1
|
Starko S, van der Mheen M, Pessarrodona A, Wood GV, Filbee-Dexter K, Neufeld CJ, Montie S, Coleman MA, Wernberg T. Impacts of marine heatwaves in coastal ecosystems depend on local environmental conditions. GLOBAL CHANGE BIOLOGY 2024; 30:e17469. [PMID: 39155748 DOI: 10.1111/gcb.17469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
Marine heatwaves (MHWs), increasing in duration and intensity because of climate change, are now a major threat to marine life and can have lasting effects on the structure and function of ecosystems. However, the responses of marine taxa and ecosystems to MHWs can be highly variable, making predicting and interpreting biological outcomes a challenge. Here, we review how biological responses to MHWs, from individuals to ecosystems, are mediated by fine-scale spatial variability in the coastal marine environment (hereafter, local gradients). Viewing observed responses through a lens of ecological theory, we present a simple framework of three 'resilience processes' (RPs) by which local gradients can influence the responses of marine taxa to MHWs. Local gradients (1) influence the amount of stress directly experienced by individuals, (2) facilitate local adaptation and acclimatization of individuals and populations, and (3) shape community composition which then influences responses to MHWs. We then synthesize known examples of fine-scale gradients that have affected responses of benthic foundation species to MHWs, including kelp forests, coral reefs, and seagrass meadows and link these varying responses to the RPs. We present a series of case studies from various marine ecosystems to illustrate the differential impacts of MHWs mediated by gradients in both temperature and other co-occurring drivers. In many cases, these gradients had large effect sizes with several examples of local gradients causing a 10-fold difference in impacts or more (e.g., survival, coverage). This review highlights the need for high-resolution environmental data to accurately predict and manage the consequences of MHWs in the context of ongoing climate change. While current tools may capture some of these gradients already, we advocate for enhanced monitoring and finer scale integration of local environmental heterogeneity into climate models. This will be essential for developing effective conservation strategies and mitigating future marine biodiversity loss.
Collapse
Affiliation(s)
- Samuel Starko
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Mirjam van der Mheen
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Albert Pessarrodona
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Georgina V Wood
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Karen Filbee-Dexter
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Institute of Marine Research, Flødevigen Research Station, His, Norway
| | | | - Shinae Montie
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Melinda A Coleman
- Department of Primary Industries New South Wales, National Marine Sciences Centre, Coffs Harbour, New South Wales, Australia
| | - Thomas Wernberg
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Institute of Marine Research, Flødevigen Research Station, His, Norway
| |
Collapse
|
2
|
Ramey-Lariviere JYF, Gong J, Baldes MJ, Chatterjee N, Bosak T, Pruss SB. Organic-rich bimineralic ooids record biological processes in Shark Bay, Western Australia. GEOBIOLOGY 2023; 21:629-643. [PMID: 37226324 DOI: 10.1111/gbi.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
Marine ooids have formed in microbially colonized environments for billions of years, but the microbial contributions to mineral formation in ooids continue to be debated. Here we provide evidence of these contributions in ooids from Carbla Beach, Shark Bay, Western Australia. Dark 100-240 μm diameter ooids from Carbla Beach contain two different carbonate minerals. These ooids have 50-100 μm-diameter dark nuclei that contain aragonite, amorphous iron sulfide, detrital aluminosilicate grains and organic matter, and 10-20 μm-thick layers of high-Mg calcite that separate nuclei from aragonitic outer cortices. Raman spectroscopy indicates organic enrichments in the nuclei and high-Mg calcite layers. Synchrotron-based microfocused X-ray fluorescence mapping reveals high-Mg calcite layers and the presence of iron sulfides and detrital grains in the peloidal nuclei. Iron sulfide grains within the nuclei indicate past sulfate reduction in the presence of iron. The preservation of organic signals in and around high-Mg calcite layers and the absence of iron sulfide suggest that organics stabilized high-Mg calcite under less sulfidic conditions. Aragonitic cortices that surround the nuclei and Mg-calcite layers do not preserve microporosity, iron sulfide minerals nor organic enrichments, indicating growth under more oxidizing conditions. These morphological, compositional, and mineralogical signals of microbial processes in dark ooids from Shark Bay, Western Australia, record the formation of ooid nuclei and the accretion of magnesium-rich cortical layers in benthic, reducing, microbially colonized areas.
Collapse
Affiliation(s)
| | - Jian Gong
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Matthew J Baldes
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Nilanjan Chatterjee
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tanja Bosak
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sara B Pruss
- Department of Geosciences, Smith College, Northampton, Massachusetts, USA
| |
Collapse
|
3
|
Bertram A, Fairclough D, Sandoval‐Castillo J, Brauer C, Fowler A, Wellenreuther M, Beheregaray LB. Fisheries genomics of snapper ( Chrysophrys auratus) along the west Australian coast. Evol Appl 2022; 15:1099-1114. [PMID: 35899251 PMCID: PMC9309437 DOI: 10.1111/eva.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022] Open
Abstract
The efficacy of fisheries management strategies depends on stock assessment and management actions being carried out at appropriate spatial scales. This requires understanding of spatial and temporal population structure and connectivity, which is challenging in weakly structured and highly connected marine populations. We carried out a population genomics study of the heavily exploited snapper (Chrysophrys auratus) along ~2600 km of the Australian coastline, with a focus on Western Australia (WA). We used 10,903 filtered SNPs in 341 individuals from eight sampling locations to characterize population structure and connectivity in snapper across WA and to assess if current spatial scales of stock assessment and management agree with evidence from population genomics. Our dataset also enabled us to investigate temporal stability in population structure as well as connectivity between WA and its nearest, eastern jurisdictional neighbour. As expected for a species influenced by the extensive ocean boundary current in the region, low genetic differentiation and high connectivity were uncovered across WA. However, we did detect strong isolation by distance and genetic discontinuities in the mid-west and south-east. The discontinuities correlate with boundaries between biogeographic regions, influenced by on-shelf oceanography, and the sites of important spawning aggregations. We also detected temporal instability in genetic structure at one of our sites, possibly due to interannual variability in recruitment in adjacent regions. Our results partly contrast with the current spatial management of snapper in WA, indicating the likely benefits of a review. This study supports the value of population genomic surveys in informing the management of weakly structured and wide-ranging marine fishery resources.
Collapse
Affiliation(s)
- Andrea Bertram
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSAAustralia
| | - David Fairclough
- Aquatic Sciences and AssessmentDepartment of Primary Industries and Regional DevelopmentPerthWAAustralia
| | | | - Chris Brauer
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSAAustralia
| | - Anthony Fowler
- Aquatic SciencesSouth Australian Research and Development InstituteAdelaideSAAustralia
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research LimitedNelsonNew Zealand
- The School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Luciano B. Beheregaray
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSAAustralia
| |
Collapse
|
4
|
Edgeloe JM, Severn-Ellis AA, Bayer PE, Mehravi S, Breed MF, Krauss SL, Batley J, Kendrick GA, Sinclair EA. Extensive polyploid clonality was a successful strategy for seagrass to expand into a newly submerged environment. Proc Biol Sci 2022; 289:20220538. [PMID: 35642363 PMCID: PMC9156900 DOI: 10.1098/rspb.2022.0538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Polyploidy has the potential to allow organisms to outcompete their diploid progenitor(s) and occupy new environments. Shark Bay, Western Australia, is a World Heritage Area dominated by temperate seagrass meadows including Poseidon's ribbon weed, Posidonia australis. This seagrass is at the northern extent of its natural geographic range and experiences extremes in temperature and salinity. Our genomic and cytogenetic assessments of 10 meadows identified geographically restricted, diploid clones (2n = 20) in a single location, and a single widespread, high-heterozygosity, polyploid clone (2n = 40) in all other locations. The polyploid clone spanned at least 180 km, making it the largest known example of a clone in any environment on earth. Whole-genome duplication through polyploidy, combined with clonality, may have provided the mechanism for P. australis to expand into new habitats and adapt to new environments that became increasingly stressful for its diploid progenitor(s). The new polyploid clone probably formed in shallow waters after the inundation of Shark Bay less than 8500 years ago and subsequently expanded via vegetative growth into newly submerged habitats.
Collapse
Affiliation(s)
- Jane M. Edgeloe
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia,Oceans Institute, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Anita A. Severn-Ellis
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Philipp E. Bayer
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Shaghayegh Mehravi
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Martin F. Breed
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Siegfried L. Krauss
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia,Kings Park Science, Department of Biodiversity Conservation and Attractions, 1 Kattidj Close, West Perth, Western Australia 6005, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Gary A. Kendrick
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia,Oceans Institute, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Elizabeth A. Sinclair
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia,Oceans Institute, University of Western Australia, Crawley, Western Australia, 6009, Australia,Kings Park Science, Department of Biodiversity Conservation and Attractions, 1 Kattidj Close, West Perth, Western Australia 6005, Australia
| |
Collapse
|
5
|
Occurrence and seasonal variability of Dense Shelf Water Cascades along Australian continental shelves. Sci Rep 2020; 10:9732. [PMID: 32546836 PMCID: PMC7298046 DOI: 10.1038/s41598-020-66711-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/21/2020] [Indexed: 11/21/2022] Open
Abstract
Transport of water between the coast and the deeper ocean, across the continental shelf, is an important process for the distribution of biota, nutrients, suspended and dissolved material on the shelf. Presence of denser water on the inner continental shelf results in a cross-shelf density gradient that drives a gravitational circulation with offshore transport of denser water along the sea bed that is defined as Dense Shelf Water Cascade (DSWC). Analysis of field data, collected from multiple ocean glider data missions around Australia, confirmed that under a range of wind and tidal conditions, DSWC was a regular occurrence during autumn and winter months over a coastline spanning > 10,000 km. It is shown that even in the presence of relatively high wind- and tidal-induced vertical mixing, DSWCs were present due to the strength of the cross-shelf density gradient. The occurrence of DSWC around Australia is unique with continental scale forcing through air-sea fluxes that overcome local wind and tidal forcing. It is shown that DSWC acts as a conduit to transport suspended material across the continental shelf and is a critical process that influences water quality on the inner continental shelf.
Collapse
|