoporous hydroxyapatite substituted with zinc and gallium (Zn-Ga:mHA) nanoparticles using a facile sol-gel method. The resulting mesoporous nanoparticles are applied for the controlled release of melatonin (Mel). Zn-Ga:mHA nanoparticles with an average particle size of 36 ± 3 nm and pore size of 10.6 ± 0.4 nm reveal a Mel loading efficiency of 58 ± 1%. Results show that 50% of Mel is released within 20 h and its long-term release is recorded up to 50 h. The Zn-Ga:mHA nanoparticles exhibit highly effective antibacterial performance as reflected by a 19 ± 1% and 8 ± 2% viability reduction in Escherichia coli and Staphylococcus bacteria, respectively. Noticeably, Mel-loaded Zn-Ga:mHA nanoparticles are also cytocompatible and stimulate in vitro osteogenic differentiation of human mesenchymal stem cells (hMSCs) without any osteoinductive factor. In vivo studies in a rabbit skull also show significant regeneration of bone during 14 days. In summary, Mel-loaded Zn-Ga:mHA nanoparticles provide great potential as an antibacterial and osteogenic component in bone substitutes like hydrogels, scaffolds, and coatings.
Collapse
Affiliation(s)
- Mahshid Shokri
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
- Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hossein Ahmadi Tafti
- Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Dalili
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Seyed Reza Ghiassi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Garmsar, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
2
|
Han W, Liu F, Muhammad M, Liu G, Li H, Xu Y, Sun S. Application of biomacromolecule-based passive penetration enhancement technique in superficial tumor therapy: A review. Int J Biol Macromol 2024; 272:132745. [PMID: 38823734 DOI: 10.1016/j.ijbiomac.2024.132745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Transdermal drug delivery (TDD) has shown great promise in superficial tumor therapy due to its noninvasive and avoidance of the first-pass effect. Especially, passive penetration enhancement technique (PPET) provides the technical basis for TDD by temporarily altering the skin surface structure without requiring external energy. Biomacromolecules and their derived nanocarriers offer a wide range of options for PPET development, with outstanding biocompatibility and biodegradability. Furthermore, the abundant functional groups on biomacromolecule surfaces can be modified to yield functional materials capable of targeting specific sites and responding to stimuli. This enables precise drug delivery to the tumor site and controlled drug release, with the potential to replace traditional drug delivery methods and make PPET-related personalized medicine a reality. This review focuses on the mechanism of biomacromolecules and nanocarriers with skin, and the impact of nanocarriers' surface properties of nanocarriers on PPET efficiency. The applications of biomacromolecule-based PPET in superficial tumor therapy are also summarized. In addition, the advantages and limitations are discussed, and their future trends are projected based on the existing work of biomacromolecule-based PPET.
Collapse
Affiliation(s)
- Weiqiang Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116023, China.
| | - Mehdi Muhammad
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guoxin Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China; Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China.
| |
Collapse
|
3
|
Xiong Z, Peng G, Deng J, Liu M, Ning X, Zhuang Y, Yang H, Sun H. Therapeutic targets and potential delivery systems of melatonin in osteoarthritis. Front Immunol 2024; 15:1331934. [PMID: 38327517 PMCID: PMC10847247 DOI: 10.3389/fimmu.2024.1331934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024] Open
Abstract
Osteoarthritis (OA) is a highly prevalent age-related musculoskeletal disorder that typically results in chronic pain and disability. OA is a multifactorial disease, with increased oxidative stress, dysregulated inflammatory response, and impaired matrix metabolism contributing to its onset and progression. The neurohormone melatonin, primarily synthesized by the pineal gland, has emerged as a promising therapeutic agent for OA due to its potential to alleviate inflammation, oxidative stress, and chondrocyte death with minimal adverse effects. The present review provides a comprehensive summary of the current understanding regarding melatonin as a promising pharmaceutical agent for the treatment of OA, along with an exploration of various delivery systems that can be utilized for melatonin administration. These findings may provide novel therapeutic strategies and targets for inhibiting the advancement of OA.
Collapse
Affiliation(s)
- Zhilin Xiong
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guoxuan Peng
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jin Deng
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Miao Liu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xu Ning
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yong Zhuang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Sun
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
4
|
Taleb SAA, Ismail SA, Mohamed M, Mourad RM, El-Hashemy HA. Promising Synthesized Bis (arylmethylidene) acetone -Polymeric PCL Emulsified Nanoparticles with Enhanced Antimicrobial/Antioxidant Efficacy: In-Vitro and In-Vivo Evaluation. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
5
|
Guo H, Feng Y, Deng Y, Yan T, Liang Z, Zhou Y, Zhang W, Xu E, Liu D, Wang W. Continuous flow modulates zein nanoprecipitation solvent environment to obtain colloidal particles with high curcumin loading. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Aegerter N, Luijten A, Massella D, Ermanni P. Production of highly concentrated commodity thermoplastic NP suspensions with 3D printed confined impinging jet mixers and efficient downstream operations. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Layer-By-Layer Self-Assembled Dip Coating for Antifouling Functionalized Finishing of Cotton Textile. Polymers (Basel) 2022; 14:polym14132540. [PMID: 35808585 PMCID: PMC9269539 DOI: 10.3390/polym14132540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/02/2023] Open
Abstract
The fouling of surfaces such as textiles is a major health challenge, and there is a continuous effort to develop materials and processes to overcome it. In consideration of this, this study regards the development of antifouling functional nanoencapsulated finishing for the cotton textile fabric by employing a layer-by-layer dip coating technique. Antifouling textile finishing was formulated by inducing the nanoencapsulation of the antifouling functional group inside the hydrophobic polymeric shell. Cotton fabric was taken as a substrate to incorporate antibacterial functionality by alternatively fabricating multilayers of antifouling polymeric formulation (APF) and polyelectrolyte solution. The surface morphology of nanoencapsulated finished textile fabric was characterized through scanning electron microscopy to confirm the uniform distribution of nanoparticles on the cotton textile fabric. Optical profilometry and atomic force microscopy studies indicated increased surface roughness in the coated textile substrate as compared to the uncoated textile. The surface thickness of the fabricated textile increased with the number of deposited bilayers on the textile substrate. Surface hydrophobicity increased with number of coating bilayers with θ values of x for single layer, up to y for 20 bilayers. The antibacterial activity of the uncoated and layer-by-layer coated finished textile was also evaluated. It was significant and exhibited a significant zone of inhibition against microbial strains Gram-positive S. aureus and Gram-negative E. coli. The bilayer coating exhibited water repellency, hydrophobicity, and antibacterial activity. Thus, the fabricated textile could be highly useful for many industrial and biomedical applications.
Collapse
|
8
|
Mirza-Aghazadeh-Attari M, Mihanfar A, Yousefi B, Majidinia M. Nanotechnology-based advances in the efficient delivery of melatonin. Cancer Cell Int 2022; 22:43. [PMID: 35093076 PMCID: PMC8800219 DOI: 10.1186/s12935-022-02472-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/16/2022] [Indexed: 01/09/2023] Open
Abstract
N-[2-(5-methoxy-1H-indol-3-yl) ethyl] or simply melatonin is a biogenic amine produced by pineal gland and recently recognized various other organs. Because of a broad range of biological function melatonin is considered as a therapeutic agent with high efficacy in the treatment of multiple disorders, such as cancer, degenerative disorders and immune disease. However, since melatonin can affect receptors on the cellular membrane, in the nucleus and can act as an anti-oxidant molecule, some unwanted effects may be observed after administration. Therefore, the entrapment of melatonin in biocompatible, biodegradable and safe nano-delivery systems can prevent its degradation in circulation; decrease its toxicity with increased half-life, enhanced pharmacokinetic profile leading to improved patient compliance. Because of this, nanoparticles have been used to deliver melatonin in multiple studies, and the present article aims to cumulatively illustrate their findings.
Collapse
Affiliation(s)
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Orjhans Street, Resalat Blvd, Urmia, Iran.
| |
Collapse
|
9
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Neha Tiwari
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ana Sonzogni
- Group of Polymers and Polymerization Reactors INTEC (Universidad Nacional del Litoral-CONICET) Güemes 3450 Santa Fe 3000 Argentina
| | - David Esporrín‐Ubieto
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Huiyi Wang
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Marcelo Calderón
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science 48009 Bilbao Spain
| |
Collapse
|
10
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022; 61:e202107960. [PMID: 34487599 PMCID: PMC9292798 DOI: 10.1002/anie.202107960] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 12/15/2022]
Abstract
Skin penetration of active molecules for treatment of diverse diseases is a major field of research owing to the advantages associated with the skin like easy accessibility, reduced systemic-derived side effects, and increased therapeutic efficacy. Despite these advantages, dermal drug delivery is generally challenging due to the low skin permeability of therapeutics. Although various methods have been developed to improve skin penetration and permeation of therapeutics, they are usually aggressive and could lead to irreversible damage to the stratum corneum. Nanosized carrier systems represent an alternative approach for current technologies, with minimal damage to the natural barrier function of skin. In this Review, the use of nanoparticles to deliver drug molecules, genetic material, and vaccines into the skin is discussed. In addition, nanotoxicology studies and the recent clinical development of nanoparticles are highlighted to shed light on their potential to undergo market translation.
Collapse
Affiliation(s)
- Neha Tiwari
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ana Sonzogni
- Group of Polymers and Polymerization ReactorsINTEC (Universidad Nacional del Litoral-CONICET)Güemes 3450Santa Fe3000Argentina
| | - David Esporrín‐Ubieto
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Huiyi Wang
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Marcelo Calderón
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
- IKERBASQUE, Basque Foundation for Science48009BilbaoSpain
| |
Collapse
|
11
|
Kim YS, Go G, Yun CW, Yea JH, Yoon S, Han SY, Lee G, Lee MY, Lee SH. Topical Administration of Melatonin-Loaded Extracellular Vesicle-Mimetic Nanovesicles Improves 2,4-Dinitrofluorobenzene-Induced Atopic Dermatitis. Biomolecules 2021; 11:1450. [PMID: 34680082 PMCID: PMC8533309 DOI: 10.3390/biom11101450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022] Open
Abstract
Atopic dermatitis (AD) is caused by multiple factors that trigger chronic skin inflammation, including a defective skin barrier, immune cell activation, and microbial exposure. Although melatonin has an excellent biosafety profile and a potential to treat AD, there is limited clinical evidence from controlled trials that support the use of melatonin as an AD treatment. The delivery of melatonin via the transdermal delivery system is also a challenge in designing melatonin-based AD treatments. In this study, we generated melatonin-loaded extracellular vesicle-mimetic nanoparticles (MelaNVs) to improve the transdermal delivery of melatonin and to evaluate their therapeutic potential in AD. The MelaNVs were spherical nanoparticles with an average size of 100 nm, which is the optimal size for the transdermal delivery of drugs. MelaNVs showed anti-inflammatory effects by suppressing the release of TNF-α and β-hexosaminidase in LPS-treated RAW264.7 cells and compound 48/80-treated RBL-2H3 cells, respectively. MelaNVs showed a superior suppressive effect compared to an equivalent concentration of free melatonin. Treating a 2,4-dinitrofluorobenzene (DNCB)-induced AD-like mouse model with MelaNVs improved AD by suppressing local inflammation, mast cell infiltration, and fibrosis. In addition, MelaNVs effectively suppressed serum IgE levels and regulated serum IFN-γ and IL-4 levels. Taken together, these results suggest that MelaNVs are novel and efficient transdermal delivery systems of melatonin and that MelaNVs can be used as a treatment to improve AD.
Collapse
Affiliation(s)
- Yoon Seon Kim
- Department of Medical Science, Soonchunhyang University, Asan-si 31538, Korea;
| | - Gyeongyun Go
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (G.G.); (J.-H.Y.); (G.L.)
- Department of Biochemistry, BK21FOUR Project2, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Chul-Won Yun
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea;
| | - Ji-Hye Yea
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (G.G.); (J.-H.Y.); (G.L.)
| | - Sungtae Yoon
- Stembio Ltd., Entrepreneur 306, Asan-si 31538, Korea; (S.Y.); (S.-Y.H.)
| | - Su-Yeon Han
- Stembio Ltd., Entrepreneur 306, Asan-si 31538, Korea; (S.Y.); (S.-Y.H.)
| | - Gaeun Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (G.G.); (J.-H.Y.); (G.L.)
- Department of Biochemistry, BK21FOUR Project2, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Mi-Young Lee
- Department of Medical Science, Soonchunhyang University, Asan-si 31538, Korea;
- Department of Medical Biotechnology, Soonchunhyang University, Asan-si 31538, Korea
| | - Sang Hun Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (G.G.); (J.-H.Y.); (G.L.)
- Department of Biochemistry, BK21FOUR Project2, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea;
- Stembio Ltd., Entrepreneur 306, Asan-si 31538, Korea; (S.Y.); (S.-Y.H.)
| |
Collapse
|
12
|
Review of Applications and Future Prospects of Stimuli-Responsive Hydrogel Based on Thermo-Responsive Biopolymers in Drug Delivery Systems. Polymers (Basel) 2021; 13:polym13132086. [PMID: 34202828 PMCID: PMC8272167 DOI: 10.3390/polym13132086] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/03/2023] Open
Abstract
Some of thermo-responsive polysaccharides, namely, cellulose, xyloglucan, and chitosan, and protein-like gelatin or elastin-like polypeptides can exhibit temperature dependent sol–gel transitions. Due to their biodegradability, biocompatibility, and non-toxicity, such biomaterials are becoming popular for drug delivery and tissue engineering applications. This paper aims to review the properties of sol–gel transition, mechanical strength, drug release (bioavailability of drugs), and cytotoxicity of stimuli-responsive hydrogel made of thermo-responsive biopolymers in drug delivery systems. One of the major applications of such thermos-responsive biopolymers is on textile-based transdermal therapy where the formulation, mechanical, and drug release properties and the cytotoxicity of thermo-responsive hydrogel in drug delivery systems of traditional Chinese medicine have been fully reviewed. Textile-based transdermal therapy, a non-invasive method to treat skin-related disease, can overcome the poor bioavailability of drugs from conventional non-invasive administration. This study also discusses the future prospects of stimuli-responsive hydrogels made of thermo-responsive biopolymers for non-invasive treatment of skin-related disease via textile-based transdermal therapy.
Collapse
|
13
|
Chuffa LGDA, Seiva FRF, Novais AA, Simão VA, Martín Giménez VM, Manucha W, Zuccari DAPDC, Reiter RJ. Melatonin-Loaded Nanocarriers: New Horizons for Therapeutic Applications. Molecules 2021; 26:molecules26123562. [PMID: 34200947 PMCID: PMC8230720 DOI: 10.3390/molecules26123562] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
The use of nanosized particles has emerged to facilitate selective applications in medicine. Drug-delivery systems represent novel opportunities to provide stricter, focused, and fine-tuned therapy, enhancing the therapeutic efficacy of chemical agents at the molecular level while reducing their toxic effects. Melatonin (N-acetyl-5-methoxytriptamine) is a small indoleamine secreted essentially by the pineal gland during darkness, but also produced by most cells in a non-circadian manner from which it is not released into the blood. Although the therapeutic promise of melatonin is indisputable, aspects regarding optimal dosage, biotransformation and metabolism, route and time of administration, and targeted therapy remain to be examined for proper treatment results. Recently, prolonged release of melatonin has shown greater efficacy and safety when combined with a nanostructured formulation. This review summarizes the role of melatonin incorporated into different nanocarriers (e.g., lipid-based vesicles, polymeric vesicles, non-ionic surfactant-based vesicles, charge carriers in graphene, electro spun nanofibers, silica-based carriers, metallic and non-metallic nanocomposites) as drug delivery system platforms or multilevel determinations in various in vivo and in vitro experimental conditions. Melatonin incorporated into nanosized materials exhibits superior effectiveness in multiple diseases and pathological processes than does free melatonin; thus, such information has functional significance for clinical intervention.
Collapse
Affiliation(s)
- Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP-São Paulo State University, Botucatu, São Paulo 18618-689, Brazil; (L.G.d.A.C.); (V.A.S.)
| | - Fábio Rodrigues Ferreira Seiva
- Biological Science Center, Department of Biology, Luiz Meneghel Campus, Universidade Estadual do Norte do Paraná-UENP, Bandeirantes 86360-000, PR, Brazil;
| | - Adriana Alonso Novais
- Health Sciences Institute, Federal University of Mato Grosso, UFMT, Sinop 78607-059, MG, Brazil;
| | - Vinícius Augusto Simão
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP-São Paulo State University, Botucatu, São Paulo 18618-689, Brazil; (L.G.d.A.C.); (V.A.S.)
| | - Virna Margarita Martín Giménez
- Facultad de Ciencias Químicas y Tecnológicas, Instituto de Investigaciones en Ciencias Químicas, Universidad Católica de Cuyo, Sede San Juan 5400, Argentina;
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina;
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Mendoza 5500, Argentina
| | | | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA
- Correspondence:
| |
Collapse
|
14
|
Atanasova D, Staneva D, Grabchev I. Textile Materials Modified with Stimuli-Responsive Drug Carrier for Skin Topical and Transdermal Delivery. MATERIALS 2021; 14:ma14040930. [PMID: 33669245 PMCID: PMC7919809 DOI: 10.3390/ma14040930] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Textile materials, as a suitable matrix for different active substances facilitating their gradual release, can have an important role in skin topical or transdermal therapy. Characterized by compositional and structural variety, those materials readily meet the requirements for applications in specific therapies. Aromatherapy, antimicrobial substances and painkillers, hormone therapy, psoriasis treatment, atopic dermatitis, melanoma, etc., are some of the areas where textiles can be used as carriers. There are versatile optional methods for loading the biologically active substances onto textile materials. The oldest ones are by exhaustion, spraying, and a pad-dry-cure method. Another widespread method is the microencapsulation. The modification of textile materials with stimuli-responsive polymers is a perspective route to obtaining new textiles of improved multifunctional properties and intelligent response. In recent years, research has focused on new structures such as dendrimers, polymer micelles, liposomes, polymer nanoparticles, and hydrogels. Numerous functional groups and the ability to encapsulate different substances define dendrimer molecules as promising carriers for drug delivery. Hydrogels are also high molecular hydrophilic structures that can be used to modify textile material. They absorb a large amount of water or biological fluids and can support the delivery of medicines. These characteristics correspond to one of the current trends in the development of materials used in transdermal therapy, namely production of intelligent materials, i.e., such that allow controlled concentration and time delivery of the active substance and simultaneous visualization of the process, which can only be achieved with appropriate and purposeful modification of the textile material.
Collapse
Affiliation(s)
- Daniela Atanasova
- Department of Textile and Leathers, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Desislava Staneva
- Department of Textile and Leathers, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
- Correspondence: ; Tel.: +359-2-8163266
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria;
| |
Collapse
|
15
|
Zhao X, Wang X, Wang J, Yuan J, Zhang J, Zhu X, Lei C, Yang Q, Wang B, Cao F, Liu L. A Peptide-Functionalized Magnetic Nanoplatform-Loaded Melatonin for Targeted Amelioration of Fibrosis in Pressure Overload-Induced Cardiac Hypertrophy. Int J Nanomedicine 2020; 15:1321-1333. [PMID: 32161461 PMCID: PMC7051809 DOI: 10.2147/ijn.s235518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction Currently, the unsatisfactory treatment of cardiac hypertrophy is due to the unbridled myocardial fibrosis. Melatonin has been demonstrated to ameliorate cardiac hypertrophy and its accompanied fibrosis in previous studies. But it is not clinically appealing due to its short-lasting time against the hostile microenvironment when administered orally. Methods Herein, to address this, poly (lactide) polycarboxybetaine (PLGA-COOH) accompanied by cardiac homing peptide (CHP) and superparamagnetic iron oxide nanoparticles (SPIONs) were used to establish a novel drug delivery and transportation strategy for melatonin via a facile two-step emulsion method. This study characterized these nanoparticles (CHP-mel@SPIONs) and tested their delivery to the hypertrophied heart and their effect on myocardial hypertrophy and fibrosis in an animal model of pressure overload-induced cardiac hypertrophy. Results The engineered magnetic nanoparticles of CHP-mel@SPIONs were spherical (diameter = 221 ± 13 nm) and had a negative zeta potential of -19.18 ± 3.27 mV. The CHP-mel@SPIONs displayed excellent drug encapsulation capacities of SPIONs (75.27 ± 3.1%) and melatonin (77.69 ± 6.04%) separately, and their magnetic properties were characterized by constructing magnetic hysteresis curves and exhibited no remnant magnetization or coercivity. The animal experiments showed that compared with mel@SPIONs, CHP-mel@SPIONs accumulated more in the heart, especially in the presence of an external magnetic field, with in vivo echocardiography and RT-PCR and histological assessments confirming the amelioration of the myocardial hypertrophy and fibrosis with low drug doses. Conclusion This simple biocompatible dual-targeting nanoagent may be a potential candidate for the guided clinical therapy of heart disease.
Collapse
Affiliation(s)
- Xueli Zhao
- Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Xuanying Wang
- Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Jing Wang
- Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Jiani Yuan
- Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Juan Zhang
- Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Xiaoli Zhu
- Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Changhui Lei
- Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Qianli Yang
- Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Bo Wang
- Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Feng Cao
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100700, People's Republic of China
| | - Liwen Liu
- Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| |
Collapse
|
16
|
Novel slow drug release bioceramic composite materials for wound dressing applications: potential of natural materials. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-1977-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
17
|
Artusio F, Ferri A, Gigante V, Massella D, Mazzarino I, Sangermano M, Barresi A, Pisano R. Synthesis of high payload nanohydrogels for the ecapsulation of hydrophilic molecules via inverse miniemulsion polymerization: caffeine as a case study. Drug Dev Ind Pharm 2019; 45:1862-1870. [PMID: 31549528 DOI: 10.1080/03639045.2019.1672714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The association of an active principle with a nanocarrier is known to improve its stability and protect it from external factors. Nevertheless, loading of nanoparticles with highly hydrophilic substances like caffeine remains a tricky issue. In the present study, inverse miniemulsion systems were successfully coupled to UV radiation to synthesize polymeric nanohydrogels for drug delivery. The proper choice of the continuous and dispersed phase chemical composition led to the entrapment of active principle into the miniemulsion droplets. Our confinement-based strategy enabled unprecedented caffeine encapsulation efficiency inside 100-nm particles. Dimensional, thermal, and spectroscopic characterizations were carried out to investigate both unloaded and loaded nanohydrogels. Furthermore, in vitro release studies evaluated caffeine release kinetics from nanohydrogels by means of dialysis tests. It was demonstrated that controlled and sustained release occurred within the first 50 hours. Experimental data were found to fit the Higuchi model suggesting that the active principle release is diffusion controlled.
Collapse
Affiliation(s)
- Fiora Artusio
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Ada Ferri
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Valeria Gigante
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Daniele Massella
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Italo Mazzarino
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Marco Sangermano
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Antonello Barresi
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| |
Collapse
|
18
|
Massella D, Argenziano M, Ferri A, Guan J, Giraud S, Cavalli R, Barresi AA, Salaün F. Bio-Functional Textiles: Combining Pharmaceutical Nanocarriers with Fibrous Materials for Innovative Dermatological Therapies. Pharmaceutics 2019; 11:E403. [PMID: 31405229 PMCID: PMC6723157 DOI: 10.3390/pharmaceutics11080403] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
In the field of pharmaceutical technology, significant attention has been paid on exploiting skin as a drug administration route. Considering the structural and chemical complexity of the skin barrier, many research works focused on developing an innovative way to enhance skin drug permeation. In this context, a new class of materials called bio-functional textiles has been developed. Such materials consist of the combination of advanced pharmaceutical carriers with textile materials. Therefore, they own the possibility of providing a wearable platform for continuous and controlled drug release. Notwithstanding the great potential of these materials, their large-scale application still faces some challenges. The present review provides a state-of-the-art perspective on the bio-functional textile technology analyzing the several issues involved. Firstly, the skin physiology, together with the dermatological delivery strategy, is keenly described in order to provide an overview of the problems tackled by bio-functional textiles technology. Secondly, an overview of the main dermatological nanocarriers is provided; thereafter the application of these nanomaterial to textiles is presented. Finally, the bio-functional textile technology is framed in the context of the different dermatological administration strategies; a comparative analysis that also considers how pharmaceutical regulation is conducted.
Collapse
Affiliation(s)
- Daniele Massella
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France.
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy.
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Ada Ferri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy
| | - Jinping Guan
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Stéphane Giraud
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Antonello A Barresi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy
| | - Fabien Salaün
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France
| |
Collapse
|
19
|
Micro-Pillar Integrated Dissolving Microneedles for Enhanced Transdermal Drug Delivery. Pharmaceutics 2019; 11:pharmaceutics11080402. [PMID: 31405191 PMCID: PMC6724014 DOI: 10.3390/pharmaceutics11080402] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 01/05/2023] Open
Abstract
The dissolving microneedle (DMN) patch is a transdermal delivery system, containing arrays of micro-sized polymeric needles capable of encapsulating therapeutic drugs within their matrix and releasing them into the skin. However, the elastic properties of the skin prevent DMNs from complete insertion and accurate delivery of encapsulated compounds into the skin. Moreover, the adhesive materials used in patches may cause skin irritation, inflammation, and redness. Therefore, we developed a patchless, micro-pillar integrated DMN (P-DMN) that is simple to fabricate and enhances transdermal drug delivery compared with traditional DMN patches. The micro-pillars were made of polymethyl methacrylate at a height of 300 μm and a base diameter of 500 μm. To fabricate P-DMNs, we employed hyaluronic acid, which is a widely used derma filler and plays a role in tissue re-epithelialization. We demonstrate that utilizing P-DMNs significantly improves the delivery efficiency of an encapsulated drug surrogate (91.83% ± 7.75%) compared with traditional DMNs (64.86% ± 8.17%). Interestingly, P-DMNs remarkably increase the skin penetration accuracy rate of encapsulated drugs, up to 97.78% ± 2.22%, compared with 44.44% ± 7.85% in traditional DMNs. Our findings suggest that P-DMNs could serve as a highly accurate and efficient platform for transdermal delivery of various types of micro- and macro-biomolecules.
Collapse
|
20
|
Nair AB, Gupta S, Al-Dhubiab BE, Jacob S, Shinu P, Shah J, Morsy MA, SreeHarsha N, Attimarad M, Venugopala KN, Akrawi SH. Effective Therapeutic Delivery and Bioavailability Enhancement of Pioglitazone Using Drug in Adhesive Transdermal Patch. Pharmaceutics 2019; 11:pharmaceutics11070359. [PMID: 31340601 PMCID: PMC6681070 DOI: 10.3390/pharmaceutics11070359] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
The administration of pioglitazone as an oral therapy is restricted due to various challenges. The aim of the current investigation was to evaluate the suitability of pioglitazone in adhesive transdermal patch as an alternative delivery system, in order to improve therapeutic delivery. Drug in adhesive pioglitazone (2% w/w) transdermal patch were optimized for drug release, suitable adhesive, and skin permeation enhancer. The selected patch was examined for drug-loading capacity and the patch with greater pioglitazone (6% w/w) was evaluated in rat models. The release of pioglitazone was influenced by the tested adhesive and was shown to be significantly higher (p < 0.001) with patch, prepared using Duro-Tak 87-2516. The ex vivo permeation results substantiate the release data as a greater transdermal flux (15.67 ± 2.35 µg/cm2/h) was demonstrated in patch fabricated with Duro-Tak 87-2516. Skin penetration enhancers promoted the ex vivo transdermal delivery of pioglitazone, and was ~2 folds (p < 0.0001) higher with propylene glycol, as compared to patch without enhancer. The maximum solubility of pioglitazone in Duro-Tak 87-2516 was found to be 6% w/w. Increasing the drug content in patch enhanced the transdermal flux and was highest when the pioglitazone level was 6% w/w (72.68 ± 5.76 µg/cm2/h). In vivo pharmacokinetic data demonstrate that the AUC0-α in transdermal application (13,506.51 ± 1649.92 ng·h/mL) was ~2 times higher (p < 0.0001) as compared to oral dosage form. In conclusion, the promising results observed here signifies that developed patch could be a viable alternative for oral therapy of pioglitazone.
Collapse
Affiliation(s)
- Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133203, India
| | - Bandar E Al-Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, UAE
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Mohamed Aly Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Nagaraja SreeHarsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4000, South Africa
| | - Sabah H Akrawi
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
21
|
Preparation of Electrosprayed Poly(caprolactone) Microparticles Based on Green Solvents and Related Investigations on the Effects of Solution Properties as Well as Operating Parameters. COATINGS 2019. [DOI: 10.3390/coatings9020084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Electrosprayed poly(caprolactone) (PCL) microparticles were produced using five solvents (ethyl acetate, acetone, anisole, glacial acetic acid and chloroform) under different PCL concentrations and operating parameters. Not only green and appropriate solvent for PCL electrospraying was pointed out, but also the effects of solution properties (surface tension, electrical conductivity, viscosity and vapor pressure) and operating parameters (flow rate, working distance and applied voltage) on the formation of electrosprayed particles were clarified. The formation and shape of Taylor cone during electrospraying was observed by high-speed images captured with a camera, and the size and morphology of electrosprayed particles were characterized by optical and scanning electron microscopies. It can conclude that the cone–jet range of applied voltage mainly depended on electrical conductivity, and an ideal Taylor cone was easier to form under high viscosity and low surface tension. Although high electrical conductivity was a contributor to fabricate tiny particles, it was easier to fabricate mono-dispersed microparticles under low electrical conductivity. The poly-dispersed distribution obtained with a high electrical conductivity converted into mono-dispersed distribution with the increasing of viscosity. Furthermore, the size of electrosprayed particles also correlated with the surface tension and vapor pressure of the solvent used. Ethyl acetate, due to mild electrical conductivity and surface tension, moderate viscosity and vapor pressure, is a green and suitable solvent for PCL electrospraying. Single pore PCL microparticles with smooth cherry-like morphology can be prepared from ethyl acetate. Finally, long working distance not only stabilizes the break-up of charged jet, but also promotes the evaporation of solvent.
Collapse
|
22
|
Tao J, Chow SF, Zheng Y. Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles. Acta Pharm Sin B 2019; 9:4-18. [PMID: 30766774 PMCID: PMC6361851 DOI: 10.1016/j.apsb.2018.11.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 01/08/2023] Open
Abstract
Nanoparticles are considered to be a powerful approach for the delivery of poorly water-soluble drugs. One of the main challenges is developing an appropriate method for preparation of drug nanoparticles. As a simple, rapid and scalable method, the flash nanoprecipitation (FNP) has been widely used to fabricate these drug nanoparticles, including pure drug nanocrystals, polymeric micelles, polymeric nanoparticles, solid lipid nanoparticles, and polyelectrolyte complexes. This review introduces the application of FNP to produce poorly water-soluble drug nanoparticles by controllable mixing devices, such as confined impinging jets mixer (CIJM), multi-inlet vortex mixer (MIVM) and many other microfluidic mixer systems. The formation mechanisms and processes of drug nanoparticles by FNP are described in detail. Then, the controlling of supersaturation level and mixing rate during the FNP process to tailor the ultrafine drug nanoparticles as well as the influence of drugs, solvent, anti-solvent, stabilizers and temperature on the fabrication are discussed. The ultrafine and uniform nanoparticles of poorly water-soluble drug nanoparticles prepared by CIJM, MIVM and microfluidic mixer systems are reviewed briefly. We believe that the application of microfluidic mixing devices in laboratory with continuous process control and good reproducibility will be benefit for industrial formulation scale-up.
Collapse
Key Words
- ACN, acetonitrile
- CA 320S Seb, cellulose acetate 320S sebacate
- CAP Adp 0.33, cellulose acetate propionate 504-0.2 adipate 0.33
- CAP Adp 0.85, cellulose acetate propionate adipate 0.85
- CFA, cefuroxime axetil
- CIJM, confined impinging jets mixer
- CMCAB, carboxymethyl cellulose acetate butyrate
- CTACl, cetyltrimethylammonium chloride
- DMF, dimethyl formamide
- DMSO, dimethyl sulfoxide
- DSPE-PEG, distearyl phosphatidyl ethanolamine-poly(ethylene glycol)
- Dex-PLLA, dextrose-poly(l-lactic acid)
- FNP, flash nanoprecipitation
- Flash nanoprecipitation
- HPC, hydroxypropyl cellulose
- HPMC, hydroxypropyl methyl cellulose
- HPMCAS, hydroxypropyl methylcellulose acetate succinate
- MIVM, multi-inlet vortex mixer
- Microfluidic mixer device
- NaAlg, sodium alginate
- NaCMC, carboxymethyl cellulose sodium
- Nanoparticles
- P(MePEGCA-co-HDCA), poly(methoxy polyethylene glycol cyanoacrylate-co-hexadecyl cyanoacrylate)
- PAA, poly(acrylic acid)
- PAH, polyallylamine hydrochloride
- PCL, poly(ε-caprolactone)
- PEG, polyethylene glycol
- PEG-PCL, poly(ethylene glycol)-poly(ε-caprolactone)
- PEG-PLA, poly(ethylene glycol)-poly(lactic acid)
- PEG-PLGA, poly(ethylene glycol)-poly(lactic-co-glycolic acid)
- PEG-PS, poly(ethylene glycol)-polystyrene
- PEI, polyethyleneimine
- PEO-PDLLA, poly(ethylene oxide)-poly(d,l-lactic acid)
- PLA, poly(lactic acid)
- PLGA, poly(lactic-co-glycolic acid)
- PMMA, polymethyl methacrylate
- PSS, polyprotomine sulfate
- PVA, polyvinyl alcohol
- PVP, polyvinyl pyrrolidone
- Poorly water-soluble drug
- SDS, sodium dodecyl sulfonate
- SLS, sodium lauryl sulfate
- THF, tetrahydrofuran
- TPGS, tocopheryl polyethylene glycol 1000 succinate
- ε-PL, ε-polylysine
Collapse
Affiliation(s)
- Jinsong Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau, China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau, China
| |
Collapse
|
23
|
Massella D, Ancona A, Garino N, Cauda V, Guan J, Salaun F, Barresi AA, Ferri A. Preparation of bio-functional textiles by surface functionalization of cellulose fabrics with caffeine loaded nanoparticles. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1757-899x/460/1/012044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
24
|
Massella D, Celasco E, Salaün F, Ferri A, Barresi AA. Overcoming the Limits of Flash Nanoprecipitation: Effective Loading of Hydrophilic Drug into Polymeric Nanoparticles with Controlled Structure. Polymers (Basel) 2018; 10:E1092. [PMID: 30961017 PMCID: PMC6403626 DOI: 10.3390/polym10101092] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/06/2018] [Accepted: 09/29/2018] [Indexed: 12/26/2022] Open
Abstract
Flash nanoprecipitation (FNP) is a widely used technique to prepare particulate carriers based on various polymers, and it was proven to be a promising technology for the industrial production of drug loaded nanoparticles. However, up to now, only its application to hydrophobic compounds has been deeply studied and the encapsulation of some strongly hydrophilic compounds, such as caffeine, remains a challenge. Caffeine loaded poly-ε-caprolactone (PCL) nanoparticles were produced in a confined impinging jet mixer using acetone as the solvent and water as the antisolvent. Caffeine was dissolved either in acetone or in water to assess the effects of two different process conditions. Nanoparticles properties were assessed in terms of loading capacity (LC%), encapsulation efficiency (EE%), and in vitro release kinetics. Samples were further characterized by dynamic light scattering, scanning electron microscopy, X-ray photo electron spectroscopy, and infrared spectroscopy to determine the size, morphology, and structure of nanoparticles. FNP was proved an effective technique for entrapping caffeine in PCL and to control its release behavior. The solvent used to solubilize caffeine influences the final structure of the obtained particles. It was observed that the active principle was preferentially adsorbed at the surface when using acetone, while with water, it was embedded in the matrix structure. The present research highlights the possibility of extending the range of applications of FNP to hydrophilic molecules.
Collapse
Affiliation(s)
- Daniele Massella
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy.
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France.
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Edvige Celasco
- Dipartimento di Fisica dell'Università degli studi di Genova, Via Dodecaneso 33, 16146 Genova (GE), Italy.
| | - Fabien Salaün
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France.
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Ada Ferri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy.
| | - Antonello A Barresi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy.
| |
Collapse
|