1
|
Lozada-Ramos H, Álvarez-Payares J, Daza-Arana JE, Salas-Marín LM. Cryptococcal Meningitis in an HCV-Positive and IVDU- and HIV-Negative Patient: A Case Report and Literature Review. Int Med Case Rep J 2024; 17:855-860. [PMID: 39464491 PMCID: PMC11512521 DOI: 10.2147/imcrj.s486119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024] Open
Abstract
Background Cryptococcal meningitis (CM) is a central nervous system (CNS) infection that occurs mainly in immunocompromised individuals such as those with human immunodeficiency virus (HIV) infection. However, the prevalence of CM in immunocompetent patients has increased. Although CM has been reported in patients with hepatitis C virus (HCV) infection, it has not yet been fully established whether there is an association between both conditions. CM has also been reported in patients with intravenous drug use (IVDU), which is related to the immunosuppression caused by these drugs. Case Presentation We report the case of a 24-year-old man who presented with meningitis secondary to Cryptococcus gattii infection. He had a history of IVDU and HCV infection, was HIV-negative and without antiviral treatment. The patient received adequate antifungal treatment during induction, consolidation, and maintenance phases. His condition relapsed, requiring dose adjustment, with an excellent response during clinical follow-up for both meningitis and HCV infection. A brain biopsy was requested during relapse to rule out other co-infection. Conclusion The case of an individual diagnosed with cryptococcal meningitis, who had a history of IVDU and HCV infection, is presented. The coexistence of such events could shadow the prognosis of this group of subjects, related to immunosuppression that can be caused through different pathways. Having HCV and being a IVDU simultaneously could increase the risk of Cryptococcus infection.
Collapse
Affiliation(s)
- Heiler Lozada-Ramos
- Medicine Program, School of Health, Universidad Santiago de Cali, Palmira, Colombia
- Movement and Health Research Group, School of Health, Universidad Santiago de Cali, Santiago de Cali, Colombia
- Doctoral Program in Infectious Diseases, Universidad de Santander – UDES, Bucaramanga, Colombia
| | - Jorge Álvarez-Payares
- Medicine Program, School of Health, Universidad del Valle, San Fernando Campus, Santiago de Cali, Colombia
| | - Jorge Enrique Daza-Arana
- Movement and Health Research Group, School of Health, Universidad Santiago de Cali, Santiago de Cali, Colombia
- Physiotherapy Program, School of Health, Universidad Santiago de Cali, Cali, Colombia
| | - Luisa María Salas-Marín
- Medicine Program, School of Health, Universidad del Valle, San Fernando Campus, Santiago de Cali, Colombia
| |
Collapse
|
2
|
Hansakon A, Angkasekwinai P. Murine Models of Cryptococcus Infection. Curr Protoc 2024; 4:e1001. [PMID: 38456766 DOI: 10.1002/cpz1.1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Cryptococcus is recognized as one of the emerging fungal pathogens that have major impact on diverse populations worldwide. Because of the high mortality rate and limited antifungal therapy options, there is an urgent need to understand the impact of dynamic processes between fungal pathogens and hosts that influence cryptococcal pathogenesis and disease outcomes. With known common limitations in human studies, experimental murine cryptococcosis models that can recapitulate human disease provide a valuable tool for studying fungal virulence and the host interaction, leading to development of better treatment strategies. Infection with Cryptococcus in mice via intranasal inhalation is mostly used because it is noninvasive and considered to be the most common mode of infection, strongly correlating with cryptococcal disease in humans. The protocols described in this article provide the procedures of establishing a murine model of Cryptococcus infection by intranasal inhalation and assessing the host immune response and disease progression during Cryptococcus infection. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Murine model of pulmonary cryptococcal infection via intranasal inhalation Basic Protocol 2: Assessment of the pulmonary immune response during Cryptococcus infection Support Protocol: Evaluation of pulmonary gene expression by real-time PCR Basic Protocol 3: Enumeration of survival rate and organ fungal burden.
Collapse
Affiliation(s)
- Adithap Hansakon
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
3
|
Cognialli RCR, Fratucci GF, Carneiro BH, Antonio KL, Voidaleski MF, Favarello LM, Vicente VA, Queiroz-Telles F. Case report: First case of fungemia caused by Papiliotrema laurentii in a patient with SARS-CoV-2 infection. Rev Soc Bras Med Trop 2024; 57:e008002023. [PMID: 38324809 PMCID: PMC10852462 DOI: 10.1590/0037-8682-0480-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/14/2023] [Indexed: 02/09/2024] Open
Abstract
Previously considered saprobe and non-pathogenic, the fungus Papiliotrema laurentii (formerly known as Cryptococcus laurentii), is rarely associated with human infection. Nevertheless, there has been an increase in reported infections by non-neoformans cryptococci. After a literature search on the Cochrane Library, LILACS, SciELO, MEDLINE, PubMed, and PMC (PubMed Central) databases, we conclude that this is the first case report of fungemia and probable meningitis caused by Papiliotrema laurentii in a previously immunocompetent host with associated COVID-19.
Collapse
Affiliation(s)
| | | | | | | | - Morgana Ferreira Voidaleski
- Universidade Federal do Paraná, Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, Curitiba, PR, Brasil
| | | | | | - Flávio Queiroz-Telles
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Saúde Coletiva, Curitiba, PR, Brasil
| |
Collapse
|
4
|
Qu J, Lv X. Cryptococcal meningitis in apparently immunocompetent patients. Crit Rev Microbiol 2024; 50:76-86. [PMID: 36562731 DOI: 10.1080/1040841x.2022.2159786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Cryptococcal meningitis (CM) is an invasive fungal disease that currently poses a threat to human health worldwide, with high morbidity and mortality, particularly in immunocompromised patients. Although CM mainly occurs in HIV-positive patients and other immunocompromised patients, it is also increasingly seen in seemingly immunocompetent hosts. The clinical characteristics of CM between immunocompromised and immunocompetent populations are different. However, few studies have focussed on CM in immunocompetent individuals. This review summarizes the clinical characteristics of apparently immunocompetent CM patients in terms of aetiology, immune pathogenesis, clinical presentation, laboratory data, imaging findings, treatment strategies and prognosis. It is of great significance to further understand the disease characteristics of CM, explore new treatment strategies and improve the prognosis of CM in immunocompetent individuals.
Collapse
Affiliation(s)
- Junyan Qu
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoju Lv
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Bathobakae L, Mohtadi M, Kim C, Ruff T, Bashir R, Ekin U, Philip S, Upadhyay S. Fulminant Meningitis: A Rare Case of HSV-2 and Cryptococcal Co-Infection in a Patient With AIDS. J Investig Med High Impact Case Rep 2024; 12:23247096241286380. [PMID: 39365015 PMCID: PMC11459586 DOI: 10.1177/23247096241286380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/15/2024] [Accepted: 09/07/2024] [Indexed: 10/05/2024] Open
Abstract
Cryptococcal meningitis (CM) is a severe and often fatal infection of the central nervous system that is caused by Cryptococcus spp. Cryptococcal meningitis mainly affects immunocompromised individuals such as those with AIDS, organ transplantation recipients, and those with conditions requiring prolonged immunosuppressive therapy. Infection typically begins with the inhalation of cryptococcal spores, often from bird droppings, which can remain dormant in the lungs and lymph nodes before disseminating to the central nervous system. Signs and symptoms include headache, nausea, and cognitive impairment, which can progress to severe neurological complications if not promptly treated. Even in the era of antifungal and antiretroviral therapies, CM remains a public health challenge with substantial morbidity and mortality. Although rare, sporadic cases of cryptococcal neoformans/gattii coinfection with Mycobacterium tuberculosis, Streptococcus pneumoniae, and Treponema pallidum have been reported in the literature. Herein, we describe an extremely rare case of fulminant meningitis due to herpes simplex virus (HSV)-2 and Cryptococcal neoformans coinfection. Our patient also had cryptococcemia, which is known to increase acute mortality rates in patients with CM.
Collapse
Affiliation(s)
| | - Malina Mohtadi
- St. Joseph’s University Medical Center, Paterson, NJ, USA
| | - Chanhee Kim
- St. Joseph’s University Medical Center, Paterson, NJ, USA
| | - Trevor Ruff
- St. George’s University, Grenada, West Indies
| | | | - Utku Ekin
- St. Joseph’s University Medical Center, Paterson, NJ, USA
| | - Simi Philip
- St. Joseph’s University Medical Center, Paterson, NJ, USA
| | | |
Collapse
|
6
|
Singh N, Kumari V, Agrawal K, Kulshreshtha M. Molecular Pathway, Epidemiological Data and Treatment Strategies of Fungal Infection (Mycoses): A Comprehensive Review. Cent Nerv Syst Agents Med Chem 2024; 24:68-81. [PMID: 38305394 DOI: 10.2174/0118715249274215231205062701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/06/2023] [Accepted: 10/31/2023] [Indexed: 02/03/2024]
Abstract
The recent increase in fungal infections is a health crisis. This surge is directly tied to the increase in immunocompromised people caused by changes in medical practice, such as the use of harsh chemotherapy and immunosuppressive medicines. Immunosuppressive disorders such as HIV have exacerbated the situation dramatically. Subcutaneous or superficial fungal infections can harm the skin, keratinous tissues, and mucous membranes. This category includes some of the most common skin disorders that impact millions of people worldwide. Despite the fact that they are seldom fatal, they can have a catastrophic impact on a person's quality of life and, in rare situations, spread to other people or become obtrusive. The majority of fungal infections under the skin and on the surface are simply and quickly cured. An opportunistic organism that preys on a weak host or a natural intruder can both result in systemic fungal infections. Furthermore, it might be exceedingly lethal and dangerous to one's life. Dimorphic fungi may pose a hazard to healthy populations that are not exposed to endemic fungi. Increased surveillance, the availability of quick, noninvasive diagnostic tests, monitoring the emergence of antifungal medication resistance, and research on the pathophysiology, prevention, and management of fungal infections are just a few potential solutions to these new health problems. The goal of this review is to summarize the data available for fungal infections and the different therapies which are involved in their treatment. Additionally, it also summarizes the molecular and scientific data of the plants which contain anti-fungal activity. Data are acquired using Google, PubMed, Scholar, and other online sources.
Collapse
Affiliation(s)
| | - Vibha Kumari
- Rajiv Academy for Pharmacy, Mathura (U.P.), India
| | | | | |
Collapse
|
7
|
Pereira TC, do Carmo PHF, de Menezes RT, de Oliveira HC, de Oliveira LD, Junqueira JC, Scorzoni L. Synergistic effect of the verapamil and amphotericin B against Cryptococcus neoformans. Folia Microbiol (Praha) 2023; 68:999-1004. [PMID: 37950840 DOI: 10.1007/s12223-023-01104-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023]
Abstract
Cryptococcus neoformans is an encapsulated yeast that can cause cryptococcosis and cryptococcal meningitis, which conventional treatment involves antifungal drugs such as polyenes, flucytosine, azoles, and their combinations. However, the high cost, toxicity, and increase in fungi resistance to antifungal agents stimulate the search for therapeutic strategies such as drug repurposing and combination therapy. This study evaluated the activity of the antihypertensive verapamil (VEH) alone and combined with amphotericin B (AmB) against C. neoformans. VEH exhibited antifungal activity against C. neoformans with minimum inhibitory concentration and minimum fungicidal concentration of 118 µg per mL. The combination of VEH and AmB exhibited synergism, reducing at least eightfold both drugs' concentrations. Moreover, the combination decreased the size and glucuronoxylomannnan content of C. neoformans capsule. However, no difference was observed in ergosterol levels of C. neoformans after treatment with VEH and AmB in combination. Altogether, VEH in combination with AmB exhibits potential as a candidate as for the development of anti-cryptococcal drug.
Collapse
Affiliation(s)
- Thaís C Pereira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP, 12245-000, Brazil
| | - Paulo H F do Carmo
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP, 12245-000, Brazil
| | - Raquel T de Menezes
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP, 12245-000, Brazil
| | | | - Luciane D de Oliveira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP, 12245-000, Brazil
| | - Juliana C Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP, 12245-000, Brazil
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP, 12245-000, Brazil.
- Universidade de Guarulhos (UNG), Programa de Pós-Graduação em Enfermagem, Guarulhos, SP, Brazil.
| |
Collapse
|
8
|
Czajka KM, Venkataraman K, Brabant-Kirwan D, Santi SA, Verschoor C, Appanna VD, Singh R, Saunders DP, Tharmalingam S. Molecular Mechanisms Associated with Antifungal Resistance in Pathogenic Candida Species. Cells 2023; 12:2655. [PMID: 37998390 PMCID: PMC10670235 DOI: 10.3390/cells12222655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Candidiasis is a highly pervasive infection posing major health risks, especially for immunocompromised populations. Pathogenic Candida species have evolved intrinsic and acquired resistance to a variety of antifungal medications. The primary goal of this literature review is to summarize the molecular mechanisms associated with antifungal resistance in Candida species. Resistance can be conferred via gain-of-function mutations in target pathway genes or their transcriptional regulators. Therefore, an overview of the known gene mutations is presented for the following antifungals: azoles (fluconazole, voriconazole, posaconazole and itraconazole), echinocandins (caspofungin, anidulafungin and micafungin), polyenes (amphotericin B and nystatin) and 5-fluorocytosine (5-FC). The following mutation hot spots were identified: (1) ergosterol biosynthesis pathway mutations (ERG11 and UPC2), resulting in azole resistance; (2) overexpression of the efflux pumps, promoting azole resistance (transcription factor genes: tac1 and mrr1; transporter genes: CDR1, CDR2, MDR1, PDR16 and SNQ2); (3) cell wall biosynthesis mutations (FKS1, FKS2 and PDR1), conferring resistance to echinocandins; (4) mutations of nucleic acid synthesis/repair genes (FCY1, FCY2 and FUR1), resulting in 5-FC resistance; and (5) biofilm production, promoting general antifungal resistance. This review also provides a summary of standardized inhibitory breakpoints obtained from international guidelines for prominent Candida species. Notably, N. glabrata, P. kudriavzevii and C. auris demonstrate fluconazole resistance.
Collapse
Affiliation(s)
- Karolina M. Czajka
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
| | - Krishnan Venkataraman
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | | | - Stacey A. Santi
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Chris Verschoor
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Vasu D. Appanna
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Ravi Singh
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Deborah P. Saunders
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Sujeenthar Tharmalingam
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| |
Collapse
|
9
|
De Jesus DFF, De Freitas ALD, De Oliveira IM, De Almeida LC, Bastos RW, Spadari CDC, Melo ASDA, Santos DDA, Costa-Lotufo LV, Reis FCG, Rodrigues ML, Stefani HA, Ishida K. Organoselenium Has a Potent Fungicidal Effect on Cryptococcus neoformans and Inhibits the Virulence Factors. Antimicrob Agents Chemother 2023; 67:e0075922. [PMID: 36815840 PMCID: PMC10019174 DOI: 10.1128/aac.00759-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/14/2023] [Indexed: 02/24/2023] Open
Abstract
Cryptococcosis therapy is often limited by toxicity problems, antifungal tolerance, and high costs. Studies approaching chalcogen compounds, especially those containing selenium, have shown promising antifungal activity against pathogenic species. This work aimed to evaluate the in vitro and in vivo antifungal potential of organoselenium compounds against Cryptococcus neoformans. The lead compound LQA_78 had an inhibitory effect on C. neoformans planktonic cells and dispersed cells from mature biofilms at similar concentrations. The fungal growth inhibition led to an increase in budding cells arrested in the G2/M phase, but the compound did not significantly affect structural cell wall components or chitinase activity, an enzyme that regulates the dynamics of the cell wall. The compound also inhibited titan cell (Tc) and enlarged capsule yeast (NcC) growth and reduced the body diameter and capsule thickness associated with increased capsular permeability of both virulent morphotypes. LQA_78 also reduced fungal melanization through laccase activity inhibition. The fungicidal activity was observed at higher concentrations (16 to 64 μg/mL) and may be associated with augmented plasma membrane permeability, ROS production, and loss of mitochondrial membrane potential. While LQA_78 is a nonhemolytic compound, its cytotoxic effects were cell type dependent, exhibiting no toxicity on Galleria mellonella larvae at a dose ≤46.5 mg/kg. LQA_78 treatment of larvae infected with C. neoformans effectively reduced the fungal burden and inhibited virulent morphotype formation. To conclude, LQA_78 displays fungicidal action and inhibits virulence factors of C. neoformans. Our results highlight the potential use of LQA_78 as a lead molecule for developing novel pharmaceuticals for treating cryptococcosis.
Collapse
Affiliation(s)
| | | | | | | | - Rafael Wesley Bastos
- Center of Biosciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | | | | | - Daniel de Assis Santos
- Institute of Biomedical Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Flavia C. G. Reis
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marcio L. Rodrigues
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Kelly Ishida
- Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
10
|
Islam MD, Harrison BD, Li JJY, McLoughlin AG, Court DA. Do mitochondria use efflux pumps to protect their ribosomes from antibiotics? MICROBIOLOGY (READING, ENGLAND) 2023; 169:001272. [PMID: 36748523 PMCID: PMC9993110 DOI: 10.1099/mic.0.001272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Fungal environments are rich in natural and engineered antimicrobials, and this, combined with the fact that fungal genomes are rich in coding sequences for transporters, suggests that fungi are an intriguing group in which to search for evidence of antimicrobial efflux pumps in mitochondria. Herein, the range of protective mechanisms used by fungi against antimicrobials is introduced, and it is hypothesized, based on the susceptibility of mitochondrial and bacterial ribosomes to the same antibiotics, that mitochondria might also contain pumps that efflux antibiotics from these organelles. Preliminary evidence of ethidium bromide efflux is presented and several candidate efflux pumps are identified in fungal mitochondrial proteomes.
Collapse
Affiliation(s)
- Md Deen Islam
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Brian D Harrison
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Judy J-Y Li
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Austein G McLoughlin
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | |
Collapse
|
11
|
Andriani GM, Spoladori LFDA, Fabris M, Camargo PG, Pereira PML, Santos JP, Bartolomeu-Gonçalves G, Alonso L, Lancheros CAC, Alonso A, Nakamura CV, Macedo F, Pinge-Filho P, Yamauchi LM, Bispo MDLF, Tavares ER, Yamada-Ogatta SF. Synergistic antifungal interaction of N-(butylcarbamothioyl) benzamide and amphotericin B against Cryptococcus neoformans. Front Microbiol 2023; 14:1040671. [PMID: 36960287 PMCID: PMC10028264 DOI: 10.3389/fmicb.2023.1040671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Cryptococcus neoformans is one of the leading causes of invasive fungal infections worldwide. Cryptococcal meningoencephalitis is the main challenge of antifungal therapy due to high morbidity and mortality rates, especially in low- and middle-income countries. This can be partly attributed to the lack of specific diagnosis difficulty accessing treatment, antifungal resistance and antifungal toxicity. Methods In the present study, the effect of the synthetic thiourea derivative N-(butylcarbamothioyl) benzamide (BTU-01), alone and combined with amphotericin B (AmB), was evaluated in planktonic and sessile (biofilm) cells of C. neoformans. Results BTU-01 alone exhibited a fungistatic activity with minimal inhibitory concentrations (MICs) ranging from 31.25 to 62.5 μg/mL for planktonic cells; and sessile MICs ranging from 125.0 to 1000.0 μg/mL. BTU-01 caused a concentration-dependent inhibitory activity on cryptococcal urease and did not interfere with plasma membrane fluidity. Molecular docking was performed on Canavalia ensiformis urease, and BTU-01 showed relevant interactions with the enzyme. The combination of BTU-01 and AmB exhibited synergistic fungicidal activity against planktonic and sessile cells of C. neoformans. Microscopic analysis of C. neoformans treated with BTU-01, alone or combined with AmB, revealed a reduction in cell and capsule sizes, changes in the morphology of planktonic cells; a significant decrease in the number of cells within the biofilm; and absence of exopolymeric matrix surrounding the sessile cells. Neither hemolytic activity nor cytotoxicity to mammalian cells was detected for BTU-01, alone or combined with AmB, at concentrations that exhibited antifungal activity. BTU-01 also displayed drug-likeness properties. Conclusion These results indicate the potential of BTU-01, for the development of new strategies for controlling C. neoformans infections.
Collapse
Affiliation(s)
- Gabriella Maria Andriani
- Programa de Pós-graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Lais Fernanda de Almeida Spoladori
- Programa de Pós-graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Marciéli Fabris
- Laboratório de Síntese de Moléculas Medicinais, Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Priscila Goes Camargo
- Laboratório de Síntese de Moléculas Medicinais, Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Patrícia Morais Lopes Pereira
- Programa de Pós-graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Jussevania Pereira Santos
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Guilherme Bartolomeu-Gonçalves
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Programa de Pós-graduação em Fisiopatologia Clínica e Laboratorial, Departamento de Patología, Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Lais Alonso
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Cesar Armando Contreras Lancheros
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Ciências Básicas da Saúde, Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Antonio Alonso
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Celso Vataru Nakamura
- Programa de Pós-graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Ciências Básicas da Saúde, Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Fernando Macedo
- Laboratório de Síntese de Moléculas Medicinais, Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Phileno Pinge-Filho
- Programa de Pós-graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Lucy Megumi Yamauchi
- Programa de Pós-graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Marcelle de Lima Ferreira Bispo
- Laboratório de Síntese de Moléculas Medicinais, Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Eliandro Reis Tavares
- Programa de Pós-graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Programa de Pós-graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Programa de Pós-graduação em Fisiopatologia Clínica e Laboratorial, Departamento de Patología, Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- *Correspondence: Sueli Fumie Yamada-Ogatta,
| |
Collapse
|
12
|
Wang WJ, Liu CC, Li YT, Li MQ, Fu YT, Li XC, Jie-Kang, Qian WD. Antifungal and Antibiofilm In Vitro Activities of Ursolic Acid on Cryptococcus neoformans. Curr Microbiol 2022; 79:293. [PMID: 35972650 DOI: 10.1007/s00284-022-02992-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
Ursolic acid (UA) exists in a variety of medicinal plants. UA exhibits antimicrobial activity against several microorganisms; however, little is known regarding the potential antifungal effect of UA on Cryptococcus neoformans (C. neoformans). The antifungal and antibiofilm activities of UA on C. neoformans H99 were evaluated in this study. Minimum inhibitory concentration (MIC) of UA against C. neoformans H99 was determined by microdilution technique, and its action mode was elucidated by clarifying the variations in cell membrane integrity, capsule, and melanin production. Moreover, the inhibition and dispersal effects of UA on biofilm formation and mature biofilms by C. neoformans H99 were evaluated using crystal violet (CV) assay, optical microscopy, field emission scanning electron microscopy and confocal laser scanning microscopy. The results indicated that the MIC value of UA against C. neoformans H99 was 0.25 mg/mL. UA disrupted the cell membrane integrity, inhibited the capsule and melanin production of C. neoformans H99 in a concentration-dependent manner. Further, UA presented the inhibitory effect on biofilm formation and dispersed mature biofilms, as well as compromised the cell membrane integrity of C. neoformans H99 cells within biofilms. Together, these results indicate that UA might be a potential therapeutic option for the treatment of C. neoformans-related infections.
Collapse
Affiliation(s)
- Wen-Jing Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Chan-Chan Liu
- Xi'an Medical College, Xi'an, 710309, People's Republic of China
| | - Yan-Tong Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Miao-Qian Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Yu-Ting Fu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Xin-Chen Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Jie-Kang
- Shaanxi Institute of Product Quality Supervision and Inspection, Xi'an, 710048, People's Republic of China
| | - Wei-Dong Qian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China. .,Department of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| |
Collapse
|
13
|
Normile TG, Del Poeta M. Three Models of Vaccination Strategies Against Cryptococcosis in Immunocompromised Hosts Using Heat-Killed Cryptococcus neoformans Δ sgl1. Front Immunol 2022; 13:868523. [PMID: 35615354 PMCID: PMC9124966 DOI: 10.3389/fimmu.2022.868523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
Vaccines are one of the greatest medical accomplishments to date, yet no fungal vaccines are currently available in humans mainly because opportunistic mycoses generally occur during immunodeficiencies necessary for vaccine protection. In previous studies, a live, attenuated Cryptococcus neoformans Δsgl1 mutant accumulating sterylglucosides was found to be avirulent and protected mice from a subsequent lethal infection even in absence of CD4+ T cells, a condition most associated with cryptococcosis (e.g., HIV). Here, we tested three strategies of vaccination against cryptococcosis. First, in our preventative model, protection was achieved even after a 3-fold increase of the vaccination window. Second, because live C. neoformans Δsgl1-vaccinated mice challenged more than once with WT strain had a significant decrease in lung fungal burden, we tested C. neoformans Δsgl1 as an immunotherapeutic. We found that therapeutic administrations of HK C. neoformans Δsgl1 post WT challenge significantly improves the lung fungal burden. Similarly, therapeutic administration of HK C. neoformans Δsgl1 post WT challenge resulted in 100% or 70% survival depending on the time of vaccine administration, suggesting that HK Δsgl1 is a robust immunotherapeutic option. Third, we investigated a novel model of vaccination in preventing reactivation from lung granuloma using C. neoformans Δgcs1. Remarkably, we show that administration of HK Δsgl1 prevents mice from reactivating Δgcs1 upon inducing immunosuppression with corticosteroids or by depleting CD4+ T cells. Our results suggest that HK Δsgl1 represents a clinically relevant, efficacious vaccine that confers robust host protection in three models of vaccination against cryptococcosis even during CD4-deficiency.
Collapse
Affiliation(s)
- Tyler G. Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States,Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, United States,Veterans Administration Medical Center, Northport, NY, United States,*Correspondence: Maurizio Del Poeta,
| |
Collapse
|
14
|
Role of the anillin-like protein in growth of Cryptococcus neoformans at human host temperature. Fungal Genet Biol 2022; 160:103697. [DOI: 10.1016/j.fgb.2022.103697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022]
|
15
|
Synthesis and Evaluation of the Antifungal and Toxicological Activity of Nitrofuran Derivatives. Pharmaceutics 2022; 14:pharmaceutics14030593. [PMID: 35335969 PMCID: PMC8950151 DOI: 10.3390/pharmaceutics14030593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Fungal diseases affect more than 1 billion people worldwide. The constant global changes, the advent of new pandemics, and chronic diseases favor the diffusion of fungal pathogens such as Candida, Cryptococcus, Aspergillus, Trichophyton, Histoplasma capsulatum, and Paracoccidioides brasiliensis. In this work, a series of nitrofuran derivatives were synthesized and tested against different fungal species; most of them showed inhibitory activity, fungicide, and fungistatic profile. The minimal inhibitory concentration (MIC90) values for the most potent compounds range from 0.48 µg/mL against H. capsulatum (compound 11) and P. brasiliensis (compounds 3 and 9) to 0.98 µg/mL against Trichophyton rubrum and T. mentagrophytes (compounds 8, 9, 12, 13 and 8, 12, 13, respectively), and 3.9 µg/mL against Candida and Cryptococcus neoformans strains (compounds 1 and 5, respectively). In addition, all compounds showed low toxicity when tested in vitro on lung cell lines (A549 and MRC-5) and in vivo in Caenorhabditis elegans larvae. Many of them showed high selectivity index values. Thus, these studied nitrofuran derivatives proved to be potent against different fungal species, characterized by low toxicity and high selectivity; for these reasons, they may become promising compounds for the treatment of mycoses.
Collapse
|
16
|
Delma FZ, Al-Hatmi AMS, Brüggemann RJM, Melchers WJG, de Hoog S, Verweij PE, Buil JB. Molecular Mechanisms of 5-Fluorocytosine Resistance in Yeasts and Filamentous Fungi. J Fungi (Basel) 2021; 7:jof7110909. [PMID: 34829198 PMCID: PMC8623157 DOI: 10.3390/jof7110909] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 12/30/2022] Open
Abstract
Effective management and treatment of fungal diseases is hampered by poor diagnosis, limited options for antifungal therapy, and the emergence of antifungal drug resistance. An understanding of molecular mechanisms contributing to resistance is essential to optimize the efficacy of currently available antifungals. In this perspective, one of the oldest antifungals, 5-fluorocytosine (5-FC), has been the focus of recent studies applying advanced genomic and transcriptomic techniques to decipher the order of events at the molecular level that lead to resistance. These studies have highlighted the complexity of resistance and provided new insights that are reviewed in the present paper.
Collapse
Affiliation(s)
- Fatima Zohra Delma
- Department of Medical Microbiology, Radboud University Medical Centre, 6252 AG Nijmegen, The Netherlands; (F.Z.D.); (W.J.G.M.); (P.E.V.)
| | - Abdullah M. S. Al-Hatmi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
- Foundation Atlas of Clinical Fungi, 1214 GP Hilversum, The Netherlands
| | - Roger J. M. Brüggemann
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
- Department of Pharmacy, Radboud University Medical Center, 6252 AG Nijmegen, The Netherlands
| | - Willem J. G. Melchers
- Department of Medical Microbiology, Radboud University Medical Centre, 6252 AG Nijmegen, The Netherlands; (F.Z.D.); (W.J.G.M.); (P.E.V.)
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
| | - Sybren de Hoog
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
- Foundation Atlas of Clinical Fungi, 1214 GP Hilversum, The Netherlands
| | - Paul E. Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, 6252 AG Nijmegen, The Netherlands; (F.Z.D.); (W.J.G.M.); (P.E.V.)
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
| | - Jochem B. Buil
- Department of Medical Microbiology, Radboud University Medical Centre, 6252 AG Nijmegen, The Netherlands; (F.Z.D.); (W.J.G.M.); (P.E.V.)
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
- Correspondence: ; Tel.: +31-24-361-4356
| |
Collapse
|
17
|
Sutar Y, Fulton SR, Paul S, Altamirano S, Mhatre S, Saeed H, Patel P, Mallick S, Bhat R, Patravale VB, Chauhan H, Nielsen K, Date AA. Docusate-Based Ionic Liquids of Anthelmintic Benzimidazoles Show Improved Pharmaceutical Processability, Lipid Solubility, and in Vitro Activity against Cryptococcus neoformans. ACS Infect Dis 2021; 7:2637-2649. [PMID: 34467755 PMCID: PMC8884109 DOI: 10.1021/acsinfecdis.1c00063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As the existing therapeutic modalities for the treatment of cryptococcal meningitis (CM) have suboptimal efficacy, repurposing existing drugs for the treatment of CM is of great interest. The FDA-approved anthelmintic benzimidazoles, albendazole, mebendazole, and flubendazole, have demonstrated potent but variable in vitro activity against Cryptococcus neoformans, the predominant fungal species responsible for CM. We performed molecular docking studies to ascertain the interaction of albendazole, mebendazole, and flubendazole with a C. neoformans β-tubulin structure, which revealed differential binding interactions and explained the different in vitro efficacies reported previously and observed in this investigation. Despite their promising in vitro efficacy, the repurposing of anthelmintic benzimidazoles for oral CM therapy is significantly hampered due to their high crystallinity, poor pharmaceutical processability, low and pH-dependent solubility, and drug precipitation upon entering the intestine, all of which result in low and variable oral bioavailability. Here, we demonstrate that the anthelmintic benzimidazoles can be transformed into partially amorphous low-melting ionic liquids (ILs) with a simple metathesis reaction using amphiphilic sodium docusate as a counterion. In vitro efficacy studies on a laboratory reference and a clinical isolate of C. neoformans showed 2- to 4-fold lower IC90 values for docusate-based ILs compared to the pure anthelmintic benzimidazoles. Furthermore, using a C. neoformans strain with green fluorescent protein (GFP)-tagged β-tubulin and albendazole and its docusate IL as model candidates, we showed that the benzimidazoles and their ILs reduce the viability of C. neoformans by interfering with its microtubule assembly. Unlike pure anthelmintic benzimidazoles, the docusate-based ILs showed excellent solubility in organic solvents and >30-fold higher solubility in bioavailability-enhancing lipid vehicles. Finally, the docusate ILs were successfully incorporated into SoluPlus, a self-assembling biodegradable polymer, which upon dilution with water formed polymeric micelles with a size of <100 nm. Thus, the development of docusate-based ILs represents an effective approach to improve the physicochemical properties and potency of anthelmintic benzimidazoles to facilitate their repurposing and preclinical development for CM therapy.
Collapse
Affiliation(s)
- Yogesh Sutar
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Sophie R Fulton
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sagarkumar Paul
- Department of Pharmaceutical Sciences, Creighton University School of Pharmacy and Health Profession, 2200 California Plaza, Omaha, Nebraska 68710, United States
| | - Sophie Altamirano
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Susmit Mhatre
- Department of Pharmaceutical Sciences, Institute of Chemical Technology, N.P Marg, Matunga, Mumbai, Maharashtra 400011, India
| | - Hiwa Saeed
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Pratikkumar Patel
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Sudipta Mallick
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Roopal Bhat
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
- Department of Pharmaceutics, Shree Chanakya Education Society's Indira College of Pharmacy, Tathawade, Pune, Maharashtra 411033, India
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences, Institute of Chemical Technology, N.P Marg, Matunga, Mumbai, Maharashtra 400011, India
| | - Harsh Chauhan
- Department of Pharmaceutical Sciences, Creighton University School of Pharmacy and Health Profession, 2200 California Plaza, Omaha, Nebraska 68710, United States
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Abhijit A Date
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii Manoa, Honolulu, Hawaii 96813, United States
| |
Collapse
|
18
|
Normile TG, Rella A, Del Poeta M. Cryptococcus neoformans Δ sgl1 Vaccination Requires Either CD4 + or CD8 + T Cells for Complete Host Protection. Front Cell Infect Microbiol 2021; 11:739027. [PMID: 34568097 PMCID: PMC8455912 DOI: 10.3389/fcimb.2021.739027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022] Open
Abstract
Cryptococcus neoformans is a fungal pathogen causing life-threatening meningoencephalitis in susceptible individuals. Fungal vaccine development has been hampered by the fact that cryptococcosis occurs during immunodeficiency. We previously reported that a C. neoformans mutant (Δsgl1) accumulating sterylglucosides (SGs) is avirulent and provides complete protection to WT challenge, even under CD4+ T cell depletion, an immunodeficient condition commonly associated with cryptococcosis. We found high levels of SGs in the lungs post-immunization with Δsgl1 that decreased upon fungal clearance. Th1 cytokines increased whereas Th2 cytokines concurrently decreased, coinciding with a large recruitment of leukocytes to the lungs. Depletion of B or CD8+ T cells did not affect either Δsgl1 clearance or protection from WT challenge. Although CD4+ T cell depletion affected clearance, mice were still protected indicating that clearance of the mutant was not necessary for host protection. Protection was lost only when both CD4+ and CD8+ T cells were depleted, highlighting a previously unexplored role of fungal-derived SGs as an immunoadjuvant for host protection against cryptococcosis.
Collapse
Affiliation(s)
- Tyler G. Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Antonella Rella
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, United States
- Veterans Administration Medical Center, Northport, NY, United States
| |
Collapse
|
19
|
Oliveira NK, Frank LA, Squizani ED, Reuwsaat JCV, Marques BM, Motta H, Garcia AWA, Kinskovski UP, Barcellos VA, Schrank A, Pohlmann AR, Staats CC, Guterres SS, Vainstein MH, Kmetzsch L. New nanotechnological formulation based on amiodarone-loaded lipid core nanocapsules displays anticryptococcal effect. Eur J Pharm Sci 2021; 162:105816. [PMID: 33757827 DOI: 10.1016/j.ejps.2021.105816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/21/2021] [Accepted: 03/18/2021] [Indexed: 01/01/2023]
Abstract
Cryptococcus neoformans is the etiological agent of cryptococcal meningoencephalitis. The recommended available treatment has low efficiency, with high toxicity and resistance as recurrent problems. In the search of new treatment protocols, the proposal of new pharmacological approaches is considered an innovative strategy, mainly nanotechnological systems considering fungal diseases. The antiarrhythmic drug amiodarone has demonstrated antifungal activity against a range of fungi, including C. neoformans. Here, considering the importance of calcium storage mediated by transporters on cryptococcal virulence, we evaluated the use of the calcium channel blocker amiodarone as an alternative therapy for cryptococcosis. C. neoformans displayed high sensitivity to amiodarone, which was also synergistic with fluconazole. Amiodarone treatment influenced some virulence factors, interrupting the calcium-calcineurin signaling pathway. Experiments with murine cryptococcosis models revealed that amiodarone treatment increased the fungal burden in the lungs, while its combination with fluconazole did not improve treatment compared to fluconazole alone. In addition, we have developed different innovative nanotechnological formulations, one of which combining two drugs with different mechanisms of action. Lipid-core nanocapsules (LNC) loaded with amiodarone (LNCAMD), fluconazole (LNCFLU) and both (LNCAMD+FLU) were produced to achieve a better efficacy in vivo. In an intranasal model of treatment, all the LNC formulations had an antifungal effect. In an intraperitoneal treatment, LNCAMD showed an enhanced anticryptococcal effect compared to the free drug, whereas LNCFLU or LNCAMD+FLU displayed no differences from the free drugs. In this way, nanotechnology using amiodarone formulations could be an effective therapy for cryptococcal infections.
Collapse
Affiliation(s)
| | - Luiza Abrahão Frank
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Eamim Daidrê Squizani
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Heryk Motta
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Uriel Perin Kinskovski
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Augusto Schrank
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Charley Christian Staats
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Sílvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Marilene Henning Vainstein
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lívia Kmetzsch
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
20
|
Monk BC, Keniya MV. Roles for Structural Biology in the Discovery of Drugs and Agrochemicals Targeting Sterol 14α-Demethylases. J Fungi (Basel) 2021; 7:67. [PMID: 33498194 PMCID: PMC7908997 DOI: 10.3390/jof7020067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Accepted: 01/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antifungal drugs and antifungal agrochemicals have significant limitations. These include several unintended consequences of their use including the growing importance of intrinsic and acquired resistance. These problems underpin an increasingly urgent need to improve the existing classes of antifungals and to discover novel antifungals. Structural insights into drug targets and their complexes with both substrates and inhibitory ligands increase opportunity for the discovery of more effective antifungals. Implementation of this promise, which requires multiple skill sets, is beginning to yield candidates from discovery programs that could more quickly find their place in the clinic. This review will describe how structural biology is providing information for the improvement and discovery of inhibitors targeting the essential fungal enzyme sterol 14α-demethylase.
Collapse
Affiliation(s)
- Brian C. Monk
- Department of Oral Sciences, Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand;
| | | |
Collapse
|
21
|
Nichols CB. Visualization and Documentation of Capsule and Melanin Production in Cryptococcus neoformans. Curr Protoc 2021; 1:e27. [PMID: 33484487 PMCID: PMC8323260 DOI: 10.1002/cpz1.27] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen primarily targeting immunosuppressed populations in both resource-rich and resource-limited nations. Successful treatment is limited to a few antifungals that have become compromised by cryptococcal resistance, leading to intensive research seeking new drug candidates. Two distinguishing hallmarks of this species are the ability to develop a polysaccharide capsule and melanization of the fungal cells. These also act as virulence factors, protecting this pathogen in the host as well as in the environment. Here we describe two classic methods to document capsule and melanin. Although initially described and documented several decades ago, these methods remain relevant in spite of the advent of more sophisticated methodology, due in part to their simplicity and cost efficiency. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Capsule visualization by India ink counterstaining Basic Protocol 2: Assessment of melanin on solid media Alternative Protocol: Quantification of melanin production in liquid medium.
Collapse
Affiliation(s)
- Connie B Nichols
- Duke University Medical Center, Department of Medicine, Research Drive, Durham, North Carolina
| |
Collapse
|
22
|
Tongue lesion due to Cryptococcus neoformans as the first finding in an HIV-positive patient. Rev Iberoam Micol 2020; 38:19-22. [PMID: 33388240 DOI: 10.1016/j.riam.2020.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 09/14/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cryptococcosis is a severe universally distributed mycosis which mainly affects immunocompromised hosts. This mycosis is caused by yeasts of two species complex of the genus Cryptococcus: Cryptococcus neoformans and Cryptococcus gattii. Meningeal cryptococcosis is the most frequent clinical presentation of this disseminated mycosis. The oral mucosa involvement is extremely unusual. CASE REPORT We present a case of cryptococcosis with an unusual clinical form. The patient was assisted because she had an ulcerated lesion on the lingual mucosa. Encapsulated yeasts compatible with Cryptococcus were found in microscopic exams of wet preparations from lingual ulcer clinical samples obtained for cytodiagnosis and mycological studies. Cryptococcus neoformans (C. neoformans var. grubii VNI) was isolated in culture. This patient did not know her condition of HIV seropositive before the appearance of the tongue lesion. CONCLUSIONS The involvement of the oral mucosa is uncommon in this fungal infection, but is important to include it in the differential diagnosis in HIV positive patients.
Collapse
|
23
|
Stanford FA, Voigt K. Iron Assimilation during Emerging Infections Caused by Opportunistic Fungi with emphasis on Mucorales and the Development of Antifungal Resistance. Genes (Basel) 2020; 11:genes11111296. [PMID: 33143139 PMCID: PMC7693903 DOI: 10.3390/genes11111296] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is a key transition metal required by most microorganisms and is prominently utilised in the transfer of electrons during metabolic reactions. The acquisition of iron is essential and becomes a crucial pathogenic event for opportunistic fungi. Iron is not readily available in the natural environment as it exists in its insoluble ferric form, i.e., in oxides and hydroxides. During infection, the host iron is bound to proteins such as transferrin, ferritin, and haemoglobin. As such, access to iron is one of the major hurdles that fungal pathogens must overcome in an immunocompromised host. Thus, these opportunistic fungi utilise three major iron acquisition systems to overcome this limiting factor for growth and proliferation. To date, numerous iron acquisition pathways have been fully characterised, with key components of these systems having major roles in virulence. Most recently, proteins involved in these pathways have been linked to the development of antifungal resistance. Here, we provide a detailed review of our current knowledge of iron acquisition in opportunistic fungi, and the role iron may have on the development of resistance to antifungals with emphasis on species of the fungal basal lineage order Mucorales, the causative agents of mucormycosis.
Collapse
Affiliation(s)
- Felicia Adelina Stanford
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology–Hans Knöll Institute, Jena, Adolf-Reichwein-Straße 23, 07745 Jena, Germany;
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Neugasse 25, 07743 Jena, Germany
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology–Hans Knöll Institute, Jena, Adolf-Reichwein-Straße 23, 07745 Jena, Germany;
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Neugasse 25, 07743 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena Microbial Resource Collection Adolf-Reichwein-Straße 23, 07745 Jena, Germany
- Correspondence: ; Tel.: +49-3641-532-1395; Fax: +49-3641-532-2395
| |
Collapse
|
24
|
Normile TG, Bryan AM, Del Poeta M. Animal Models of Cryptococcus neoformans in Identifying Immune Parameters Associated With Primary Infection and Reactivation of Latent Infection. Front Immunol 2020; 11:581750. [PMID: 33042164 PMCID: PMC7522366 DOI: 10.3389/fimmu.2020.581750] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cryptococcus species are environmental fungal pathogens and the causative agents of cryptococcosis. Infection occurs upon inhalation of infectious particles, which proliferate in the lung causing a primary infection. From this primary lung infection, fungal cells can eventually disseminate to other organs, particularly the brain, causing lethal meningoencephalitis. However, in most cases, the primary infection resolves with the formation of a lung granuloma. Upon severe immunodeficiency, dormant cryptococcal cells will start proliferating in the lung granuloma and eventually will disseminate to the brain. Many investigators have sought to study the protective host immune response to this pathogen in search of host parameters that keep the proliferation of cryptococcal cells under control. The majority of the work assimilates research carried out using the primary infection animal model, mainly because a reactivation model has been available only very recently. This review will focus on anti-cryptococcal immunity in both the primary and reactivation models. An understanding of the differences in host immunity between the primary and reactivation models will help to define the key host parameters that control the infections and are important for the research and development of new therapeutic and vaccine strategies against cryptococcosis.
Collapse
Affiliation(s)
- Tyler G Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Arielle M Bryan
- Ingenious Targeting Laboratory Incorporated, Ronkonkoma, NY, United States
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States.,Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, United States.,Veterans Administration Medical Center, Northport, NY, United States
| |
Collapse
|
25
|
Silva E Souza E, Barcellos VDA, Sbaraini N, Reuwsaat JCV, Schneider RDO, da Silva AC, Garcia AWA, von Poser GL, Barbosa EG, Lima JPMS, Vainstein MH. A Plumieridine-Rich Fraction From Allamanda polyantha Inhibits Chitinolytic Activity and Exhibits Antifungal Properties Against Cryptococcus neoformans. Front Microbiol 2020; 11:2058. [PMID: 32983042 PMCID: PMC7483551 DOI: 10.3389/fmicb.2020.02058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/05/2020] [Indexed: 12/28/2022] Open
Abstract
Cryptococcosis is a fungal infection caused mainly by the pathogenic yeasts Cryptococcus neoformans and Cryptococcus gattii. The infection initiates with the inhalation of propagules that are then deposited in the lungs. If not properly treated, cryptococci cells can disseminate and reach the central nervous system. The current recommended treatment for cryptococcosis employs a three-stage regimen, with the administration of amphotericin B, flucytosine and fluconazole. Although effective, these drugs are often unavailable worldwide, can lead to resistance development, and may display toxic effects on the patients. Thus, new drugs for cryptococcosis treatment are needed. Recently, an iridoid named plumieridine was found in Allamanda polyantha seed extract; it exhibited antifungal activity against C. neoformans with a MIC of 250 μg/mL. To address the mode of action of plumieridine, several in silico and in vitro experiments were performed. Through a ligand-based a virtual screening approach, chitinases were identified as potential targets. Confirmatory in vitro assays showed that C. neoformans cell-free supernatant incubated with plumieridine displayed reduced chitinase activity, while chitinolytic activity was not inhibited in the insoluble cell fraction. Additionally, confocal microscopy revealed changes in the distribution of chitooligomers in the cryptococcal cell wall, from a polarized to a diffuse cell pattern state. Remarkably, further assays have shown that plumieridine can also inhibit the chitinolytic activity from the supernatant and cell-free extracts of bacteria, insect and mouse-derived macrophage cells (J774.A1). Together, our results suggest that plumieridine can be a broad-spectrum chitinase inhibitor.
Collapse
Affiliation(s)
- Eden Silva E Souza
- Bioinformatics Multidisciplinary Environment, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Nicolau Sbaraini
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Adriana Corrêa da Silva
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Carvajal JG, Alaniz AJ, Carvajal MA, Acheson ES, Cruz R, Vergara PM, Cogliati M. Expansion of the Emerging Fungal Pathogen Cryptococcus bacillisporus Into America: Linking Phylogenetic Origin, Geographical Spread and Population Under Exposure Risk. Front Microbiol 2020; 11:2117. [PMID: 32983073 PMCID: PMC7485214 DOI: 10.3389/fmicb.2020.02117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
In 2018 the fungal pathogen Cryptococcus bacillisporus (AFLP5/VGIII) was isolated for the first time in Chile, representing the only report in a temperate region in South America. We reconstructed the colonization process of C. bacillisporus in Chile, estimating the phylogenetic origin, the potential spread zone, and the population at risk. We performed a phylogenetic analysis of the strain and modeled the environmental niche of the pathogen projecting its potential spread zone into the new colonized region. Finally, we generated risk maps and quantified the people under potential risk. Phylogenetic analysis showed high similarity between the Chilean isolate and two clonal clusters from California, United States and Colombia in South America. The pathogen can expand into all the temperate Mediterranean zone in central Chile and western Argentina, exposing more than 12 million people to this pathogen in Chile. This study has epidemiological and public health implications for the response to a potential C. bacillisporus outbreak, optimizing budgets, routing for screening diagnosis, and treatment implementation.
Collapse
Affiliation(s)
- Jorge G Carvajal
- Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Alberto J Alaniz
- Facultad de Ingeniería, Universidad de Santiago de Chile, Santiago, Chile
| | - Mario A Carvajal
- Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Emily S Acheson
- Department of Geography, The University of British Columbia, Vancouver, BC, Canada
| | - Rodrigo Cruz
- Laboratorio de Micología, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo M Vergara
- Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Massimo Cogliati
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
27
|
McEvoy K, Normile TG, Poeta MD. Antifungal Drug Development: Targeting the Fungal Sphingolipid Pathway. J Fungi (Basel) 2020; 6:jof6030142. [PMID: 32825250 PMCID: PMC7559796 DOI: 10.3390/jof6030142] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Fungal infections are becoming more prevalent and problematic due to the continual rise of immune deficient patients as well as the progressive development of drug resistance towards currently available antifungal drugs. There has been a significant increase in the development of antifungal compounds with a similar mechanism of action of current drugs. In contrast, there has been very little progress in developing compounds inhibiting totally new fungal targets or/and fungal pathways. This review focuses on novel compounds recently discovered to target the fungal sphingolipids and their metabolizing enzymes.
Collapse
Affiliation(s)
- Kyle McEvoy
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (K.M.); (T.G.N.)
| | - Tyler G. Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (K.M.); (T.G.N.)
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (K.M.); (T.G.N.)
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, NY 11768, USA
- Correspondence: ; Tel.: +1-631-632-4024
| |
Collapse
|
28
|
Bermas A, Geddes‐McAlister J. Combatting the evolution of antifungal resistance in
Cryptococcus neoformans. Mol Microbiol 2020; 114:721-734. [DOI: 10.1111/mmi.14565] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Arianne Bermas
- Department of Molecular and Cellular Biology University of Guelph Guelph ON Canada
| | | |
Collapse
|
29
|
Poley M, Koubek R, Walsh L, McGillen B. Cryptococcal Meningitis in an Apparent Immunocompetent Patient. J Investig Med High Impact Case Rep 2020; 7:2324709619834578. [PMID: 30947544 PMCID: PMC6452579 DOI: 10.1177/2324709619834578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cryptococcal meningitis is an uncommon and severe infection that tends to affect immunocompromised hosts worldwide and in the United States. Annually it is estimated that there are 200 000 cases of cryptococcal meningitis, with the most recent estimate of 3400 cases per year in the United States alone. However, despite the low incidence, 1-year mortality is estimated at 20% to 30% even with long-term consolidation antifungal therapy. A 37-year-old man presented to the emergency department with headaches, dysarthria, hallucinations, and acute worsening of altered mental status, and he was found to have increased intracranial pressure, cerebrospinal fluid leukocytosis, and few encapsulated yeasts consistent with Cryptococcus neoformans meningitis in addition to radiologic evidence consistent with a cryptococcoma of the lungs. This report highlights the occurrence of Cryptococcus neoformans meningitis in a presumed immunocompetent host. The clinician should be aware of sources of minor immunosuppression, as they may contribute to development of Cryptococcus neoformans meningitis. Mortality in this condition remains high due to subacute presentations and delayed diagnosis in non-immunocompromised patients.
Collapse
Affiliation(s)
- Marian Poley
- 1 Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Richard Koubek
- 1 Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Leonard Walsh
- 1 Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Brian McGillen
- 1 Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
30
|
Wambaugh MA, Denham ST, Ayala M, Brammer B, Stonhill MA, Brown JC. Synergistic and antagonistic drug interactions in the treatment of systemic fungal infections. eLife 2020; 9:54160. [PMID: 32367801 PMCID: PMC7200157 DOI: 10.7554/elife.54160] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Invasive fungal infections cause 1.6 million deaths annually, primarily in immunocompromised individuals. Mortality rates are as high as 90% due to limited treatments. The azole class antifungal, fluconazole, is widely available and has multi-species activity but only inhibits growth instead of killing fungal cells, necessitating long treatments. To improve treatment, we used our novel high-throughput method, the overlap2 method (O2M) to identify drugs that interact with fluconazole, either increasing or decreasing efficacy. We identified 40 molecules that act synergistically (amplify activity) and 19 molecules that act antagonistically (decrease efficacy) when combined with fluconazole. We found that critical frontline beta-lactam antibiotics antagonize fluconazole activity. A promising fluconazole-synergizing anticholinergic drug, dicyclomine, increases fungal cell permeability and inhibits nutrient intake when combined with fluconazole. In vivo, this combination doubled the time-to-endpoint of mice with Cryptococcus neoformans meningitis. Thus, our ability to rapidly identify synergistic and antagonistic drug interactions can potentially alter the patient outcomes. Individuals with weakened immune systems – such as recipients of organ transplants – can fall prey to illnesses caused by fungi that are harmless to most people. These infections are difficult to manage because few treatments exist to fight fungi, and many have severe side effects. Antifungal drugs usually slow the growth of fungi cells rather than kill them, which means that patients must remain under treatment for a long time, or even for life. One way to boost efficiency and combat resistant infections is to combine antifungal treatments with drugs that work in complementary ways: the drugs strengthen each other’s actions, and together they can potentially kill the fungus rather than slow its progression. However, not all drug combinations are helpful. In fact, certain drugs may interact in ways that make treatment less effective. This is particularly concerning because people with weakened immune systems often take many types of medications. Here, Wambaugh et al. harnessed a new high-throughput system to screen how 2,000 drugs (many of which already approved to treat other conditions) affected the efficiency of a common antifungal called fluconazole. This highlighted 19 drugs that made fluconazole less effective, some being antibiotics routinely used to treat patients with weakened immune systems. On the other hand, 40 drugs boosted the efficiency of fluconazole, including dicyclomine, a compound currently used to treat inflammatory bowel syndrome. In fact, pairing dicyclomine and fluconazole more than doubled the survival rate of mice with severe fungal infections. The combined treatment could target many species of harmful fungi, even those that had become resistant to fluconazole alone. The results by Wambaugh et al. point towards better treatments for individuals with serious fungal infections. Drugs already in circulation for other conditions could be used to boost the efficiency of fluconazole, while antibiotics that do not decrease the efficiency of this medication should be selected to treat at-risk patients.
Collapse
Affiliation(s)
- Morgan A Wambaugh
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, United States
| | - Steven T Denham
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, United States
| | - Magali Ayala
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, United States
| | - Brianna Brammer
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, United States
| | - Miekan A Stonhill
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, United States
| | - Jessica Cs Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
31
|
Coelho C, Farrer RA. Pathogen and host genetics underpinning cryptococcal disease. ADVANCES IN GENETICS 2020; 105:1-66. [PMID: 32560785 DOI: 10.1016/bs.adgen.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryptococcosis is a severe fungal disease causing 220,000 cases of cryptococcal meningitis yearly. The etiological agents of cryptococcosis are taxonomically grouped into at least two species complexes belonging to the genus Cryptococcus. All of these yeasts are environmentally ubiquitous fungi (often found in soil, leaves and decaying wood, tree hollows, and associated with bird feces especially pigeon guano). Infection in a range of animals including humans begins following inhalation of spores or aerosolized yeasts. Recent advances provide fundamental insights into the factors from both the pathogen and its hosts which influence pathogenesis and disease. The complex interactions leading to disease in mammalian hosts have also updated from the availability of better genomic tools and datasets. In this review, we discuss recent genetic research on Cryptococcus, covering the epidemiology, ecology, and evolution of Cryptococcus pathogenic species. We also discuss the insights into the host immune response obtained from the latest genetic modified host models as well as insights from monogenic disorders in humans. Finally we highlight outstanding questions that can be answered in the near future using bioinformatics and genomic tools.
Collapse
Affiliation(s)
- Carolina Coelho
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - Rhys A Farrer
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
32
|
Cryptococcus gattii infection in an immunocompetent host in Greece. Med Mycol Case Rep 2019; 27:1-3. [PMID: 31867171 PMCID: PMC6906646 DOI: 10.1016/j.mmcr.2019.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/03/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022] Open
Abstract
We report a case of a 31-year-old otherwise healthy female with pulmonary cryptococcoma along with cryptococcal meningitis due to Cryptococcus gattii molecular type VGI, in Greece. Combined antifungal treatment and surgical excision of pulmonary cryptococcoma yielded a good response.
Collapse
|
33
|
Pllana-Hajdari D, Cogliati M, Čičmak L, Pleško S, Mlinarić-Missoni E, Mareković I. First Isolation, Antifungal Susceptibility, and Molecular Characterization of Cryptococcus neoformans from the Environment in Croatia. J Fungi (Basel) 2019; 5:jof5040099. [PMID: 31614885 PMCID: PMC6958495 DOI: 10.3390/jof5040099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022] Open
Abstract
The purpose of this study was to investigate the presence of Cryptococcus neoformans species complex isolates from environmental sources in Croatia and to determine their molecular types and antifungal susceptibility. Swab samples of tree hollows and bird excreta in the soil beneath trees were collected. Samples included 472 (92.73%) samples obtained from tree hollows and 37 (7.27%) samples from bird excreta. Four C. neoformans species complex isolates were recovered from tree hollow swabs along the Mediterranean coast, while there were no isolates recovered from bird excreta or from the continental area. Three isolates were identified as molecular types VNI and one as VNIV. All tested antifungals showed high in vitro activity against the four isolates. This is the first report proving the presence of C. neoformans species complex in the environment of Croatia. The results of the study suggest a major risk of exposure for inhabitants living along the Croatian coast and that both VNI and VNIV molecular types can be expected in clinical cases of cryptococcosis. Susceptibility to antifungals confirmed that no resistance should be expected in patients with cryptococcosis at the present time.
Collapse
Affiliation(s)
- Donjeta Pllana-Hajdari
- Department of Molecular Microbiology, National Institute of Public Health, Prishtina 10 000, Kosovo.
| | - Massimo Cogliati
- Laboratorio di Micologia Medica, Dipartimento Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano 20133, Italy.
| | - Ljiljana Čičmak
- Department for Parasitology and Mycology, Croatian Institute for Public Health, Zagreb 10 000, Croatia.
| | - Sanja Pleško
- Department of Clinical and Molecular Microbiology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Zagreb 10 000, Croatia.
| | - Emilija Mlinarić-Missoni
- Department for Parasitology and Mycology, Croatian Institute for Public Health, Zagreb 10 000, Croatia.
| | - Ivana Mareković
- Department of Clinical and Molecular Microbiology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Zagreb 10 000, Croatia.
| |
Collapse
|
34
|
Nimrichter L, Rodrigues ML, Del Poeta M. Exploiting Lipids to Develop Anticryptococcal Vaccines. CURRENT TROPICAL MEDICINE REPORTS 2019. [DOI: 10.1007/s40475-019-00178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Calvete CL, Martho KF, Felizardo G, Paes A, Nunes JM, Ferreira CO, Vallim MA, Pascon RC. Amino acid permeases in Cryptococcus neoformans are required for high temperature growth and virulence; and are regulated by Ras signaling. PLoS One 2019; 14:e0211393. [PMID: 30682168 PMCID: PMC6347259 DOI: 10.1371/journal.pone.0211393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/11/2019] [Indexed: 11/22/2022] Open
Abstract
Cryptococcosis is an Invasive Fungal Infection (IFI) caused by Cryptococcus neoformans, mainly in immunocompromised patients. Therapeutic failure due to pathogen drug resistance, treatment inconstancy and few antifungal options is a problem. The study of amino acid biosynthesis and uptake represents an opportunity to explore possible development of novel antifungals. C. neoformans has 10 amino acids permeases, two of them (Aap3 and Aap7) not expressed at the conditions tested, and five were studied previously (Aap2, Aap4, Aap5, Mup1 and Mup3). Our previous results showed that Aap4 and Aap5 are major permeases with overlapping functions. The aap4Δ/aap5Δ double mutant fails to grow in amino acids as sole nitrogen source and is avirulent in animal model. Here, we deleted the remaining amino acid permeases (AAP1, AAP6, AAP8) that showed gene expression modulation by nutritional condition and created a double mutant (aap1Δ/aap2Δ). We studied the virulence attributes of these mutants and explored the regulatory mechanism behind amino acid uptake in C. neoformans. The aap1Δ/aap2Δ strain had reduced growth at 37°C in L-amino acids, reduced capsule production and was hypovirulent in the Galleria mellonella animal model. Our data, along with previous studies, (i) complement the analysis for all 10 amino acid permeases mutants, (ii) corroborate the idea that these transporters behave as global permeases, (iii) are required during heat and nutritional stress, and (iv) are important for virulence. Our study also indicates a new possible link between Ras1 signaling and amino acids uptake.
Collapse
Affiliation(s)
- Crislaine Lambiase Calvete
- Universidade de São Paulo, Biotechnology Graduate Program, São Paulo, SP, Brazil
- Universidade Federal de São Paulo, Campus Diadema, Department of Biological Sciences, Diadema, SP, Brazil
| | - Kevin Felipe Martho
- Universidade Federal de São Paulo, Campus Diadema, Department of Biological Sciences, Diadema, SP, Brazil
| | - Gabrielle Felizardo
- Universidade Federal de São Paulo, Campus Diadema, Department of Biological Sciences, Diadema, SP, Brazil
| | - Alexandre Paes
- Universidade Federal de São Paulo, Campus Diadema, Department of Biological Sciences, Diadema, SP, Brazil
| | - João Miguel Nunes
- Universidade Federal de São Paulo, Campus Diadema, Department of Biological Sciences, Diadema, SP, Brazil
| | - Camila Oliveira Ferreira
- Universidade Federal de São Paulo, Campus Diadema, Department of Biological Sciences, Diadema, SP, Brazil
| | - Marcelo A. Vallim
- Universidade Federal de São Paulo, Campus Diadema, Department of Biological Sciences, Diadema, SP, Brazil
| | - Renata C. Pascon
- Universidade Federal de São Paulo, Campus Diadema, Department of Biological Sciences, Diadema, SP, Brazil
- * E-mail:
| |
Collapse
|
36
|
Special Issue: Treatments for Fungal Infections. J Fungi (Basel) 2018; 4:jof4040135. [PMID: 30545148 PMCID: PMC6308925 DOI: 10.3390/jof4040135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
|
37
|
Synthesis and Evaluation of Baylis-Hillman Reaction Derived Imidazole and Triazole Cinnamates as Antifungal Agents. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2018; 2018:5758076. [PMID: 30410798 PMCID: PMC6206569 DOI: 10.1155/2018/5758076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 02/05/2023]
Abstract
Allylic acetates derived from Baylis-Hillman reaction undergo efficient nucleophilic isomerization with imidazoles and triazoles to provide imidazolylmethyl and triazolylmethyl cinnamates stereoselectively. Antifungal evaluation of these derivatives against Cryptococcus neoformans exhibits good minimum inhibitory concentration values. These compounds exhibit low toxicity in proliferating MCF-7 breast cancer cell line. Structure activity relationship studies indicate that halogenated aromatic derivatives provide better antifungal activity.
Collapse
|
38
|
Bucciol G, Moens L, Meyts I. Patients with Primary Immunodeficiencies: How Are They at Risk for Fungal Disease? CURRENT FUNGAL INFECTION REPORTS 2018. [DOI: 10.1007/s12281-018-0323-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|