1
|
Treerat P, Rozendal T, de Mattos C, Davis A, Helliwell E, Merritt J, Kreth J. Corynebacterial membrane vesicles disrupt cariogenic interkingdom assemblages. Appl Environ Microbiol 2024:e0088524. [PMID: 39480093 DOI: 10.1128/aem.00885-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
Polymicrobial diseases such as periodontal disease and caries pose significant treatment challenges due to their resistance to common approaches like antibiotic therapy. These infections exhibit increased resilience, due to microbial interactions that also disrupt host immune responses. Current research focuses on virulence and disease-promoting interactions, but less is known about interactions that could inhibit or prevent disease development. Normally human-associated microbiomes maintain homeostasis, preventing pathobionts from becoming dominant. In conditions like chronic disseminated candidiasis or severe early childhood caries (s-ECC), an overgrowth of microbes such as Candida albicans disrupts this balance. Typically, C. albicans coexists benignly within the microbial community but can become pathogenic, forming biofilms and interacting with other microbes such as cariogenic Streptococcus mutans. This interaction is particularly significant in s-ECC, where it exacerbates the disease's progression and severity. Here, we present that Corynebacterium durum, itself and through its extracellular membrane vesicles disrupts interkingdom assemblages between C. albicans and S. mutans. Mechanistically the interaction interference occurs at the genetic level with downregulated HWP1 expression, a surface protein specifically induced in the presence of S. mutans promoting the interkingdom interaction. Additionally, we show that C. durum can impede C. albicans systemic virulence in the Galleria mellonella infection model. This suggests that oral corynebacteria may act as a beneficial commensal species, exerting antifungal effects within polymicrobial communities and opening new avenues for managing polymicrobial diseases.IMPORTANCEPolymicrobial diseases such as severe early childhood caries (s-ECC) lack effective treatment options. Prevention, requiring a deeper understanding of ecological processes before the onset of disease symptoms, could be a potential strategy. In this context, we investigated how relatively abundant oral biofilm Corynebacterium species, which are associated with oral health, can interfere with the interkingdom partnership of Streptococcus mutans and Candida albicans. This partnership is a significant driver of tooth decay in s-ECC due to synergistic activities that increase cariogenicity. Our study reveals that oral corynebacteria, through the production of extracellular membrane vesicles, can disrupt the S. mutans and C. albicans partnership by inhibiting fungal hyphae formation. Additionally, the fatty acid cargo within these vesicles exhibits antifungal properties, suggesting that corynebacteria play a role in shaping microbial dynamics within the oral biofilm.
Collapse
Affiliation(s)
- Puthayalai Treerat
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Tanner Rozendal
- Clark Honors College, University of Oregon, Eugene, Oregon, USA
| | - Camilla de Mattos
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Anli Davis
- Lewis & Clark College, Portland, Oregon, USA
| | - Emily Helliwell
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Justin Merritt
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Jens Kreth
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| |
Collapse
|
2
|
Lohan S, Konshina AG, Tiwari RK, Efremov RG, Maslennikov I, Parang K. Broad-spectrum activity of membranolytic cationic macrocyclic peptides against multi-drug resistant bacteria and fungi. Eur J Pharm Sci 2024; 197:106776. [PMID: 38663759 DOI: 10.1016/j.ejps.2024.106776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/17/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
The emergence of multidrug-resistant (MDR) strains causes severe problems in the treatment of microbial infections owing to limited treatment options. Antimicrobial peptides (AMPs) are drawing considerable attention as promising antibiotic alternative candidates to combat MDR bacterial and fungal infections. Herein, we present a series of small amphiphilic membrane-active cyclic peptides composed, in part, of various nongenetically encoded hydrophilic and hydrophobic amino acids. Notably, lead cyclic peptides 3b and 4b showed broad-spectrum activity against drug-resistant Gram-positive (MIC = 1.5-6.2 µg/mL) and Gram-negative (MIC = 12.5-25 µg/mL) bacteria, and fungi (MIC = 3.1-12.5 µg/mL). Furthermore, lead peptides displayed substantial antibiofilm action comparable to standard antibiotics. Hemolysis (HC50 = 230 µg/mL) and cytotoxicity (>70 % cell viability against four different mammalian cells at 100 µg/mL) assay results demonstrated the selective lethal action of 3b against microbes over mammalian cells. A calcein dye leakage experiment substantiated the membranolytic effect of 3b and 4b, which was further confirmed by scanning electron microscopy. The behavior of 3b and 4b in aqueous solution and interaction with phospholipid bilayers were assessed by employing nuclear magnetic resonance (NMR) spectroscopy in conjunction with molecular dynamics (MD) simulations, providing a solid structural basis for understanding their membranolytic action. Moreover, 3b exhibited stability in human blood plasma (t1/2 = 13 h) and demonstrated no signs of resistance development against antibiotic-resistant S. aureus and E. coli. These findings underscore the potential of these newly designed amphiphilic cyclic peptides as promising anti-infective agents, especially against Gram-positive bacteria.
Collapse
Affiliation(s)
- Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Rd, Irvine, CA 92618, United States; AJK Biopharmaceutical, 5270 California Ave, Irvine, CA 92617, United States
| | - Anastasia G Konshina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow, 117997, Russia
| | - Rakesh K Tiwari
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, OR 97355, United States
| | - Roman G Efremov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow, 117997, Russia; National Research University Higher School of Economics, Myasnitskaya ul. 20, Moscow, 101000, Russia
| | - Innokentiy Maslennikov
- Structural Biology Research Center, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Rd., Irvine, CA 92618, United States
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Rd, Irvine, CA 92618, United States.
| |
Collapse
|
3
|
Dühring S, Schuster S. Studying mixed-species biofilms of Candida albicans and Staphylococcus aureus using evolutionary game theory. PLoS One 2024; 19:e0297307. [PMID: 38446770 PMCID: PMC10917284 DOI: 10.1371/journal.pone.0297307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/03/2024] [Indexed: 03/08/2024] Open
Abstract
Mixed-species biofilms of Candida albicans and Staphylococcus aureus pose a significant clinical challenge due to their resistance to the human immune system and antimicrobial therapy. Using evolutionary game theory and nonlinear dynamics, we analyse the complex interactions between these organisms to understand their coexistence in the human host. We determine the Nash equilibria and evolutionary stable strategies of the game between C. albicans and S. aureus and point out different states of the mixed-species biofilm. Using replicator equations we study the fungal-bacterial interactions on a population level. Our focus is on the influence of available nutrients and the quorum sensing molecule farnesol, including the potential therapeutic use of artificially added farnesol. We also investigate the impact of the suggested scavenging of C. albicans hyphae by S. aureus. Contrary to common assumptions, we confirm the hypothesis that under certain conditions, mixed-species biofilms are not universally beneficial. Instead, different Nash equilibria occur depending on encountered conditions (i.e. varying farnesol levels, either produced by C. albicans or artificially added), including antagonism. We further show that the suggested scavenging of C. albicans' hyphae by S. aureus does not influence the overall outcome of the game. Moreover, artificially added farnesol strongly affects the dynamics of the game, although its use as a medical adjuvant (add-on medication) may pose challenges.
Collapse
Affiliation(s)
- Sybille Dühring
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
4
|
Baz A, Bakri A, Butcher M, Short B, Ghimire B, Gaur N, Jenkins T, Short RD, Riggio M, Williams C, Ramage G, Brown JL. Staphylococcus aureus strains exhibit heterogenous tolerance to direct cold atmospheric plasma therapy. Biofilm 2023; 5:100123. [PMID: 37138646 PMCID: PMC10149328 DOI: 10.1016/j.bioflm.2023.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
The global clinical and socioeconomic impact of chronic wounds is substantial. The main difficulty that clinicians face during the treatment of chronic wounds is the risk of infection at the wound site. Infected wounds arise from an accumulation of microbial aggregates in the wound bed, leading to the formation of polymicrobial biofilms that can be largely resistant to antibiotic therapy. Therefore, it is essential for studies to identify novel therapeutics to alleviate biofilm infections. One innovative technique is the use of cold atmospheric plasma (CAP) which has been shown to possess promising antimicrobial and immunomodulatory properties. Here, different clinically relevant biofilm models will be treated with cold atmospheric plasma to assess its efficacy and killing effects. Biofilm viability was assessed using live dead qPCR, and morphological changes associated with CAP evaluated using scanning electron microscopy (SEM). Results indicated that CAP was effective against Candida albicans and Pseudomonas aeruginosa, both as mono-species biofilms and when grown in a triadic model system. CAP also significantly reduced viability in the nosocomial pathogen, Candida auris. Staphylococcus aureus Newman exhibited a level of tolerance to CAP therapy, both when grown alone or in the triadic model when grown alongside C. albicans and P. aeruginosa. However, this degree of tolerance exhibited by S. aureus was strain dependent. At a microscopic level, biofilm treatment led to subtle changes in morphology in the susceptible biofilms, with evidence of cellular deflation and shrinkage. Taken together, these results indicate a promising application of direct CAP therapy in combatting wound and skin-related biofilm infections, although biofilm composition may affect the treatment efficacy.
Collapse
Affiliation(s)
- Abdullah Baz
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - Ahmed Bakri
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - Mark Butcher
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - Bryn Short
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - Bhagirath Ghimire
- Department of Chemistry and Material Science Institute, University of Lancaster, Lancaster, LA1 4YB, United Kingdom
| | - Nishtha Gaur
- Department of Chemistry and Material Science Institute, University of Lancaster, Lancaster, LA1 4YB, United Kingdom
| | - Toby Jenkins
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Robert D. Short
- Department of Chemistry and Material Science Institute, University of Lancaster, Lancaster, LA1 4YB, United Kingdom
| | - Marcello Riggio
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - Craig Williams
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
- Microbiology Department, Lancaster Royal Infirmary, University of Lancaster, Lancaster, LA1 4YW, United Kingdom
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - Jason L. Brown
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
- Corresponding author. Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.
| |
Collapse
|
5
|
Ranđelović M, Dimitrijević M, Otašević S, Stanojević L, Išljamović M, Ignjatović A, Arsić-Arsenijević V, Stojanović-Radić Z. Antifungal Activity and Type of Interaction of Melissa officinalis Essential Oil with Antimycotics against Biofilms of Multidrug-Resistant Candida Isolates from Vulvovaginal Mucosa. J Fungi (Basel) 2023; 9:1080. [PMID: 37998884 PMCID: PMC10672467 DOI: 10.3390/jof9111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
(1) Background: Vulvovaginal candidosis (VVC) is a major therapy issue due to its high resistance rate and virulence factors such as the ability to form biofilms. The possibility of combining commonly used antifungals with natural products might greatly improve therapeutic success. (2) Methods: A total of 49 vulvovaginal isolates, causative agents of recurrent VVC, were tested for their susceptibility to fluconazole, nystatin, and Melissa officinalis essential oil (MOEO). This examination included testing the antibiofilm potential of antifungals and MOEO and the determination of their types of interaction with mature biofilms. (3) Results: Antimicrobial testing showed that 94.4% of the Candida albicans isolates and all the Candida krusei isolates were resistant to fluconazole, while all strains showed resistance to nystatin. The same strains were susceptible to MOEO in 0.156-2.5 mg/mL concentrations. Additionally, the results revealed very limited action of fluconazole, while nystatin and MOEO reduced the amount of biofilm formed by as much as 17.7% and 4.6%, respectively. Testing of the combined effect showed strain-specific synergistic action. Furthermore, the lower concentrations exhibited antagonistic effects even in cases where synergism was detected. (4) Conclusions: This study showed that MOEO had a very good antibiofilm effect. However, combining MOEO with antimycotics demonstrated that the type of action depended on the choice of antifungal drugs as well as the applied concentration.
Collapse
Affiliation(s)
- Marina Ranđelović
- Department of Microbiology and Immunology, Medical Faculty, University of Nis, 18000 Nis, Serbia;
- Centre of Microbiology, Public Health Institute Nis, 18000 Nis, Serbia
| | - Marina Dimitrijević
- Department of Biology, Faculty of Science and Mathematics, University of Nis, 18000 Nis, Serbia; (M.D.); (Z.S.-R.)
| | - Suzana Otašević
- Department of Microbiology and Immunology, Medical Faculty, University of Nis, 18000 Nis, Serbia;
- Centre of Microbiology, Public Health Institute Nis, 18000 Nis, Serbia
| | - Ljiljana Stanojević
- Department of Chemistry and Chemical Technology, Faculty of Technology, University of Nis, 18000 Nis, Serbia;
| | - Milica Išljamović
- Department of Dental Health Care, Health Center Niš, 18000 Nis, Serbia;
| | - Aleksandra Ignjatović
- Department of Medical Statistics and Informatics, Medical Faculty, University of Nis, 18000 Nis, Serbia;
| | | | - Zorica Stojanović-Radić
- Department of Biology, Faculty of Science and Mathematics, University of Nis, 18000 Nis, Serbia; (M.D.); (Z.S.-R.)
| |
Collapse
|
6
|
Delaney C, Alapati S, Alshehri M, Kubalova D, Veena CLR, Abusrewil S, Short B, Bradshaw D, Brown JL. Investigating the role of Candida albicans as a universal substrate for oral bacteria using a transcriptomic approach: implications for interkingdom biofilm control? APMIS 2023; 131:601-612. [PMID: 37170476 DOI: 10.1111/apm.13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Candida albicans is frequently identified as a colonizer of the oral cavity in health and has recently been termed a "keystone" commensal due to its role on the bacterial communities. However, the role that C. albicans plays in such interactions is not fully understood. Therefore, this study aimed to identify the relationship between C. albicans and bacteria associated with oral symbiosis and dysbiosis. To do this, we evaluated the ability of C. albicans to support the growth of the aerobic commensal Streptococcus gordonii and the anaerobic pathogens Fusobacterium nucleatum and Porphyromonas gingivalis in the biofilm environment. RNA-Sequencing with the Illumina platform was then utilized to identify C. albicans gene expression and functional pathways involved during such interactions in dual-species and a 4-species biofilm model. Results indicated that C. albicans was capable of supporting growth of all three bacteria, with a significant increase in colony counts of each bacteria in the dual-species biofilm (p < 0.05). We identified specific functional enrichment of pathways in our 4-species community as well as transcriptional profiles unique to the F. nucleatum and S. gordonii dual-species biofilms, indicating a species-specific effect on C. albicans. Candida-related hemin acquisition and heat shock protein mediated processes were unique to the organism following co-culture with anaerobic and aerobic bacteria, respectively, suggestive that such pathways may be feasible options for therapeutic targeting to interfere with these fungal-bacterial interactions. Targeted antifungal therapy may be considered as an option for biofilm destabilization and treatment of complex communities. Moving forward, we propose that further studies must continue to investigate the role of this fungal organism in the context of the interkingdom nature of oral diseases.
Collapse
Affiliation(s)
- Christopher Delaney
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Glasgow Biofilm Research Network (www.glasgowbiofilms.ac.uk), Glasgow, UK
| | - Susanth Alapati
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Glasgow Biofilm Research Network (www.glasgowbiofilms.ac.uk), Glasgow, UK
| | - Muhanna Alshehri
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Glasgow Biofilm Research Network (www.glasgowbiofilms.ac.uk), Glasgow, UK
| | - Dominika Kubalova
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Glasgow Biofilm Research Network (www.glasgowbiofilms.ac.uk), Glasgow, UK
| | - Chandra Lekha Ramalingham Veena
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Glasgow Biofilm Research Network (www.glasgowbiofilms.ac.uk), Glasgow, UK
| | - Sumaya Abusrewil
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Glasgow Biofilm Research Network (www.glasgowbiofilms.ac.uk), Glasgow, UK
| | - Bryn Short
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Glasgow Biofilm Research Network (www.glasgowbiofilms.ac.uk), Glasgow, UK
| | | | - Jason L Brown
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Glasgow Biofilm Research Network (www.glasgowbiofilms.ac.uk), Glasgow, UK
| |
Collapse
|
7
|
Dornelas-Figueira LM, Ricomini Filho AP, Junges R, Åmdal HA, Cury AADB, Petersen FC. In Vitro Impact of Fluconazole on Oral Microbial Communities, Bacterial Growth, and Biofilm Formation. Antibiotics (Basel) 2023; 12:1433. [PMID: 37760729 PMCID: PMC10525723 DOI: 10.3390/antibiotics12091433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Antifungal agents are widely used to specifically eliminate infections by fungal pathogens. However, the specificity of antifungal agents has been challenged by a few studies demonstrating antibacterial inhibitory effects against Mycobacteria and Streptomyces species. Here, we evaluated for the first time the potential effect of fluconazole, the most clinically used antifungal agent, on a human oral microbiota biofilm model. The results showed that biofilm viability on blood and mitis salivarius agar media was increased over time in the presence of fluconazole at clinically relevant concentrations, despite a reduction in biomass. Targeted PCR revealed a higher abundance of Veillonella atypica, Veillonella dispar, and Lactobacillus spp. in the fluconazole-treated samples compared to the control, while Fusobacterium nucleatum was reduced and Streptococcus spp were not significantly affected. Further, we tested the potential impact of fluconazole using single-species models. Our results, using Streptococcus mutans and Streptococcus mitis luciferase reporters, showed that S. mutans planktonic growth was not significantly affected by fluconazole, whereas for S. mitis, planktonic growth, but not biofilm viability, was inhibited at the highest concentration. Fluconazole's effects on S. mitis biofilm biomass were concentration and time dependent. Exposure for 48 h to the highest concentration of fluconazole was associated with S. mitis biofilms with the most increased biomass. Potential growth inhibitory effects were further tested using four non-streptococcal species. Among these, the planktonic growth of both Escherichia coli and Granulicatella adiacens was inhibited by fluconazole. The data indicate bacterial responses to fluconazole that extend to a broader range of bacterial species than previously anticipated from the literature, with the potential to disturb biofilm communities.
Collapse
Affiliation(s)
- Louise Morais Dornelas-Figueira
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Antônio Pedro Ricomini Filho
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
| | - Roger Junges
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Heidi Aarø Åmdal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Altair Antoninha Del Bel Cury
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
| | | |
Collapse
|
8
|
Pejon LS, Oliveira VDC, Amorim AA, Raffaini JC, de Arruda CNF, Pires-de-Souza FDCP. Antimicrobial effect of phytosphingosine in acrylic resin. Braz Dent J 2023; 34:107-114. [PMID: 37909633 PMCID: PMC10642271 DOI: 10.1590/0103-6440202305357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/23/2023] [Indexed: 11/03/2023] Open
Abstract
This study evaluated color stability (CS), anti-adherence effect (AAE), and cell viability of microorganisms on acrylic resin (AR) surface, treated associated or not with sodium percarbonate (SP). AR specimens were prepared, and color analysis was performed before and after the treatments and the CS was calculated. For analysis of AAE, the samples were sterilized by radiation in a microwave oven. Then samples were randomly distributed: phosphate-buffered saline (PBS - control), 0.5% sodium hypochlorite (SH), phytosphingosine (PHS), and phytosphingosine + SP (PHS+Na2CO3). The specimens remained in contact with solutions for 30 minutes and were later contaminated by Candida albicans. Aliquots were seeded in Petri dishes with Sabouraud Dextrose agar and incubated at 37°C for 24 hours. After the incubation, the number of colonies was counted. The cell viability of adhered microorganisms on the AR was evaluated and 20 fields were observed under an epifluorescence microscope, and the percentage of adhered viable cells was calculated. Data were compared (One-way ANOVA, Tukey, p<.05). As for CS, PHS+ Na2CO3 (0.4±0.1) resulted in less change than PBS (0.9±0.2), similar to the other groups (SH [1.0±0.3)]; PHS [0.9±0.2)]). There was no difference for all tested solutions regarding the ability to avoid microorganism adherence (p>0.05), but PHS (11.2±4.1) resulted in a smaller area of adhered viable cells, statistically different from SH (18.2±7.6) and PBS (26.4±10.8). It was concluded that PHS resulted in lower adhered viable cells and when associated with Na2CO3, also shows a lower effect on the CS of AR.
Collapse
Affiliation(s)
- Luiza Sanchez Pejon
- Department of Dental Materials and Prosthodontics Ribeirão Preto School of Dentistry - University of Sao Paulo. Av do Café s/n, 14040-904 Ribeirão Preto, SP, Brazil
| | - Viviane de Cássia Oliveira
- Department of Dental Materials and Prosthodontics Ribeirão Preto School of Dentistry - University of Sao Paulo. Av do Café s/n, 14040-904 Ribeirão Preto, SP, Brazil
| | - Ayodele Alves Amorim
- Department of Dental Materials and Prosthodontics Ribeirão Preto School of Dentistry - University of Sao Paulo. Av do Café s/n, 14040-904 Ribeirão Preto, SP, Brazil
| | - Júlia Correa Raffaini
- Department of Dental Materials and Prosthodontics Ribeirão Preto School of Dentistry - University of Sao Paulo. Av do Café s/n, 14040-904 Ribeirão Preto, SP, Brazil
| | - Carolina Noronha Ferraz de Arruda
- Department of Prosthodontics of School of Dentistry - Rio de Janeiro State University. Boulevard 28 de Setembro, 157, 20551-030 Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
9
|
Malacrida AM, Corrêa JL, Barros ILE, Veiga FF, Pereira EDCA, Negri M, Svidzinski TIE. Hospital Trichosporon asahii isolates with simple architecture biofilms and high resistance to antifungals routinely used in clinical practice. J Mycol Med 2022; 33:101356. [PMID: 36563454 DOI: 10.1016/j.mycmed.2022.101356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Infections by Trichosporon spp. are increasing worldwide and its treatment remains a challenge. Colonization of medical devices has been considered as a predisposing factor for trichosporonosis, which is related to fungal biofilm production. Thus, this study aimed to evaluate the ability of six hospital T. asahii isolates to form biofilm on abiotic surface, as well as to investigate the impact of three classic antifungals on both planktonic and biofilm forms. The fungal identification was based on macro and micromorphological characteristics, biochemical tests and confirmation by mass spectrometry assisted by the flight time desorption/ionization matrix (MALDI-TOF MS). Antifungal susceptibility assay of planktonic cells showed inhibitory and fungicidal concentrations ranging from 2.5 to 10 µg/mL for voriconazole, 2 to 8 µg/mL for fluconazole, and 1 to 4 µg/mL for amphotericin B. All T. asahii strains were able to form biofilms on the polystyrene microplates surface within 24 h, showing a simple architecture when compared with Candida spp. biofilm. On the other hand, the same antifungals did not show action in neither the inhibition of biofilm formation nor on the formed biofilm. Concluding, the present study reinforced the relevance of the MALDI-TOF MS methodology for a safe identification of T. asahii. Classic antifungals were active on the planktonic form, but not on the biofilms. All isolates formed biofilms on the polystyrene microplates and showed a simple architecture.
Collapse
Affiliation(s)
- Amanda Milene Malacrida
- Department of Clinical Analysis and Biomedicine, Division of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Jakeline Luiz Corrêa
- Department of Clinical Analysis and Biomedicine, Division of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Isabella Letícia Esteves Barros
- Department of Clinical Analysis and Biomedicine, Division of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Flávia Franco Veiga
- Department of Clinical Analysis and Biomedicine, Division of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Elton da Cruz Alves Pereira
- Department of Clinical Analysis and Biomedicine, Division of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Melyssa Negri
- Department of Clinical Analysis and Biomedicine, Division of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | | |
Collapse
|
10
|
Raj K, Rishi P, Shukla G, Rudramurhty SM, Mongad DS, Kaur A. Possible Contribution of Alternative Transcript Isoforms in Mature Biofilm Growth Phase of Candida glabrata. Indian J Microbiol 2022; 62:583-601. [PMID: 36458226 PMCID: PMC9705674 DOI: 10.1007/s12088-022-01036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022] Open
Abstract
Expression of genome-wide alternative transcript isoforms and differential transcript isoform usage in different biological conditions (isoform switching) are responsible for the varied proteomic functional diversity in higher eukaryotic organisms. However, these mechanisms have not been studied in Candida glabrata, which is a potent eukaryotic opportunistic pathogen. Biofilm formation is an important virulence factor of C. glabrata that withstands antifungal drug stress and overcomes the host-immune response. Here, we present the genome-wide differential transcript isoform expression (DTE) and differential transcript isoform usage (DTU) in a mature biofilm growth phase of C. glabrata (clinical isolate; NCCPF 100,037) using the RNA sequencing approach. The DTE analysis generated 7837 transcript isoforms from the C. glabrata genome (5293 genes in total), and revealed that transcript isoforms generated from 292 genes showed significant DTU in the mature biofilm cells. Gene ontology, pathway analysis and protein-protein interactions of significant transcript isoforms, further substantiated that their specific expression and differential usage is required for transitioning the planktonic cells to biofilm in C. glabrata. The present study reported the possible role of expression of alternative transcript isoforms and differential transcript isoform usage in the mature biofilms of C. glabrata. The observation derived from the study may prove to be beneficial for making future antifungal therapeutic strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-022-01036-7.
Collapse
Affiliation(s)
- Khem Raj
- Department of Microbiology, Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Praveen Rishi
- Department of Microbiology, Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Geeta Shukla
- Department of Microbiology, Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Shivaprakash M. Rudramurhty
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Dattatray S. Mongad
- National Centre for Microbial Resource, National Centre for Cell Sciences (NCCS), Pune, India
| | - Amrita Kaur
- Department of Microbiology, Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014 India
| |
Collapse
|
11
|
Activity of Novel Ultrashort Cyclic Lipopeptides against Biofilm of Candida albicans Isolated from VVC in the Ex Vivo Animal Vaginal Model and BioFlux Biofilm Model-A Pilot Study. Int J Mol Sci 2022; 23:ijms232214453. [PMID: 36430935 PMCID: PMC9694474 DOI: 10.3390/ijms232214453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, clinicians and doctors have become increasingly interested in fungal infections, including those affecting the mucous membranes. Vulvovaginal candidiasis (VVC) is no exception. The etiology of this infection remains unexplained to this day, as well as the role and significance of asymptomatic vaginal Candida colonization. There are also indications that in the case of VVC, standard methods of determining drug susceptibility to antifungal drugs may not have a real impact on their clinical effectiveness-which would explain, among other things, treatment failures and relapse rates. The aim of the study was to verify the promising results obtained previously in vitro using standard methods, in a newly developed ex vivo model, using tissue fragments of the mouse vagina. The main goal of the study was to determine whether the selected ultrashort cyclic lipopeptides (USCLs) and their combinations with fluconazole at specific concentrations are equally effective against Candida forming a biofilm directly on the surface of the vaginal epithelium. In addition, the verification was also performed with the use of another model for the study of microorganisms (biofilms) in vitro-the BioFlux system, under microfluidic conditions. The obtained results indicate the ineffectiveness of the tested substances ex vivo at concentrations eradicating biofilm in vitro. Nevertheless, the relatively most favorable and promising results were still obtained in the case of combination therapy-a combination of low concentrations of lipopeptides (mainly linear analogs) with mycostatic fluconazole. Additionally, using BioFlux, it was not possible to confirm the previously obtained results. However, an inhibiting effect of the tested lipopeptides on the development of biofilm under microfluidic conditions was demonstrated. There is an incompatibility between the classic in vitro methods, the newer BioFlux method of biofilm testing, offering many advantages postulated elsewhere, and the ex vivo method. This incompatibility is another argument for the need, on the one hand, to intensify research on the pathomechanism of VVC, and, on the other hand, to verify and maybe modify the standard methods used in the determination of Candida susceptibility.
Collapse
|
12
|
Parolin C, Croatti V, Giordani B, Vitali B. Vaginal Lactobacillus Impair Candida Dimorphic Switching and Biofilm Formation. Microorganisms 2022; 10:microorganisms10102091. [PMID: 36296367 PMCID: PMC9609122 DOI: 10.3390/microorganisms10102091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 02/16/2023] Open
Abstract
Lactobacillus spp. generally dominate the vaginal microbiota and prevent pathogen adhesion and overgrowth, including Candida spp., by various mechanisms. Although Candida spp. can be commensal, in certain conditions they can become pathogenic, causing vulvovaginal candidiasis. The insurgence of candidiasis is related to the expression of Candida virulence factors, including morphologic switching and biofilm formation. Germ tubes, pseudohyphae, and hyphae promote Candida tissue invasion, biofilms increase persistence and are often resistant to antifungals and host immune response. Here, we explored the inhibitory activity of vaginal Lactobacillus strains belonging to Lactobacillus crispatus, Lactobacillus gasseri, Limosilactobacillus vaginalis, and Lactiplantibacillus plantarum species towards Candida virulence factors. With the aim to investigate the interrelation between mode of growth and functionality, supernatants were collected from lactobacilli planktonic cultures and, for the first time, from adherent ones, and were evaluated towards Candida dimorphic switching and biofilm. Candida biofilms were analyzed by multiple methodologies, i.e., crystal violet staining, MTT assay, and confocal microscopy. Lactobacillus supernatants reduce Candida switching and biofilm formation. Importantly, L. crispatus supernatants showed the best profile of virulence suppression, especially when grown in adherence. These results highlight the role of such species as a hallmark of vaginal eubiosis and prompt its employment in new probiotics for women's health.
Collapse
|
13
|
Sousa IS, Mello TP, Pereira EP, Granato MQ, Alviano CS, Santos ALS, Kneipp LF. Biofilm Formation by Chromoblastomycosis Fungi Fonsecaea pedrosoi and Phialophora verrucosa: Involvement with Antifungal Resistance. J Fungi (Basel) 2022; 8:jof8090963. [PMID: 36135688 PMCID: PMC9504689 DOI: 10.3390/jof8090963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Patients with chromoblastomycosis (CBM) suffer chronic tissue lesions that are hard to treat. Considering that biofilm is the main growth lifestyle of several pathogens and it is involved with both virulence and resistance to antimicrobial drugs, we have investigated the ability of CBM fungi to produce this complex, organized and multicellular structure. Fonsecaea pedrosoi and Phialophora verrucosa conidial cells were able to adhere on a polystyrene abiotic substrate, differentiate into hyphae and produce a robust viable biomass containing extracellular matrix. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) showed the tridimensional architecture of the mature biofilms, revealing a dense network of interconnected hyphae, inner channels and amorphous extracellular polymeric material. Interestingly, the co-culture of each fungus with THP-1 macrophage cells, used as a biotic substrate, induced the formation of a mycelial trap covering and damaging the macrophages. In addition, the biofilm-forming cells of F. pedrosoi and P. verrucosa were more resistant to the conventional antifungal drugs than the planktonic-growing conidial cells. The efflux pump activities of P. verrucosa and F. pedrosoi biofilms were significantly higher than those measured in conidia. Taken together, the data pointed out the biofilm formation by CBM fungi and brought up a discussion of the relevance of studies about their antifungal resistance mechanisms.
Collapse
Affiliation(s)
- Ingrid S. Sousa
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Thaís P. Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Elaine P. Pereira
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Marcela Q. Granato
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Celuta S. Alviano
- Laboratório de Estrutura de Microrganismos, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil
| | - Lucimar F. Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil
- Correspondence:
| |
Collapse
|
14
|
Sadanandan B, Ashrit P, Nataraj LK, Shetty K, Jogalekar AP, Vaniyamparambath V, Hemanth B. High throughput comparative assessment of biofilm formation of Candida glabrata on polystyrene material. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-1054-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Liu J, Willems HME, Sansevere EA, Allert S, Barker KS, Lowes DJ, Dixson AC, Xu Z, Miao J, DeJarnette C, Tournu H, Palmer GE, Richardson JP, Barrera FN, Hube B, Naglik JR, Peters BM. A variant ECE1 allele contributes to reduced pathogenicity of Candida albicans during vulvovaginal candidiasis. PLoS Pathog 2021; 17:e1009884. [PMID: 34506615 PMCID: PMC8432879 DOI: 10.1371/journal.ppat.1009884] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Vulvovaginal candidiasis (VVC), caused primarily by the human fungal pathogen Candida albicans, results in significant quality-of-life issues for women worldwide. Candidalysin, a toxin derived from a polypeptide (Ece1p) encoded by the ECE1 gene, plays a crucial role in driving immunopathology at the vaginal mucosa. This study aimed to determine if expression and/or processing of Ece1p differs across C. albicans isolates and whether this partly underlies differential pathogenicity observed clinically. Using a targeted sequencing approach, we determined that isolate 529L harbors a similarly expressed, yet distinct Ece1p isoform variant that encodes for a predicted functional candidalysin; this isoform was conserved amongst a collection of clinical isolates. Expression of the ECE1 open reading frame (ORF) from 529L in an SC5314-derived ece1Δ/Δ strain resulted in significantly reduced vaginopathogenicity as compared to an isogenic control expressing a wild-type (WT) ECE1 allele. However, in vitro challenge of vaginal epithelial cells with synthetic candidalysin demonstrated similar toxigenic activity amongst SC5314 and 529L isoforms. Creation of an isogenic panel of chimeric strains harboring swapped Ece1p peptides or HiBiT tags revealed reduced secretion with the ORF from 529L that was associated with reduced virulence. A genetic survey of 78 clinical isolates demonstrated a conserved pattern between Ece1p P2 and P3 sequences, suggesting that substrate specificity around Kex2p-mediated KR cleavage sites involved in protein processing may contribute to differential pathogenicity amongst clinical isolates. Therefore, we present a new mechanism for attenuation of C. albicans virulence at the ECE1 locus.
Collapse
Affiliation(s)
- Junyan Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Hubertine M. E. Willems
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Emily A. Sansevere
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Katherine S. Barker
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - David J. Lowes
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Andrew C. Dixson
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Jian Miao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
- Graduate Program in Pharmaceutical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Christian DeJarnette
- Integrated Program in Biomedical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Helene Tournu
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Glen E. Palmer
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Jonathan P. Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Francisco N. Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Brian M. Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| |
Collapse
|
16
|
Cheong JZA, Johnson CJ, Wan H, Liu A, Kernien JF, Gibson ALF, Nett JE, Kalan LR. Priority effects dictate community structure and alter virulence of fungal-bacterial biofilms. THE ISME JOURNAL 2021; 15:2012-2027. [PMID: 33558690 PMCID: PMC8245565 DOI: 10.1038/s41396-021-00901-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Polymicrobial biofilms are a hallmark of chronic wound infection. The forces governing assembly and maturation of these microbial ecosystems are largely unexplored but the consequences on host response and clinical outcome can be significant. In the context of wound healing, formation of a biofilm and a stable microbial community structure is associated with impaired tissue repair resulting in a non-healing chronic wound. These types of wounds can persist for years simmering below the threshold of classically defined clinical infection (which includes heat, pain, redness, and swelling) and cycling through phases of recurrent infection. In the most severe outcome, amputation of lower extremities may occur if spreading infection ensues. Here we take an ecological perspective to study priority effects and competitive exclusion on overall biofilm community structure in a three-membered community comprised of strains of Staphylococcus aureus, Citrobacter freundii, and Candida albicans derived from a chronic wound. We show that both priority effects and inter-bacterial competition for binding to C. albicans biofilms significantly shape community structure on both abiotic and biotic substrates, such as ex vivo human skin wounds. We further show attachment of C. freundii to C. albicans is mediated by mannose-binding lectins. Co-cultures of C. freundii and C. albicans trigger the yeast-to-hyphae transition, resulting in a significant increase in neutrophil death and inflammation compared to either species alone. Collectively, the results presented here facilitate our understanding of fungal-bacterial interactions and their effects on host-microbe interactions, pathogenesis, and ultimately, wound healing.
Collapse
Affiliation(s)
- J Z Alex Cheong
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Chad J Johnson
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Hanxiao Wan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Aiping Liu
- Department of Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - John F Kernien
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Angela L F Gibson
- Department of Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Jeniel E Nett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
17
|
Lopes SP, Jorge P, Sousa AM, Pereira MO. Discerning the role of polymicrobial biofilms in the ascent, prevalence, and extent of heteroresistance in clinical practice. Crit Rev Microbiol 2021; 47:162-191. [PMID: 33527850 DOI: 10.1080/1040841x.2020.1863329] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antimicrobial therapy is facing a worrisome and underappreciated challenge, the phenomenon of heteroresistance (HR). HR has been gradually documented in clinically relevant pathogens (e.g. Pseudomonas aeruginosa, Staphylococcus aureus, Burkholderia spp., Acinetobacter baumannii, Klebsiella pneumoniae, Candida spp.) towards several drugs and is believed to complicate the clinical picture of chronic infections. This type of infections are typically mediated by polymicrobial biofilms, wherein microorganisms inherently display a wide range of physiological states, distinct metabolic pathways, diverging refractory levels of stress responses, and a complex network of chemical signals exchange. This review aims to provide an overview on the relevance, prevalence, and implications of HR in clinical settings. Firstly, related terminologies (e.g. resistance, tolerance, persistence), sometimes misunderstood and overlapped, were clarified. Factors generating misleading HR definitions were also uncovered. Secondly, the recent HR incidences reported in clinically relevant pathogens towards different antimicrobials were annotated. The potential mechanisms underlying such occurrences were further elucidated. Finally, the link between HR and biofilms was discussed. The focus was to recognize the presence of heterogeneous levels of resistance within most biofilms, as well as the relevance of polymicrobial biofilms in chronic infectious diseases and their role in resistance spreading. These topics were subject of a critical appraisal, gaining insights into the ascending clinical implications of HR in antimicrobial resistance spreading, which could ultimately help designing effective therapeutic options.
Collapse
Affiliation(s)
- Susana Patrícia Lopes
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Paula Jorge
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Ana Margarida Sousa
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
18
|
Ponde NO, Lortal L, Ramage G, Naglik JR, Richardson JP. Candida albicans biofilms and polymicrobial interactions. Crit Rev Microbiol 2021; 47:91-111. [PMID: 33482069 PMCID: PMC7903066 DOI: 10.1080/1040841x.2020.1843400] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022]
Abstract
Candida albicans is a common fungus of the human microbiota. While generally a harmless commensal in healthy individuals, several factors can lead to its overgrowth and cause a range of complications within the host, from localized superficial infections to systemic life-threatening disseminated candidiasis. A major virulence factor of C. albicans is its ability to form biofilms, a closely packed community of cells that can grow on both abiotic and biotic substrates, including implanted medical devices and mucosal surfaces. These biofilms are extremely hard to eradicate, are resistant to conventional antifungal treatment and are associated with high morbidity and mortality rates, making biofilm-associated infections a major clinical challenge. Here, we review the current knowledge of the processes involved in C. albicans biofilm formation and development, including the central processes of adhesion, extracellular matrix production and the transcriptional network that regulates biofilm development. We also consider the advantages of the biofilm lifestyle and explore polymicrobial interactions within multispecies biofilms that are formed by C. albicans and selected microbial species.
Collapse
Affiliation(s)
- Nicole O. Ponde
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Léa Lortal
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Gordon Ramage
- School of Medicine, Dentistry & Nursing, Glasgow Dental School and Hospital, Faculty of Medicine, University of Glasgow, G2 3JZ, United Kingdom
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Jonathan P. Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| |
Collapse
|
19
|
Potocki L, Baran A, Oklejewicz B, Szpyrka E, Podbielska M, Schwarzbacherová V. Synthetic Pesticides Used in Agricultural Production Promote Genetic Instability and Metabolic Variability in Candida spp. Genes (Basel) 2020; 11:genes11080848. [PMID: 32722318 PMCID: PMC7463770 DOI: 10.3390/genes11080848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/22/2023] Open
Abstract
The effects of triazole fungicide Tango® (epoxiconazole) and two neonicotinoid insecticide formulations Mospilan® (acetamiprid) and Calypso® (thiacloprid) were investigated in Candida albicans and three non-albicans species Candida pulcherrima, Candida glabrata and Candida tropicalis to assess the range of morphological, metabolic and genetic changes after their exposure to pesticides. Moreover, the bioavailability of pesticides, which gives us information about their metabolization was assessed using gas chromatography-mass spectrophotometry (GC-MS). The tested pesticides caused differences between the cells of the same species in the studied populations in response to ROS accumulation, the level of DNA damage, changes in fatty acids (FAs) and phospholipid profiles, change in the percentage of unsaturated to saturated FAs or the ability to biofilm. In addition, for the first time, the effect of tested neonicotinoid insecticides on the change of metabolic profile of colony cells during aging was demonstrated. Our data suggest that widely used pesticides, including insecticides, may increase cellular diversity in the Candida species population-known as clonal heterogeneity-and thus play an important role in acquiring resistance to antifungal agents.
Collapse
Affiliation(s)
- Leszek Potocki
- Department of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (A.B.); (B.O.); (E.S.); (M.P.)
- Correspondence: (L.P.); (V.S.); Tel.: +48-17-851-85-78 (L.P.); +421-905-642-367 (V.S.)
| | - Aleksandra Baran
- Department of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (A.B.); (B.O.); (E.S.); (M.P.)
| | - Bernadetta Oklejewicz
- Department of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (A.B.); (B.O.); (E.S.); (M.P.)
| | - Ewa Szpyrka
- Department of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (A.B.); (B.O.); (E.S.); (M.P.)
| | - Magdalena Podbielska
- Department of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (A.B.); (B.O.); (E.S.); (M.P.)
| | - Viera Schwarzbacherová
- Department of Biology and Genetics, Institute of Genetics, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovak
- Correspondence: (L.P.); (V.S.); Tel.: +48-17-851-85-78 (L.P.); +421-905-642-367 (V.S.)
| |
Collapse
|
20
|
Lara HH, Ixtepan-Turrent L, Yacaman MJ, Lopez-Ribot J. Inhibition of Candida auris Biofilm Formation on Medical and Environmental Surfaces by Silver Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21183-21191. [PMID: 31944650 PMCID: PMC8243355 DOI: 10.1021/acsami.9b20708] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Candida auris is an emerging pathogenic fungus implicated in healthcare-associated outbreaks and causes bloodstream infections associated with high mortality rates. Biofilm formation represents one of the major pathogenetic traits associated with this microorganism. Unlike most other Candida species, C. auris has the ability to survive for weeks on different surfaces. Therefore, there is an urgent need to develop new effective control strategies to combat the threat of C. auris. Advances in nanotechnologies have emerged that carry significant potential impact against Candida biofilms. We obtained pure round silver nanoparticles (AgNPs) (1 to 3 nm in diameter) using a microwave-assisted synthetic approach. When tested against C. auris, our results indicated a potent inhibitory activity both on biofilm formation (half maximal inhibitory concentration (IC50) of 0.06 ppm) and against preformed biofilms (IC50 of 0.48 ppm). Scanning electron microscopy images of AgNP-treated biofilms showed cell wall damage mostly by disruption and distortion of the outer surface of the fungal cell wall. In subsequent experiments AgNPs were used to functionalize medical and environmental surfaces. Silicone elastomers functionalized with AgNPs demonstrated biofilm inhibition (>50%) at relatively low concentrations (2.3 to 0.28 ppm). Bandage dressings loaded with AgNPs inhibited growth of C. auris biofilms by more than 80% (2.3 to 0.017 ppm). Also, to demonstrate long-lasting protection, dressings loaded with AgNPs (0.036 ppm) were washed thoroughly with phosphate-buffered saline, maintaining protection against the C. auris growth from cycles 1 to 3 (>80% inhibition) and from cycles 4 to 6 (>50% inhibition). Our results demonstrate the dose-dependent activity of AgNPs against biofilms formed by C. auris on both medical (silicone elastomer) and environmental (bandage fibers) surfaces. The AgNPs-functionalized fibers retain the fungicidal effect even after repeated thorough washes. Overall these results point to the utility of silver nanoparticles to prevent and control infections caused by this emerging pathogenic fungus.
Collapse
Affiliation(s)
- Humberto H. Lara
- Department of Biology and South Texas Center for Emerging Infectious Diseases
| | - Liliana Ixtepan-Turrent
- Departamento de Ciencias Basicas, Division de Ciencia de la Salud, Universidad de Monterrey, San Pedro Garza García, Nuevo León 66238, México
| | - Miguel Jose Yacaman
- Department of Applied Physics and Materials Science, Northern Arizona University, 700 South Osborne Drive, Flagstaff, Arizona 86011, United States
| | - Jose Lopez-Ribot
- Department of Biology and South Texas Center for Emerging Infectious Diseases
| |
Collapse
|
21
|
de Barros PP, Rossoni RD, de Souza CM, Scorzoni L, Fenley JDC, Junqueira JC. Candida Biofilms: An Update on Developmental Mechanisms and Therapeutic Challenges. Mycopathologia 2020; 185:415-424. [PMID: 32277380 DOI: 10.1007/s11046-020-00445-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
Fungi of the genus Candida are important etiological agents of superficial and life-threatening infections in individuals with a compromised immune system. One of the main characteristics of Candida is its ability to form highly drug tolerance biofilms in the human host. Biofilms are a dynamic community of multiple cell types whose formation over time is orchestrated by a network of transcription regulators. In this brief review, we provide an update of the processes involved in biofilm formation by Candida spp. (formation, treatment, and control), as well as the transcriptional circuitry that regulates its development and interactions with other microorganisms. Candida albicans is known to build mixed species biofilms with other Candida species and with various other bacterial species in different host niches. Taken together, these properties play a key role in Candida pathogenesis. In addition, this review gathers recent studies with new insights and perspectives for the treatment and control of Candida biofilms.
Collapse
Affiliation(s)
- Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil.
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Cheyenne Marçal de Souza
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Juliana De Camargo Fenley
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| |
Collapse
|
22
|
Abusrewil S, Alshanta OA, Albashaireh K, Alqahtani S, Nile CJ, Scott JA, McLean W. Detection, treatment and prevention of endodontic biofilm infections: what's new in 2020? Crit Rev Microbiol 2020; 46:194-212. [PMID: 32233822 DOI: 10.1080/1040841x.2020.1739622] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endodontic disease, a biofilm infection of the root canal space, is a significant cause of dental morbidity worldwide. Endodontic treatment, or root canal treatment, as it is commonly known is founded on the ability to eradicate microbial biofilm infection and prevent re-infection of the highly complex root canal space. Despite many "advances" in clinical endodontics we have seen little improvement in outcomes. The aim of this critical review paper is to provide a contemporary view of endodontic microbiology and biofilm polymicrobiality, provide an understanding of the host response, and how together these impact upon clinical treatment. Ultimately, it is intended to provide insight into novel opportunities and strategies for the future diagnostics, treatment, and prevention of endodontic disease.
Collapse
Affiliation(s)
- Sumaya Abusrewil
- Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Om Alkhir Alshanta
- Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Khawlah Albashaireh
- Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Saeed Alqahtani
- Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christopher J Nile
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - James Alun Scott
- Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - William McLean
- Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
23
|
Perry AM, Hernday AD, Nobile CJ. Unraveling How Candida albicans Forms Sexual Biofilms. J Fungi (Basel) 2020; 6:jof6010014. [PMID: 31952361 PMCID: PMC7151012 DOI: 10.3390/jof6010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Biofilms, structured and densely packed communities of microbial cells attached to surfaces, are considered to be the natural growth state for a vast majority of microorganisms. The ability to form biofilms is an important virulence factor for most pathogens, including the opportunistic human fungal pathogen Candida albicans. C. albicans is one of the most prevalent fungal species of the human microbiota that asymptomatically colonizes healthy individuals. However, C. albicans can also cause severe and life-threatening infections when host conditions permit (e.g., through alterations in the host immune system, pH, and resident microbiota). Like many other pathogens, this ability to cause infections depends, in part, on the ability to form biofilms. Once formed, C. albicans biofilms are often resistant to antifungal agents and the host immune response, and can act as reservoirs to maintain persistent infections as well as to seed new infections in a host. The majority of C. albicans clinical isolates are heterozygous (a/α) at the mating type-like (MTL) locus, which defines Candida mating types, and are capable of forming robust biofilms when cultured in vitro. These “conventional” biofilms, formed by MTL-heterozygous (a/α) cells, have been the primary focus of C. albicans biofilm research to date. Recent work in the field, however, has uncovered novel mechanisms through which biofilms are generated by C. albicans cells that are homozygous or hemizygous (a/a, a/Δ, α/α, or α/Δ) at the MTL locus. In these studies, the addition of pheromones of the opposite mating type can induce the formation of specialized “sexual” biofilms, either through the addition of synthetic peptide pheromones to the culture, or in response to co-culturing of cells of the opposite mating types. Although sexual biofilms are generally less robust than conventional biofilms, they could serve as a protective niche to support genetic exchange between mating-competent cells, and thus may represent an adaptive mechanism to increase population diversity in dynamic environments. Although conventional and sexual biofilms appear functionally distinct, both types of biofilms are structurally similar, containing yeast, pseudohyphal, and hyphal cells surrounded by an extracellular matrix. Despite their structural similarities, conventional and sexual biofilms appear to be governed by distinct transcriptional networks and signaling pathways, suggesting that they may be adapted for, and responsive to, distinct environmental conditions. Here we review sexual biofilms and compare and contrast them to conventional biofilms of C. albicans.
Collapse
Affiliation(s)
- Austin M. Perry
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Aaron D. Hernday
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
- Correspondence: ; Tel.: +1-209-228-2427
| |
Collapse
|
24
|
Interkingdom interactions on the denture surface: Implications for oral hygiene. Biofilm 2019; 1:100002. [PMID: 32201858 PMCID: PMC7067236 DOI: 10.1016/j.bioflm.2019.100002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 11/23/2022] Open
Abstract
Background Evidence to support the role of Candida species in oral disease is limited. Often considered a commensal, this opportunistic yeast has been shown to play a role in denture related disease, though whether it is an active participant or innocent bystander remains to be determined. This study sought to understand the role of Candida species alongside the bacterial microbiome in a denture patient cohort, exploring how the microbiology of the denture was affected by oral hygiene practices. Materials and methods In vitro denture cleansing studies were performed on a complex 9-species interkingdom denture biofilm model, with quantitative assessment of retained bacterial and fungal viable bioburdens. Patient hygiene measures were also collected from 131 patients, including OHIP, frequency of denture cleansing, oral hygiene measure and patient demographics. The bacterial microbiome was analysed from each patient, alongside quantitative PCR assessment of ITS (fungal) and 16S (bacterial) bioburden from denture, mucosa and intact dentition. Results It was shown that following in vitro denture cleansing C. albicans were unresponsive to treatment, whereas bacterial biofilms could repopulate 100-fold, but were susceptible to subsequent treatment. Within the patient cohort, oral hygiene did not impact candidal or bacterial composition, nor diversity. The levels of Candida did not significantly influence the bacterial microbiome, though an observed gradient was suggestive of a microbial composition change in response to Candida load, indicating interkingdom interaction rather than an oral hygiene effect. Indeed, correlation analysis was able to show significant correlations between Candida species and key genera (Lactobacillus, Scardovia, Fusobacterium). Conclusions Overall, this study has shown that the denture microbiome/mycobiome is relatively resilient to oral hygiene challenges, but that Candida species have potential interactions with key oral genera. These interactions may have a bearing on shaping community structure and a shift from health to disease when the opportunity arises.
Collapse
|
25
|
Candida albicans Biofilm Heterogeneity and Tolerance of Clinical Isolates: Implications for Secondary Endodontic Infections. Antibiotics (Basel) 2019; 8:antibiotics8040204. [PMID: 31671533 PMCID: PMC6963865 DOI: 10.3390/antibiotics8040204] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023] Open
Abstract
Aim: Endodontic infections are caused by the invasion of various microorganisms into the root canal system. Candida albicans is a biofilm forming yeast and the most prevalent eukaryotic microorganism in endodontic infections. In this study we investigated the ability of C. albicans to tolerate treatment with standard endodontic irrigants NaOCl (sodium hypochlorite), ethylenediaminetetraacetic acid (EDTA) and a combination thereof. We hypothesized that biofilm formed from a panel of clinical isolates differentially tolerate disinfectant regimens, and this may have implications for secondary endodontic infections. Methodology: Mature C. albicans biofilms were formed from 30 laboratory and oral clinical isolates and treated with either 3% NaOCl, 17% EDTA or a sequential treatment of 3% NaOCl followed by 17% EDTA for 5 min. Biofilms were then washed, media replenished and cells reincubated for an additional 24, 48 and 72 h at 37 °C. Regrowth was quantified using metabolic reduction, electrical impedance, biofilm biomass and microscopy at 0, 24, 48 and 72 h. Results: Microscopic analysis and viability readings revealed a significant initial killing effect by NaOCl, followed by a time dependent significant regrowth of C. albicans, but with inter-strain variability. In contrast to NaOCl, there was a continuous reduction in viability after EDTA treatment. Moreover, EDTA significantly inhibited regrowth after NaOCl treatment, though viable cells were still observed. Conclusions: Our results indicate that different C. albicans biofilm phenotypes grown in a non-complex surface topography have the potential to differentially tolerate standard endodontic irrigation protocols. This is the first study to report a strain dependent impact on efficacy of endodontic irrigants. Its suggested that within the complex topography of the root canal, a more difficult antimicrobial challenge, that existing endodontic irrigant regimens permit cells to regrow and drive secondary infections.
Collapse
|
26
|
Wall G, Herrera N, Lopez-Ribot JL. Repositionable Compounds with Antifungal Activity against Multidrug Resistant Candida auris Identified in the Medicines for Malaria Venture's Pathogen Box. J Fungi (Basel) 2019; 5:jof5040092. [PMID: 31581540 PMCID: PMC6958377 DOI: 10.3390/jof5040092] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 01/23/2023] Open
Abstract
Background. Candida auris has spread rapidly around the world as a causative agent of invasive candidiasis in health care facilities and there is an urgent need to find new options for treating this emerging, often multidrug-resistant pathogen. Methods. We screened the Pathogen Box® chemical library for inhibitors of C. auris strain 0390, both under planktonic and biofilm growing conditions. Results. The primary screen identified 12 compounds that inhibited at least 60% of biofilm formation or planktonic growth. After confirmatory dose-response assays, iodoquinol and miltefosine were selected as the two main leading repositionable compounds. Iodoquinol displayed potent in vitro inhibitory activity against planktonic C. auris but showed negligible inhibitory activity against biofilms; whereas miltefosine was able to inhibit the growth of C. auris under both planktonic and biofilm-growing conditions. Subsequent experiments confirmed their activity against nine other strains C. auris clinical isolates, irrespective of their susceptibility profiles against conventional antifungals. We extended our studies further to seven different species of Candida, also with similar findings. Conclusion. Both drugs possess broad spectrum of activity against Candida spp., including multiple strains of the emergent C. auris, and may constitute promising repositionable options for the development of novel therapeutics for the treatment of candidiasis.
Collapse
Affiliation(s)
- Gina Wall
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Natalia Herrera
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - José L Lopez-Ribot
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
27
|
Romera D, Aguilera-Correa JJ, Gadea I, Viñuela-Sandoval L, García-Rodríguez J, Esteban J. Candida auris: a comparison between planktonic and biofilm susceptibility to antifungal drugs. J Med Microbiol 2019; 68:1353-1358. [PMID: 31271350 DOI: 10.1099/jmm.0.001036] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction. Candida auris is a pathogenic yeast that mainly affects immunosuppressed patients and those with implanted medical devices. This pathogen also displays elevated resistance to common antifungals and high survival and spreading capacities. Since no antifungal breakpoints have yet been defined for this pathogen, the data obtained here can be useful for further research concerning treatment or implementation of a prevention and disinfection protocol. Our aim was to study the antifungal resistance of C. auris to current antifungals in planktonic and sessile states. Using confocal laser scanning microscopy and viable biomass production, we demonstrated the ability of C. auris to develop a mature biofilm. We compared the minimal inhibitory concentration (MIC) and the minimal biofilm eradication concentration (MBEC) for the C. auris DSM 21092 strain plus two clinical isolates, and the results were compared with those obtained for Candida albicans and Candida parapsilosis, two species strongly linked to bloodstream infections and infections associated with biomaterials. We found that the clinical isolates of C. auris were resistant to fluconazole and sensitive to echinocandins and polyenes. The C. auris biofilms did not show susceptibility to any antifungal agent, showing MBECs that were up to 512-fold higher than the MICs. These findings highlight the importance of biofilm formation as a key factor underlying the resistance of this species to antifungals and suggest that the presence of implantable medical devices is one of the major risk factors in immunocompromised patients.
Collapse
Affiliation(s)
- David Romera
- Department of Clinical Microbiology, IIS Fundación Jiménez Díaz, 28040 Madrid, Spain
| | | | - Ignacio Gadea
- Department of Clinical Microbiology, IIS Fundación Jiménez Díaz, 28040 Madrid, Spain
| | | | | | - Jaime Esteban
- Department of Clinical Microbiology, IIS Fundación Jiménez Díaz, 28040 Madrid, Spain
| |
Collapse
|
28
|
Phenotypic characteristics and transcriptome profile of Cryptococcus gattii biofilm. Sci Rep 2019; 9:6438. [PMID: 31015652 PMCID: PMC6478838 DOI: 10.1038/s41598-019-42896-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/08/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, we characterized Cryptococcus gattii biofilm formation in vitro. There was an increase in the density of metabolically active sessile cells up to 72 h of biofilm formation on polystyrene and glass surfaces. Scanning electron microscopy and confocal laser scanning microscopy analysis revealed that in the early stage of biofilm formation, yeast cells adhered to the abiotic surface as a monolayer. After 12 h, extracellular fibrils were observed projecting from C. gattii cells, connecting the yeast cells to each other and to the abiotic surface; mature biofilm consisted of a dense network of cells deeply encased in an extracellular polymeric matrix. These features were also observed in biofilms formed on polyvinyl chloride and silicone catheter surfaces. We used RNA-Seq-based transcriptome analysis to identify changes in gene expression associated with C. gattii biofilm at 48 h compared to the free-floating planktonic cells. Differential expression analysis showed that 97 and 224 transcripts were up-regulated and down-regulated in biofilm, respectively. Among the biological processes, the highest enriched term showed that the transcripts were associated with cellular metabolic processes, macromolecule biosynthetic processes and translation.
Collapse
|
29
|
New N-(oxazolylmethyl)-thiazolidinedione Active against Candida albicans Biofilm: Potential Als Proteins Inhibitors. Molecules 2018; 23:molecules23102522. [PMID: 30279343 PMCID: PMC6222719 DOI: 10.3390/molecules23102522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 12/13/2022] Open
Abstract
C. albicans is the most frequently occurring fungal pathogen, and is becoming an increasing public health problem, especially in the context of increased microbial resistance. This opportunistic pathogen is characterized by a versatility explained mainly by its ability to form complex biofilm structures that lead to enhanced virulence and antibiotic resistance. In this context, a review of the known C. albicans biofilm formation inhibitors were performed and a new N-(oxazolylmethyl)-thiazolidinedione scaffold was constructed. 16 new compounds were synthesized and characterized in order to confirm their proposed structures. A general antimicrobial screening against Gram-positive and Gram-negative bacteria, as well as fungi, was performed and revealed that the compounds do not have direct antimicrobial activity. The anti-biofilm activity evaluation confirmed the compounds act as selective inhibitors of C. albicans biofilm formation. In an effort to substantiate this biologic profile, we used in silico investigations which suggest that the compounds could act by binding, and thus obstructing the functions of, the C. albicans Als surface proteins, especially Als1, Als3, Als5 and Als6. Considering the well documented role of Als1 and Als3 in biofilm formation, our new class of compounds that target these proteins could represent a new approach in C. albicans infection prevention and management.
Collapse
|
30
|
Kean R, Delaney C, Sherry L, Borman A, Johnson EM, Richardson MD, Rautemaa-Richardson R, Williams C, Ramage G. Transcriptome Assembly and Profiling of Candida auris Reveals Novel Insights into Biofilm-Mediated Resistance. mSphere 2018; 3:e00334-18. [PMID: 29997121 PMCID: PMC6041501 DOI: 10.1128/msphere.00334-18] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022] Open
Abstract
Candida auris has emerged as a significant global nosocomial pathogen. This is primarily due to its antifungal resistance profile but also its capacity to form adherent biofilm communities on a range of clinically important substrates. While we have a comprehensive understanding of how other Candida species resist and respond to antifungal challenge within the sessile phenotype, our current understanding of C. auris biofilm-mediated resistance is lacking. In this study, we are the first to perform transcriptomic analysis of temporally developing C. auris biofilms, which were shown to exhibit phase- and antifungal class-dependent resistance profiles. A de novo transcriptome assembly was performed, where sequenced sample reads were assembled into an ~11.5-Mb transcriptome consisting of 5,848 genes. Differential expression (DE) analysis demonstrated that 791 and 464 genes were upregulated in biofilm formation and planktonic cells, respectively, with a minimum 2-fold change. Adhesin-related glycosylphosphatidylinositol (GPI)-anchored cell wall genes were upregulated at all time points of biofilm formation. As the biofilm developed into intermediate and mature stages, a number of genes encoding efflux pumps were upregulated, including ATP-binding cassette (ABC) and major facilitator superfamily (MFS) transporters. When we assessed efflux pump activity biochemically, biofilm efflux was greater than that of planktonic cells at 12 and 24 h. When these were inhibited, fluconazole sensitivity was enhanced 4- to 16-fold. This study demonstrates the importance of efflux-mediated resistance within complex C. auris communities and may explain the resistance of C. auris to a range of antimicrobial agents within the hospital environment.IMPORTANCE Fungal infections represent an important cause of human morbidity and mortality, particularly if the fungi adhere to and grow on both biological and inanimate surfaces as communities of cells (biofilms). Recently, a previously unrecognized yeast, Candida auris, has emerged globally that has led to widespread concern due to the difficulty in treating it with existing antifungal agents. Alarmingly, it is also able to grow as a biofilm that is highly resistant to antifungal agents, yet we are unclear about how it does this. Here, we used a molecular approach to investigate the genes that are important in causing the cells to be resistant within the biofilm. The work provides significant insights into the importance of efflux pumps, which actively pump out toxic antifungal drugs and therefore enhance fungal survival within a variety of harsh environments.
Collapse
Affiliation(s)
- Ryan Kean
- Oral Sciences Research Group, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Healthcare, Policy and Practise, University of the West of Scotland, Paisley, United Kingdom
| | - Christopher Delaney
- Oral Sciences Research Group, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Leighann Sherry
- Oral Sciences Research Group, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew Borman
- National Mycology Reference Laboratory, Public Health England South-West, Bristol, United Kingdom
| | - Elizabeth M Johnson
- National Mycology Reference Laboratory, Public Health England South-West, Bristol, United Kingdom
| | - Malcolm D Richardson
- Mycology Reference Centre Manchester, University Hospital of South Manchester & University of Manchester, Manchester Academic Health Sciences Centre, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, Manchester, United Kingdom
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre Manchester, University Hospital of South Manchester & University of Manchester, Manchester Academic Health Sciences Centre, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, Manchester, United Kingdom
| | - Craig Williams
- Institute of Healthcare, Policy and Practise, University of the West of Scotland, Paisley, United Kingdom
- ESCMID Study Group for Biofilms (ESGB)‡
| | - Gordon Ramage
- Oral Sciences Research Group, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- ESCMID Study Group for Biofilms (ESGB)‡
| |
Collapse
|
31
|
Special Issue: Candida and Candidiasis. J Fungi (Basel) 2018; 4:jof4030074. [PMID: 29933544 PMCID: PMC6162767 DOI: 10.3390/jof4030074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023] Open
Abstract
This special issue highlights emerging topics related to Candida, the most prevalent fungal pathogen in the hospital setting. The advantages and limitations of new, non-culture based diagnostic techniques are discussed. The issue reviews mammalian and non-mammalian infection models. The manuscripts present updates on several molecular mechanisms of pathogenicity, including filamentation, biofilm formation, and phospholipid production.
Collapse
|