1
|
Ismail SHH, Hamdy R, Altaie AM, Fayed B, Dakalbab S, El-Awady R, Soliman SSM. Decoding host cell interaction- and fluconazole-induced metabolic alterations and drug resistance in Candida auris. Mycologia 2024; 116:673-693. [PMID: 39024116 DOI: 10.1080/00275514.2024.2363730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Candida auris is an emerging drug-resistant pathogen associated with high mortality rates. This study aimed to explore the metabolic alterations and associated pathogenesis and drug resistance in fluconazole-treated Candida auris-host cell interaction. Compared with controls, secreted metabolites from fluconazole-treated C. auris and fluconazole-treated C. auris-host cell co-culture demonstrated notable anti-Candida activity. Fluconazole caused significant reductions in C. auris cell numbers and aggregated phenotype. Metabolites produced by C. auris with potential fungal colonization, invasion, and host immune evasion effects were identified. Metabolites known to enhance biofilm formation produced during C. auris-host cell interaction were inhibited by fluconazole. Fluconazole enhanced the production of metabolites with biofilm inhibition activity, including behenyl alcohol and decanoic acid. Metabolites with potential Candida growth inhibition activity such as 2-palmitoyl glycerol, 1-tetradecanol, and 1-nonadecene were activated by fluconazole. Different patterns of proinflammatory cytokine expression presented due to fluconazole concentration and host cell type (fibroblasts versus macrophages). This highlights the immune response's complexity, emphasizing the necessity for additional research to comprehend cell-type-specific responses to antifungal therapies. Both host cell interaction and fluconazole treatment increased the expression of CDR1 and ERG11 genes, both associated with drug resistance. This study provides insights into pathogenesis in C. auris due to host cell interaction and fluconazole treatment. Understanding these interactions is crucial for enhancing fluconazole sensitivity and effectively combating C. auris.
Collapse
Affiliation(s)
- Samah H H Ismail
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Zagazig, Egypt
| | - Alaa M Altaie
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Department of Chemistry of Natural and Microbial Product, National Research Centre, P.O. Box 12622, Cairo, Egypt
| | - Salam Dakalbab
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
2
|
García-Gamboa R, Perfecto-Avalos Y, Gonzalez-Garcia J, Alvarez-Calderon MJ, Gutierrez-Vilchis A, Garcia-Gonzalez A. In vitro analysis of postbiotic antimicrobial activity against Candida Species in a minimal synthetic model simulating the gut mycobiota in obesity. Sci Rep 2024; 14:16760. [PMID: 39033245 PMCID: PMC11271299 DOI: 10.1038/s41598-024-66806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
Gut fungal imbalances, particularly increased Candida spp., are linked to obesity. This study explored the potential of Lactiplantibacillus plantarum cell-free extracts (postbiotics) to modulate the growth of Candida albicans and Candida kefyr, key members of the gut mycobiota. A minimal synthetic gut model was employed to evaluate the effects of Lactiplantibacillus plantarum postbiotics on fungal growth in mono- and mixed cultures. Microreactors were employed for culturing, fungal growth was quantified using CFU counting, and regression analysis was used to evaluate the effects of postbiotics on fungal growth. Postbiotics at a concentration of 12.5% significantly reduced the growth of both Candida species. At 24 h, both C. albicans and C. kefyr in monocultures exhibited a decrease in growth of 0.11 log CFU/mL. In contrast, mixed cultures showed a more pronounced antifungal effect, with C. albicans and C. kefyr reductions of 0.62 log CFU/mL and 0.64 log CFU/mL, respectively. Regression analysis using the Gompertz model supported the antifungal activity of postbiotics and revealed species-specific differences in growth parameters. These findings suggest that L. plantarum postbiotics have the potential to modulate the gut mycobiota by reducing Candida growth, potentially offering a therapeutic approach for combating fungal overgrowth associated with obesity.
Collapse
Affiliation(s)
- Ricardo García-Gamboa
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico.
| | - Yocanxóchitl Perfecto-Avalos
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico
| | - Julieta Gonzalez-Garcia
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico
| | - María J Alvarez-Calderon
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico
| | - Abel Gutierrez-Vilchis
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico
| | - Alejandro Garcia-Gonzalez
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico.
| |
Collapse
|
3
|
Muche N, Geremew T, Jiru TM. Isolation and characterization of potential probiotic yeasts from Ethiopian injera sourdough. 3 Biotech 2023; 13:300. [PMID: 37581092 PMCID: PMC10423192 DOI: 10.1007/s13205-023-03729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023] Open
Abstract
This study aimed to isolate and characterize potential probiotic yeasts from Ethiopian injera sourdough and the study was conducted by collecting samples from Gondar and Bahir Dar cities, Ethiopia. The potential yeasts were isolated and identified using morphological, physiological, biochemical and molecular based analysis. Promising isolates were selected to further investigate their in vitro probiotic properties, including survival at different temperatures (25, 30, 37, and 42 °C), acidic pH (2, 3, 4 and 5), bile salt (0.1, 0.3, and 0.5%), and osmotolerance (20, 30, 40, and 50% glucose concentration), antimicrobial activities, proteolytic and lipolytic activities as well as resistance to four antibiotics. From 20 samples, 38 isolates were obtained. Among these, 10 produced low or non-hydrogen sulfide and were selected for further work. Further screening tests revealed that five isolates (G1N1, G2N4, G3N1, G8N1, and B6N3) were able tolerate and grow at 37 °C, with harsh conditions of the human digestive tract like low pH, bile salt, and higher osmotic effect. The maximum growth OD values were recorded at 37 °C by isolate G4N1 (OD value (0.6667), while G3N1 exhibited a maximum growth OD value of 0.4227 at pH 2. On the other hand, G2N4 gave a maximum OD value of 0.8800 at 0.3% bile salt concentration. The promising isolates were sequenced and identified to species level. Based on phylogenetic tree analysis, all the five probiotic yeast isolates had one common ancestor and belonging to Saccharomyces cerevisiae (G1N1 and G2N4), Candida humilis (G3N1 and B6N3), and Pichia kudriavzevii (G8N1). This study revealed that Ethiopian injera sourdough could be potential source of different probiotic yeast strains. Strong emphasis should be given about the use of probiotic yeasts that are isolated from Ethiopian fermented foods.
Collapse
Affiliation(s)
- Nigus Muche
- Department of Environmental and Industrial Biotechnology, Institute of Biotechnology, University of Gondar, P.O.Box:196, Gondar, Ethiopia
| | - Tsehayneh Geremew
- Department of Environmental and Industrial Biotechnology, Institute of Biotechnology, University of Gondar, P.O.Box:196, Gondar, Ethiopia
| | - Tamene Milkessa Jiru
- Department of Environmental and Industrial Biotechnology, Institute of Biotechnology, University of Gondar, P.O.Box:196, Gondar, Ethiopia
| |
Collapse
|
4
|
Cheng T, Xu C, Shao J. Updated immunomodulatory roles of gut flora and microRNAs in inflammatory bowel diseases. Clin Exp Med 2023; 23:1015-1031. [PMID: 36385416 PMCID: PMC9668223 DOI: 10.1007/s10238-022-00935-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
Inflammatory bowel disease is a heterogeneous intestinal inflammatory disorder, including ulcerative colitis (UC) and Crohn's disease (CD). Existing studies have shown that the pathogenesis of IBD is closely related to the host's genetic susceptibility, intestinal flora disturbance and mucosal immune abnormalities, etc. It is generally believed that there are complicated interactions between host immunity and intestinal microflora/microRNAs during the occurrence and progression of IBD. Intestinal flora is mainly composed of bacteria, fungi, viruses and helminths. These commensals are highly implicated in the maintenance of intestinal microenvironment homeostasis alone or in combination. MiRNA is an endogenous non-coding small RNA with a length of 20 to 22 nucleotides, which can perform a variety of biological functions by silencing or activating target genes through complementary pairing bonds. A large quantity of miRNAs are involved in intestinal inflammation, mucosal barrier integrity, autophagy, vesicle transportation and other small RNA alterations in IBD circumstance. In this review, the immunomodulatory roles of gut flora and microRNAs are updated in the occurrence and progression of IBD. Meanwhile, the gut flora and microRNA targeted therapeutic strategies as well as other immunomodulatory approaches including TNF-α monoclonal antibodies are also emphasized in the treatment of IBD.
Collapse
Affiliation(s)
- Ting Cheng
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 433 Room, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Chen Xu
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 433 Room, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Jing Shao
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 433 Room, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
| |
Collapse
|
5
|
Kunyeit L, Rao RP, Anu-Appaiah KA. Yeasts originating from fermented foods, their potential as probiotics and therapeutic implication for human health and disease. Crit Rev Food Sci Nutr 2023; 64:6660-6671. [PMID: 36728916 DOI: 10.1080/10408398.2023.2172546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Yeasts derived from fermented foods have historically been known for their organoleptic properties, enriching nutritional values, and producing bioactive metabolites with therapeutic potential. In this review, we discuss the yeast flora in fermented foods, their functional aspects in fermentation, as well as their probiotic and biotherapeutic properties. These yeasts have numerous physical and biochemical characteristics, such as larger cells as compared to bacteria, a rigid cell wall composed primarily of glucans and mannans, natural resistance to antibiotics, and the secretion of secondary metabolites that are both pleasing to the consumer and beneficial to the host's health and well-being. The review also focused on therapeutic applications of probiotic yeasts derived from fermented foods on infections associated with Candida species. These potential probiotic yeasts present an additional avenue to treat dysbiosis of the gut microbiota and prevent health complications that arise from opportunistic fungal colonization, especially drug-resistant superbugs, which are highlighted in this review.
Collapse
Affiliation(s)
- Lohith Kunyeit
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Reeta P Rao
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - K A Anu-Appaiah
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| |
Collapse
|
6
|
Ling H, Liu R, Sam QH, Shen H, Chai LYA, Chang MW. Engineering of a probiotic yeast for the production and secretion of medium-chain fatty acids antagonistic to an opportunistic pathogen Candida albicans. Front Bioeng Biotechnol 2023; 11:1090501. [PMID: 36923462 PMCID: PMC10008859 DOI: 10.3389/fbioe.2023.1090501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/01/2023] [Indexed: 03/01/2023] Open
Abstract
Candida albicans is an opportunistic pathogen, with its infection as one of the causes of morbidity or mortality. Notably, the probiotic yeast Saccharomyces cerevisiae var. boulardii has shown the potential to fight against Candida infections. In this study, we aimed to engineer a commercial boulardii strain to produce medium-chain fatty acids (MCFAs) with antagonistic effects against C. albicans. First, we identified and characterized a boulardii strain and created its auxotrophic strain Δura3. Next, we constructed and expressed a heterologous MCFA biosynthetic pathway under the control of inducible and constitutive promoters. Aside from examining MCFA production and secretion, we confirmed MCFAs' effects on C. albicans' anti-biofilm and anti-hyphal formations and the immunomodulatory effect of MCFA-containing supernatants on Caco-2 cells. We found that under constitutive promoters, the engineered boulardii strain constitutively produced and secreted a mixture of C6:0, C8:0, and C10:0. The secreted MCFAs then reduced biofilm and hyphal formations in C. albicans SC5314. We also confirmed that MCFAs upregulated the expression of virulence-related genes in SC5314. Furthermore, we found that the constitutively produced MCFAs in the supernatant induced the upregulation of immune response genes in Caco-2 cells co-cultured with SC5314, indicating MCFAs' roles in immunomodulation. Overall, the engineered boulardii strain produced and secreted MCFAs, as well as demonstrated antagonistic effects against C. albicans SC5314 and immune-modulatory effects in Caco-2. To our knowledge, this represents the first study tackling the metabolic engineering of a commercial probiotic yeast strain to constitutively produce and secrete MCFAs showing anti-Candida effects. Our study forms the basis of the potential development of a live biotherapeutics probiotic yeast against Candida infections through metabolic engineering strategies.
Collapse
Affiliation(s)
- Hua Ling
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore, Singapore
| | - Ruirui Liu
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore, Singapore
| | - Qi Hui Sam
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haosheng Shen
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore, Singapore
| | - Louis Yi Ann Chai
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore, Singapore
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Similarities and Differences among Species Closely Related to Candida albicans: C. tropicalis, C. dubliniensis, and C. auris. Cell Microbiol 2022. [DOI: 10.1155/2022/2599136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although Candida species are widespread commensals of the microflora of healthy individuals, they are also among the most important human fungal pathogens that under certain conditions can cause diseases (candidiases) of varying severity ranging from mild superficial infections of the mucous membranes to life-threatening systemic infections. So far, the vast majority of research aimed at understanding the molecular basis of pathogenesis has been focused on the most common species—Candida albicans. Meanwhile, other closely related species belonging to the CTG clade, namely, Candida tropicalis and Candida dubliniensis, are becoming more important in clinical practice, as well as a relatively newly identified species, Candida auris. Despite the close relationship of these microorganisms, it seems that in the course of evolution, they have developed distinct biochemical, metabolic, and physiological adaptations, which they use to fit to commensal niches and achieve full virulence. Therefore, in this review, we describe the current knowledge on C. tropicalis, C. dubliniensis, and C. auris virulence factors, the formation of a mixed species biofilm and mutual communication, the environmental stress response and related changes in fungal cell metabolism, and the effect of pathogens on host defense response and susceptibility to antifungal agents used, highlighting differences with respect to C. albicans. Special attention is paid to common diagnostic problems resulting from similarities between these species and the emergence of drug resistance mechanisms. Understanding the different strategies to achieve virulence, used by important opportunistic pathogens of the genus Candida, is essential for proper diagnosis and treatment.
Collapse
|
8
|
Sadeghi A, Ebrahimi M, Shahryari S, Kharazmi MS, Jafari SM. Food applications of probiotic yeasts; focusing on their techno-functional, postbiotic and protective capabilities. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Chemical and Sensory Characteristics of Fruit Juice and Fruit Fermented Beverages and Their Consumer Acceptance. BEVERAGES 2022. [DOI: 10.3390/beverages8020033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent social, economic, and technological evolutions have impacted consumption habits. The new consumer is more rational, more connected and demanding with products, more concerned with the management of the family budget, with the health, origin, and sustainability of food. The food industry over the last few years has shown remarkable technological and scientific evolution, with an impact on the development and innovation of new products using non-thermal processing. Non-thermal processing technologies involve methods by which fruit juices receive microbiological inactivation and enzymatic denaturation with or without the direct application of low heat, thereby lessening the adverse effects on the nutritional, bioactive, and flavor compounds of the treated fruit juices, extending their shelf-life. The recognition of the nutritional and protective values of fruit juices and fermented fruit beverages is evident and is attributed to the presence of different bioactive compounds, protecting against chronic and metabolic diseases. Fermentation maintains the fruit's safety, nutrition, and shelf life and the development of new products. This review aims to summarize the chemical and sensory characteristics of fruit juices and fermented fruit drinks, the fermentation process, its benefits, and its effects.
Collapse
|
10
|
Alkalbani NS, Osaili TM, Al-Nabulsi AA, Olaimat AN, Liu SQ, Shah NP, Apostolopoulos V, Ayyash MM. Assessment of Yeasts as Potential Probiotics: A Review of Gastrointestinal Tract Conditions and Investigation Methods. J Fungi (Basel) 2022; 8:jof8040365. [PMID: 35448596 PMCID: PMC9027893 DOI: 10.3390/jof8040365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022] Open
Abstract
Probiotics are microorganisms (including bacteria, yeasts and moulds) that confer various health benefits to the host, when consumed in sufficient amounts. Food products containing probiotics, called functional foods, have several health-promoting and therapeutic benefits. The significant role of yeasts in producing functional foods with promoted health benefits is well documented. Hence, there is considerable interest in isolating new yeasts as potential probiotics. Survival in the gastrointestinal tract (GIT), salt tolerance and adherence to epithelial cells are preconditions to classify such microorganisms as probiotics. Clear understanding of how yeasts can overcome GIT and salt stresses and the conditions that support yeasts to grow under such conditions is paramount for identifying, characterising and selecting probiotic yeast strains. This study elaborated the adaptations and mechanisms underlying the survival of probiotic yeasts under GIT and salt stresses. This study also discussed the capability of yeasts to adhere to epithelial cells (hydrophobicity and autoaggregation) and shed light on in vitro methods used to assess the probiotic characteristics of newly isolated yeasts.
Collapse
Affiliation(s)
- Nadia S. Alkalbani
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Tareq M. Osaili
- Department Clinical Nutrition and Dietetics, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Anas A. Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P. O. Box 330127, Zarqa 13133, Jordan;
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Singapore;
| | - Nagendra P. Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China;
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Mutamed M. Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Correspondence:
| |
Collapse
|
11
|
Cosme F, Inês A, Vilela A. Consumer's acceptability and health consciousness of probiotic and prebiotic of non-dairy products. Food Res Int 2022; 151:110842. [PMID: 34980381 DOI: 10.1016/j.foodres.2021.110842] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/01/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022]
Abstract
Human gut microbiota is a protective agent of intestinal and systemic health, and its modulation is of great interest for human wellbeing. In the world of biotics, besides probiotics, prebiotics, and synbiotics, also appears the denomination of "postbiotics" and "psychobiotics". Fermented dairy products are, traditionally, the major source of probiotics. Nevertheless, due to the increasing number of lactose-intolerant individuals and strict vegetarians, there is a need for innovative non-dairy products. Non-dairy biotics are being included in the normal diet and due to technological advances, many products are created using non-conventional food matrices like kombucha tea, herbal tea, baking mix, and cereal-based products. The microorganisms most used as probiotics in many of the non-dairy products are strains belonging to the genera Bifidobacterium, Enterococcus, Lactobacillus, Lactococcus, Streptococcus, and Bacillus, and some yeast strains namely Saccharomyces cerevisiae var. boulardii. Recently, several other yeasts have been described as having probiotic properties. This review describes gut-derived effects in humans of possible microorganisms, such as yeasts, and bacteria, isolated from non-dairy fermented and non-fermented foods and beverages. The microorganisms responsible for the processing of these non-dairy fermented products, together with the prebiotics, form a class of nutrients that have been proven to be beneficial for our gut health.
Collapse
Affiliation(s)
- Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), Dep. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - António Inês
- Chemistry Research Centre-Vila Real (CQ-VR), Dep. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Alice Vilela
- Chemistry Research Centre-Vila Real (CQ-VR), Dep. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| |
Collapse
|
12
|
Andrade JC, Kumar S, Kumar A, Černáková L, Rodrigues CF. Application of probiotics in candidiasis management. Crit Rev Food Sci Nutr 2021; 62:8249-8264. [PMID: 34024191 DOI: 10.1080/10408398.2021.1926905] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Candidiasis (e.g., oral, gastrointestinal, vaginal, urinary tract, systemic) is a worldwide growing problem, since antifungal resistance and immunosuppression states are rising. To address this problem, very few drugs are available for the treatment of Candida spp. infections. Therefore, novel therapeutic strategies are urgently required. Probiotics have been proposed for the prevention and treatment of bacterial infections due to their safety record and efficacy, however, little is still known about their potential role regarding fungal infections. The purpose of this review is to present an updated summary of the evidence of the antifungal effects of probiotics along with a discussion of their potential use as an alternative/complementary therapy against Candida spp. infections. Thus, we performed a literature search using appropriate keywords ("Probiotic + Candida", "Candidiasis treatment", and "Probiotic + candidiasis") to retrieve relevant studies (both preclinical and clinical) with special emphasis on the works published in the last 5 years. An increasing amount of evidence has shown the potential usefulness of probiotics in the management of oral and vulvovaginal candidiasis in recent years. Among other results, we found that, as for bacterial infections, Lactobacillus, Bifidobacterium, and Saccharomyces are the most studied and effective genus for this purpose. However, in other areas, particularly in skincandidiaisis, studies are low or lacking. Thus, further investigation is necessary including in vitro and in vivo studies to establish the usefulness of probiotics in the management of candidiasis.
Collapse
Affiliation(s)
- José Carlos Andrade
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, Gandra PRD, Portugal
| | - Sunil Kumar
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Célia F Rodrigues
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
13
|
Černáková L, Roudbary M, Brás S, Tafaj S, Rodrigues CF. Candida auris: A Quick Review on Identification, Current Treatments, and Challenges. Int J Mol Sci 2021; 22:4470. [PMID: 33922907 PMCID: PMC8123192 DOI: 10.3390/ijms22094470] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Candida auris is a novel and major fungal pathogen that has triggered several outbreaks in the last decade. The few drugs available to treat fungal diseases, the fact that this yeast has a high rate of multidrug resistance and the occurrence of misleading identifications, and the ability of forming biofilms (naturally more resistant to drugs) has made treatments of C. auris infections highly difficult. This review intends to quickly illustrate the main issues in C. auris identification, available treatments and the associated mechanisms of resistance, and the novel and alternative treatment and drugs (natural and synthetic) that have been recently reported.
Collapse
Affiliation(s)
- Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Susana Brás
- Centre of Biological Engineering, LIBRO—‘Laboratório de Investigação em Biofilmes Rosário Oliveira’, University of Minho, 4710-057 Braga, Portugal;
| | - Silva Tafaj
- Microbiology Department, University Hospital “Shefqet Ndroqi”, 1044 Tirana, Albania;
| | - Célia F. Rodrigues
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
14
|
Fungi and Fungal Metabolites for the Improvement of Human and Animal Nutrition and Health. J Fungi (Basel) 2021; 7:jof7040274. [PMID: 33916573 PMCID: PMC8066858 DOI: 10.3390/jof7040274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
|