1
|
Kou Z, Liu J, Tohti G, Zhu X, Zheng B, Zhu Y, Zhang W. Distinct Bacterial Communities Within the Nonrhizosphere, Rhizosphere, and Endosphere of Ammodendron bifolium Under Winter Condition in the Takeermohuer Desert. MICROBIAL ECOLOGY 2024; 87:151. [PMID: 39611982 DOI: 10.1007/s00248-024-02462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024]
Abstract
Due to human activities and severe climatic conditions, the population of Ammodendron bifolium, an excellent sand-fixing plant, has gradually decreased in the Takeermohuer Desert. The plant-associated bacteria community can enhance its survival in harsh environments. However, the understanding of A. bifolium-associated bacterial community is still unclear during the harsh winter. We investigated the bacterial community structure from the A. bifolium rhizosphere and nonrhizosphere at different depths (i.e., 0-40 cm, 40-80 cm, 80-120 cm) and from endosphere (i.e., root endosphere and stem endosphere) in winter. At the same time, we analyzed the impact of different compartments and soil factors on the bacterial community structure. Studies have shown that the A. bifolium rhizosphere exhibits higher levels of SOM (soil organic matter), SOC (soil organic carbon), SAN (soil alkaline nitrogen), and SAK (soil available potassium) compared with the nonrhizosphere. The dominant bacterial phyla were Proteobacteria (19.6%), Cyanobacteria (15.9%), Actinobacteria (13.6%), Acidobacteria (9.0%), and Planctomycetota (5.7%) in the desert. Proteobacteria (24.0-30.2%) had the highest relative abundance in rhizosphere, Actinobacteria (18.3-22.6%) had the highest relative abundance in nonrhizosphere, and Cyanobacteria had the highest relative abundance in endosphere. At the genus level, the relative abundance of Pseudomonas (1.2%) in the root endosphere was the highest and the other genera were mostly unclassified. The Chao1 and PD_whole_tree indices showed that the diversity of the bacterial communities decreased from nonrhizosphere, rhizosphere, root endosphere to stem endosphere. Co-occurrence network analyses identified Proteobacteria and Actinobacteria as key species across the three compartments. Additionally, unique keystone species like Cyanobacteria, Verrucomicrobiota, and Desulfobacterota were found only in the endosphere. The bacterial community in the rhizosphere was influenced by factors such as EC (electrical conductivity), STC (soil total carbon), SOM, SOC, STN (soil total nitrogen), SAN, STP (soil total phosphorus), and SAK, while that of the nonrhizosphere was mainly influenced by pH, C/N (STC/STN), SAP, and distance. The study highlighted differences in bacterial community composition, diversity, and influencing factors across the three compartments, which can provide a better understanding of the association/interactions between A. bifolium and bacterial communities and lay a foundation for revealing its adaptability in winter.
Collapse
Affiliation(s)
- Zhining Kou
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830054, Xinjiang, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, Key Laboratory of Plant Stress Biology in Arid Land, Urumqi, 830054, Xinjiang, China
| | - Jiaqin Liu
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830054, Xinjiang, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, Key Laboratory of Plant Stress Biology in Arid Land, Urumqi, 830054, Xinjiang, China
| | - Gulpiye Tohti
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830054, Xinjiang, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, Key Laboratory of Plant Stress Biology in Arid Land, Urumqi, 830054, Xinjiang, China
| | - Xiaoying Zhu
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830054, Xinjiang, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, Key Laboratory of Plant Stress Biology in Arid Land, Urumqi, 830054, Xinjiang, China
| | - Bei Zheng
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830054, Xinjiang, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, Key Laboratory of Plant Stress Biology in Arid Land, Urumqi, 830054, Xinjiang, China
| | - Yanlei Zhu
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830054, Xinjiang, China.
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, Key Laboratory of Plant Stress Biology in Arid Land, Urumqi, 830054, Xinjiang, China.
| | - Wei Zhang
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830054, Xinjiang, China.
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, Key Laboratory of Plant Stress Biology in Arid Land, Urumqi, 830054, Xinjiang, China.
| |
Collapse
|
2
|
Tang Y, Chen W, He F, Liu T, Hu Q, Weng Q, Zhang K. Herbicidal fungal strain isolated from soil in Xinjiang, China. Microbiol Spectr 2024; 12:e0158924. [PMID: 39417649 PMCID: PMC11619413 DOI: 10.1128/spectrum.01589-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
Weeds pose a significant threat to agricultural productivity, emphasizing the urgent need for developing innovative biological herbicides. Soil is a rich reservoir of fungi with potential herbicidal properties. The Xinjiang region of China, characterized by unique biodiversity shaped by geographical and climatic factors, is likely to harbor distinctive fungal resources that remain understudied. This study investigated the herbicidal potential of soil fungi by collecting 123 soil samples from 33 diverse habitats in Xinjiang and isolating 114 fungal strains. Morphological characteristics and ITS sequence analysis identified these strains as 24 species belonging to 12 genera. Subsequently, 24 representative strains underwent phytotoxicity assays using detached weed leaves. Strain Tapu14C02 demonstrated significant herbicidal activity against 11 weeds, including Amaranthus retroflexus, Bidens pilosa, and Celosia argentea. Further identification confirmed the strain as Talaromyces purpureogenus. Pot experiments were conducted to evaluate the herbicidal potential of the strain. The spore suspension at a concentration of 1.0 × 108 spores/mL inhibited barnyard grass (Echinochloa crus-galli) seedling root length by 93.07%. Among the crude extracts from the fermentation broth, the ethyl acetate fraction exhibited the strongest herbicidal activity, causing complete inhibition of root growth at concentrations of 1000 µg/mL and 500 µg/mL. This study provides novel insights into the herbicidal potential of soil fungi in the Xinjiang region of China. IMPORTANCE Weeds pose significant challenges by causing agricultural losses and ecological harm. Over the past decades, many weed species have developed high resistance to chemical herbicides, underscoring the urgent need for new biological herbicide alternatives. In this study, we isolated and screened herbicidal fungi from soil samples in Xinjiang with unique conditions of extreme arid. Notably, we discovered the T. purpureogenus strain Tapu14C02, which shows promising potential as a myco-herbicide. Both its conidia and fermentation broth exhibit broad-spectrum effectiveness against weeds. This research highlights the potential of fungal resources for sustainable agriculture.
Collapse
Affiliation(s)
- Yanhong Tang
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Wei Chen
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Fengting He
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Tongyi Liu
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Qiongbo Hu
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Qunfang Weng
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Ke Zhang
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Luo X, Yan G, Wang Q, Xing Y. Community structure, diversity and function of endophytic and soil microorganisms in boreal forest. Front Microbiol 2024; 15:1410901. [PMID: 39417072 PMCID: PMC11480031 DOI: 10.3389/fmicb.2024.1410901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Despite extensive studies on soil microbial community structure and functions, the significance of plant-associated microorganisms, especially endophytes, has been overlooked. To comprehensively anticipate future changes in forest ecosystem function under future climate change scenarios, it is imperative to gain a thorough understanding of the community structure, diversity, and function of both plant-associated microorganisms and soil microorganisms. Methods In our study, we aimed to elucidate the structure, diversity, and function of leaf endophytes, root endophytes, rhizosphere, and soil microbial communities in boreal forest. The microbial structure and composition were determined by high-throughput sequencing. FAPROTAX and FUNGuild were used to analyze the microbial functional groups. Results Our findings revealed significant differences in the community structure and diversity of fungi and bacteria across leaves, roots, rhizosphere, and soil. Notably, we observed that the endophytic fungal or bacterial communities associated with plants comprised many species distinct from those found in the soil microbial communities, challenging the assumption that most of endophytic fungal or bacterial species in plants originate from the soil. Furthermore, our results indicated noteworthy differences in the composition functional groups of bacteria or fungi in leaf endophytes, root endophytes, rhizosphere, and soil, suggesting distinct roles played by microbial communities in plants and soil. Discussion These findings underscore the importance of recognizing the diverse functions performed by microbial communities in both plant and soil environments. In conclusion, our study emphasizes the necessity of a comprehensive understanding of the structure and function microbial communities in both plants and soil for assessing the functions of boreal forest ecosystems.
Collapse
Affiliation(s)
- Xi Luo
- School of Life Sciences, Qufu Normal University, Qufu, China
- Library, Qufu Normal University, Qufu, China
| | - Guoyong Yan
- School of Life Sciences, Qufu Normal University, Qufu, China
| | - Qinggui Wang
- School of Life Sciences, Qufu Normal University, Qufu, China
| | - Yajuan Xing
- School of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
4
|
Toloza-Moreno DL, Yockteng R, Pérez-Zuñiga JI, Salinas-Castillo C, Caro-Quintero A. Implications of Domestication in Theobroma cacao L. Seed-Borne Microbial Endophytes Diversity. MICROBIAL ECOLOGY 2024; 87:108. [PMID: 39196422 PMCID: PMC11358227 DOI: 10.1007/s00248-024-02409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/05/2024] [Indexed: 08/29/2024]
Abstract
The study of plant-microbe interactions is a rapidly growing research field, with increasing attention to the role of seed-borne microbial endophytes in protecting the plant during its development from abiotic and biotic stresses. Recent evidence suggests that seed microbiota is crucial in establishing the plant microbial community, affecting its composition and structure, and influencing plant physiology and ecology. For Theobroma cacao L., the diversity and composition of vertically transmitted microbes have yet to be addressed in detail. We explored the composition and diversity of seed-borne endophytes in cacao pods of commercial genotypes (ICS95, IMC67), recently liberated genotypes from AGROSAVIA (TCS01, TCS19), and landraces from Tumaco (Colombia) (AC9, ROS1, ROS2), to evaluate microbial vertical transmission and establishment in various tissues during plant development. We observed a higher abundance of Pseudomonas and Pantoea genera in the landraces and AGROSAVIA genotypes, while the commercial genotypes presented a higher number of bacteria species but in low abundance. In addition, all the genotypes and plant tissues showed a high percentage of fungi of the genus Penicillium. These results indicate that domestication in cacao has increased bacterial endophyte diversity but has reduced their abundance. We isolated some of these seed-borne endophytes to evaluate their potential as growth promoters and found that Bacillus, Pantoea, and Pseudomonas strains presented high production of indole acetic acid and ACC deaminase activity. Our results suggest that cacao domestication could lead to the loss of essential bacteria for seedling establishment and development. This study improves our understanding of the relationship and interaction between perennial plants and seed-borne microbiota.
Collapse
Affiliation(s)
- Deisy Lisseth Toloza-Moreno
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 Vía Mosquera, Cundinamarca, Colombia
| | - Roxana Yockteng
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 Vía Mosquera, Cundinamarca, Colombia
- Institut de Systématique, Evolution, Biodiversité-UMR-CNRS 7205, Muséum National d'Histoire Naturelle, Paris, France
| | - José Ives Pérez-Zuñiga
- Centro de Investigación Palmira, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Sede Popayán, Popayán, Cauca, Colombia
| | - Cristian Salinas-Castillo
- Departamento de Biología, Facultad de Ciencias, Max Planck Tandem Group in Holobionts, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Alejandro Caro-Quintero
- Departamento de Biología, Facultad de Ciencias, Max Planck Tandem Group in Holobionts, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
5
|
Flores-Almaraz VS, Truong C, Hernández-Oaxaca D, Reyes-Galindo V, Mastretta-Yanes A, Jaramillo-Correa JP, Salas-Lizana R. Foliar mycobiome remains unaltered under urban air-pollution but differentially express stress-related genes. MICROBIAL ECOLOGY 2024; 87:72. [PMID: 38755460 PMCID: PMC11098924 DOI: 10.1007/s00248-024-02387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Air pollution caused by tropospheric ozone contributes to the decline of forest ecosystems; for instance, sacred fir, Abies religiosa (Kunth) Schltdl. & Cham. forests in the peri-urban region of Mexico City. Individual trees within these forests exhibit variation in their response to ozone exposure, including the severity of visible symptoms in needles. Using RNA-Seq metatranscriptomic data and ITS2 metabarcoding, we investigated whether symptom variation correlates with the taxonomic and functional composition of fungal mycobiomes from needles collected in this highly polluted area in the surroundings of Mexico City. Our findings indicate that ozone-related symptoms do not significantly correlate with changes in the taxonomic composition of fungal mycobiomes. However, genes coding for 30 putative proteins were differentially expressed in the mycobiome of asymptomatic needles, including eight genes previously associated with resistance to oxidative stress. These results suggest that fungal communities likely play a role in mitigating the oxidative burst caused by tropospheric ozone in sacred fir. Our study illustrates the feasibility of using RNA-Seq data, accessible from global sequence repositories, for the characterization of fungal communities associated with plant tissues, including their gene expression.
Collapse
Affiliation(s)
- Valeria Stephany Flores-Almaraz
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, Distrito Federal, México
- Instituto de Biología, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510, Coyoacán, Ciudad de México, Mexico
| | - Camille Truong
- Royal Botanic Gardens Victoria, Birdwood Ave, Melbourne, VIC 3004, Australia.
| | - Diana Hernández-Oaxaca
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad S/N, 62210, Cuernavaca, Morelos, México
| | - Verónica Reyes-Galindo
- Depto. de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510, Coyoacán, Ciudad de México, Mexico
| | - Alicia Mastretta-Yanes
- Consejo Nacional de Humanidades Ciencias y Tecnología (CONAHCYT), Avenida Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Ciudad de México, 03940, México.
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510, Coyoacán, Ciudad de México, Mexico.
| | - Juan Pablo Jaramillo-Correa
- Depto. de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510, Coyoacán, Ciudad de México, Mexico
| | - Rodolfo Salas-Lizana
- Laboratorios de Micología. Depto. de Biología Comparada, Facultad de Ciencias., Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, México.
| |
Collapse
|
6
|
Sharon O, Kagan-Trushina N, Sharon A. Wheat fungal endophyte communities are inseparable from the host and influence plant development. mBio 2024; 15:e0253323. [PMID: 38132833 PMCID: PMC10865843 DOI: 10.1128/mbio.02533-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Plants harbor complex and highly diverse fungal endophyte communities (FECs), making it difficult to evaluate the functional role of individual taxa, subsets of the community, or the FEC as a whole. To reduce the complexity of this system, we aimed to produce fungi-null wheat (Triticum aestivum) plants. To this end, we treated seeds with heat and fungicides and generated plants from rescued embryos and callus tissue. A culture-based approach and reverse transcription PCR analysis were negative, indicating that all treatments produced plants apparently free of fungi. However, the analysis of DNA using digital droplet PCR and next-generation sequencing revealed that tissues from all treatments retained low levels but diversity-rich FECs. While the FECs varied in composition across treatments and tissues, they all included core taxa of the mycobiome. The reduced fungal biomass, along with the changes in FEC composition, negatively affected plant development, supporting a FEC contribution to proper plant development and fitness. Our discovery that a large part of the FEC cannot be separated from plants and can be transmitted through seeds and tissue culture calls for reevaluation of particular microbiome paradigms, such as core taxa concepts, transmission modes, and functional species.IMPORTANCEThe native microbiome in a given plant must be considered when evaluating the effect of a single taxon or synthetic community. The pre-existing microbiome can interact with artificially added microbial cargo, which affects the final outcome. Such issues can be at least partially solved by the use of endophyte-free plants, which provide a clean background that should be useful in determining the effect of a single taxon, taxa combinations, or the entire microbiome on plant performance. Previous reports regarded plants as endophyte-free or axenic by the lack of fungal growth on culture media or the generation of plants from tissue cultures. We showed here that while fungi could not be isolated from fungicide-treated or tissue culture-regenerated plants, nevertheless, all plants contained rich fungal endophyte communities; namely, it was impossible to create fungi-free wheat plants. Our results call for rethinking fundamental microbiome-related concepts, such as core taxa, transmission mode, and functional species.
Collapse
Affiliation(s)
- Or Sharon
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Institute for Cereal Crops Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Naomi Kagan-Trushina
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amir Sharon
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Institute for Cereal Crops Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Ju M, Zhang Q, Wang R, Yan S, Zhang Q, Li P, Hao F, Gu P. Community ecological succession of endophytic fungi associates with medicinal compound accumulation in Sophora alopecuroides. Microbiol Spectr 2024; 12:e0307623. [PMID: 38236025 PMCID: PMC10845968 DOI: 10.1128/spectrum.03076-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
Endophytic fungi of medicinal plants are symbiotic with the host and play an important role in determining metabolites. To understand the relationship between the accumulation of Sophora alopecuroides' medicinal bioactive compounds and the ecological succession of endophytic fungi, here we collected samples from S. alopecuroides at four developmental stages (adult, flowering, podding, and mature) and different organs (roots, stems, leaves, and seeds) at the mature stage. We then used high-performance liquid chromatography-mass spectrometry and high-throughput sequencing on the internal transcribed spacer region to identify the medicinal compounds and endophytic fungal communities in each sample. The endophytic fungal community characteristics and accumulation of medicinally bioactive compounds of S. alopecuroides varied with the host's developmental stages and organs, with the highest total alkaloids content of 111.9 mg/g at the mature stage. Membership analysis and network connection analysis showed a total of 15 core endophytic fungi in different developmental stages and 16 core endophytic fungi in different organs at the mature stage. The unclassified Ascomycota, Aspergillus, and Alternaria were significantly and positively correlated with the medicinal compounds of S. alopecuroides at the mature stage (r > 0.6 or r < -0.6; P < 0.05). In this study, we identified key endophytic fungal resources that affect the content of medicinally bioactive compounds in S. alopecuroides. This discovery could lay the foundation for enhancing the yield of medicinally bioactive compounds in S. alopecuroides and the development and application of functional endophytic fungi.IMPORTANCESophora alopecuroides is a traditional Chinese herbal medicine. The major medicinal chemicals are considered to be quinolizidine alkaloids. Quinolizidine alkaloids have been widely used for the treatment of tumors, dysentery, and enteritis. Previous studies have found that endophytic fungi in S. alopecuroides can promote the accumulation of host quinolizidine alkaloids. However, the relationship between the accumulation of S. alopecuroides' medicinal bioactive compounds and the ecological succession of endophytic fungi remains unclear. In this study, we screened the key endophytic fungal resources affecting the content of medicinally bioactive compounds and laid the foundation for subsequent research on the mechanism by which endophytic fungi promote the accumulation of medicinally bioactive compounds in S. alopecuroides.
Collapse
Affiliation(s)
- Mingxiu Ju
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Qingchen Zhang
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida, USA
| | - Ruotong Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Siyuan Yan
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Qiangqiang Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Peng Li
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, China
| | - Fengxia Hao
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, China
| | - Peiwen Gu
- School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
8
|
He C, Meng D, Li W, Li X, He X. Dynamics of Endophytic Fungal Communities Associated with Cultivated Medicinal Plants in Farmland Ecosystem. J Fungi (Basel) 2023; 9:1165. [PMID: 38132766 PMCID: PMC10744690 DOI: 10.3390/jof9121165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Microorganisms are an important component of global biodiversity and play an important role in plant growth and development and the protection of host plants from various biotic and abiotic stresses. However, little is known about the identities and communities of endophytic fungi inhabiting cultivated medicinal plants in the farmland ecosystem. The diversity and community composition of the endophytic fungi of cultivated medicinal plants in different hosts, tissue niches, and seasonal effects in the farmland of Northern China were examined using the next-generation sequencing technique. In addition, the ecological functions of the endophytic fungal communities were investigated by combining the sequence classification information and fungal taxonomic function annotation. A total of 1025 operational taxonomic units (OTUs) of endophytic fungi were obtained at a 97% sequence similarity level; they were dominated by Dothideomycetes and Pleosporales. Host factors (species identities and tissue niches) and season had significant effects on the community composition of endophytic fungi, and endophytic fungi assembly was shaped more strongly by host than by season. In summer, endophytic fungal diversity was higher in the root than in the leaf, whereas opposite trends were observed in winter. Network analysis showed that network connectivity was more complex in the leaf than in the root, and the interspecific relationship between endophytic fungal OTUs in the network structure was mainly positive rather than negative. The functional predications of fungi revealed that the pathotrophic types of endophytic fungi decreased and the saprotrophic types increased from summer to winter in the root, while both pathotrophic and saprotrophic types of endophytic fungi increased in the leaf. This study improves our understanding of the community composition and ecological distribution of endophytic fungi inhabiting scattered niches in the farmland ecosystem. In addition, the study provides insight into the biodiversity assessment and management of cultivated medicinal plants.
Collapse
Affiliation(s)
- Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China;
| | - Deyao Meng
- College of Life Sciences, Hebei University, Baoding 071002, China; (D.M.); (W.L.)
| | - Wanyun Li
- College of Life Sciences, Hebei University, Baoding 071002, China; (D.M.); (W.L.)
| | - Xianen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China;
| | - Xueli He
- College of Life Sciences, Hebei University, Baoding 071002, China; (D.M.); (W.L.)
| |
Collapse
|
9
|
Azadnia A, Mikryukov V, Anslan S, Hagh-Doust N, Rahimlou S, Tamm H, Tedersoo L. Structure of plant-associated microeukaryotes in roots and leaves of aquatic and terrestrial plants revealed by blocking peptide-nucleic acid (PNA) amplification. FEMS Microbiol Ecol 2023; 99:fiad152. [PMID: 38012113 DOI: 10.1093/femsec/fiad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
Studies of plant-microbe interactions, including mutualistic, antagonistic, parasitic, or commensal microbes, have greatly benefited our understanding of ecosystem functioning. New molecular identification tools have increasingly revealed the association patterns between microorganisms and plants. Here, we integrated long-read PacBio single-molecule sequencing technology with a blocking protein-nucleic acid (PNA) approach to minimise plant amplicons in a survey of plant-eukaryotic microbe relationships in roots and leaves of different aquatic and terrestrial plants to determine patterns of organ, host, and habitat preferences. The PNA approach reduced the samples' relative amounts of plant reads and did not distort the fungal and other microeukaryotic composition. Our analyses revealed that the eukaryotic microbiomes associated with leaves and roots of aquatic plants exhibit a much larger proportion of non-fungal microorganisms than terrestrial plants, and leaf and root microbiomes are similar. Terrestrial plants had much stronger differentiation of leaf and root microbiomes and stronger partner specificity than aquatic plants.
Collapse
Affiliation(s)
- Avid Azadnia
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu 50409, Estonia
| | - Vladimir Mikryukov
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu 50409, Estonia
| | - Sten Anslan
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu 50409, Estonia
- Mycology and Microbiology Center, University of Tartu, Tartu 50409, Estonia
| | - Niloufar Hagh-Doust
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu 50409, Estonia
- Mycology and Microbiology Center, University of Tartu, Tartu 50409, Estonia
| | - Saleh Rahimlou
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Heidi Tamm
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu 50409, Estonia
| | - Leho Tedersoo
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu 50409, Estonia
- Mycology and Microbiology Center, University of Tartu, Tartu 50409, Estonia
| |
Collapse
|
10
|
Wijesekara T, Xu B. Health-Promoting Effects of Bioactive Compounds from Plant Endophytic Fungi. J Fungi (Basel) 2023; 9:997. [PMID: 37888253 PMCID: PMC10608072 DOI: 10.3390/jof9100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
The study examines the intricate relationship between plants and the endophytic fungi inhabiting their tissues. These fungi harmoniously coexist with plants, forming a distinct symbiotic connection that has caught scientific attention due to its potential implications for plant health and growth. The diverse range of bioactive compounds produced by these fungi holds significant promise for human health. The review covers various aspects of this topic, starting by introducing endophytic microorganisms, explaining their colonization of different plant parts, and illuminating their potential roles in enhancing plant defense against diseases and promoting growth. The review emphasizes the widespread occurrence and diversity of these microorganisms among plant species while highlighting the complexities and significance of isolating and extracting bioactive compounds from them. It focuses on the health benefits of these bioactive compounds, including their capacity to exhibit antioxidant, anti-inflammatory, antimicrobial, and anticancer effects. The review delves into the mechanisms behind these health-promoting effects, spotlighting how the compounds interact with cellular receptors, signaling pathways, and gene expression. In conclusion, the review provides a comprehensive overview of health-promoting bioactive compounds from plant endophytic fungi. It outlines their multifaceted impact, potential applications, and future research avenues in health and medicine.
Collapse
Affiliation(s)
- Tharuka Wijesekara
- Department of Food Science and Technology, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
11
|
Chen S, Cao P, Li T, Wang Y, Liu X. Microbial diversity patterns in the root zone of two Meconopsis plants on the Qinghai-Tibet Plateau. PeerJ 2023; 11:e15361. [PMID: 37250704 PMCID: PMC10224674 DOI: 10.7717/peerj.15361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/16/2023] [Indexed: 05/31/2023] Open
Abstract
In the extreme alpine climate of the Qinghai-Tibet Plateau (QTP), plant growth and reproduction are limited by extremely cold temperatures, low soil moisture, and scarce nutrient availability. The root-associated microbiome indirectly promotes plant growth and plays a role in the fitness of plants on the QTP, particularly in Tibetan medicinal plants. Despite the importance of the root-associated microbiome, little is known about the root zone. This study used high-throughput sequencing to investigate two medicinal Meconopsis plants, M. horridula and M. integrifolia, to determine whether habitat or plant identity had a more significant impact on the microbial composition of the roots. The fungal sequences were obtained using ITS-1 and ITS-2, and bacterial sequences were obtained using 16S rRNA. Different microbial patterns were observed in the microbial compositions of fungi and bacteria in the root zones of two Meconopsis plants. In contrast to bacteria, which were not significantly impacted by plant identity or habitat, the fungi in the root zone were significantly impacted by plant identity, but not habitat. In addition, the synergistic effect was more significant than the antagonistic effect in the correlation between fungi and bacteria in the root zone soil. The fungal structure was influenced by total nitrogen and pH, whereas the structure of bacterial communities was influenced by soil moisture and organic matter. Plant identity had a greater influence on fungal structure than habitat in two Meconopsis plants. The dissimilarity of fungal communities suggests that more attention should be paid to fungi-plant interactions.
Collapse
Affiliation(s)
- Shuting Chen
- Laboratory of Adaptation and Evolution of Plateau Biota to Extreme Environments, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Pengxi Cao
- Laboratory of Adaptation and Evolution of Plateau Biota to Extreme Environments, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Ting Li
- Laboratory of Adaptation and Evolution of Plateau Biota to Extreme Environments, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Yuyan Wang
- Laboratory of Adaptation and Evolution of Plateau Biota to Extreme Environments, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Xing Liu
- Laboratory of Adaptation and Evolution of Plateau Biota to Extreme Environments, School of Ecology and Environment, Tibet University, Lhasa, China
- State Key Laboratory of Hybrid Rice, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau, Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Dos Reis JBA, Pappas Junior GJ, Lorenzi AS, Pinho DB, Costa AM, Bustamante MMDC, Vale HMMD. How Deep Can the Endophytic Mycobiome Go? A Case Study on Six Woody Species from the Brazilian Cerrado. J Fungi (Basel) 2023; 9:jof9050508. [PMID: 37233219 DOI: 10.3390/jof9050508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
Elucidating the complex relationship between plants and endophytic fungi is very important in order to understand the maintenance of biodiversity, equity, stability, and ecosystem functioning. However, knowledge about the diversity of endophytic fungi from species of the native Brazilian Cerrado biome is poorly documented and remains largely unknown. These gaps led us to characterize the diversity of Cerrado endophytic foliar fungi associated with six woody species (Caryocar brasiliense, Dalbergia miscolobium, Leptolobium dasycarpum, Qualea parviflora, Ouratea hexasperma, and Styrax ferrugineus). Additionally, we investigated the influence of host plant identities on the structure of fungal communities. Culture-dependent methods coupled with DNA metabarcoding were employed. Irrespective of the approach, the phylum Ascomycota and the classes Dothideomycetes and Sordariomycetes were dominant. Using the cultivation-dependent method, 114 isolates were recovered from all the host species and classified into more than 20 genera and 50 species. Over 50 of the isolates belonged to the genus Diaporthe, and were distributed into more than 20 species. Metabarcoding revealed the phyla Chytridiomycota, Glomeromycota, Monoblepharomycota, Mortierellomycota, Olpidiomycota, Rozellomycota, and Zoopagomycota. These groups are reported for the first time as components of the endophytic mycobiome of Cerrado plant species. In total, 400 genera were found in all host species. A unique leaf endophytic mycobiome was identified in each host species, which differed not only by the distribution of fungal species, but also by the abundance of shared species. These findings highlight the importance of the Brazilian Cerrado as a reservoir of microbial species, and emphasize how endophytic fungal communities are diversified and adapted.
Collapse
Affiliation(s)
| | - Georgios Joannis Pappas Junior
- University of Brasília (UnB), Institute of Biological Sciences, Department of Cellular Biology, Brasília 70910-900, DF, Brazil
| | - Adriana Sturion Lorenzi
- University of Brasília (UnB), Institute of Biological Sciences, Department of Cellular Biology, Brasília 70910-900, DF, Brazil
| | - Danilo Batista Pinho
- University of Brasília (UnB), Institute of Biological Sciences, Department of Phytopathology, Brasília 70910-900, DF, Brazil
| | - Alexandra Martins Costa
- University of Brasília (UnB), Institute of Biological Sciences, Department of Ecology, Brasília 70910-900, DF, Brazil
| | | | - Helson Mario Martins do Vale
- University of Brasília (UnB), Institute of Biological Sciences, Department of Phytopathology, Brasília 70910-900, DF, Brazil
| |
Collapse
|
13
|
Liu J, Sun X, Zuo Y, Hu Q, He X. Plant species shape the bacterial communities on the phyllosphere in a hyper-arid desert. Microbiol Res 2023; 269:127314. [PMID: 36724560 DOI: 10.1016/j.micres.2023.127314] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 01/14/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
Microorganisms are an important component of global biodiversity. However, they are vulnerable to hyper-arid climates in desert regions. Xerophytes are desert vegetation with unique biodiversity. However, little is known about the identities and communities of phyllosphere epiphytic microorganisms inhabiting the xerophyte leaf surface in the hot and dry environment. The diversity and community composition of phyllosphere epiphytes on different desert plants in Gansu, China, was investigated using the next-generation sequencing technique, revealing the diversity and community composition of the phyllosphere epiphytic bacteria associated with desert xerophytes. In addition, the ecological functions of the bacterial communities were investigated by combining the sequence classification information and prokaryotic taxonomic function annotation (FAPROTAX). This study determined the phyllosphere bacterial community composition, microbial interactions, and their functions. Despite harsh environments in the arid desert, we found that there are still diverse epiphytic bacteria on the leaves of desert plants. The bacterial communities mainly included Actinobacteria (52.79%), Firmicutes (31.62%), and Proteobacteria (12.20%). Further comparisons revealed different microbial communities, including Firmicutes at the phylum and Paenibacillaceae at the family level, in the phyllosphere among different plants, suggesting that the host plants had strong filter effects on bacteria. Co-occurrence network analysis revealed positive relationships were dominant among different bacterial taxa. The abundance of Actinobacteria and Proteobacteria was positively correlated, demonstrating their mutual relationship. On the other hand, the abundance of Firmicutes was negatively correlated, which suggested that they inhibit the growth of other bacterial taxa. FAPROTAX prediction revealed that chemoheterotrophy (accounting for 39.02% of the community) and aerobic chemoheterotrophy (37.01%) were the main functions of the leaf epiphytic bacteria on desert plants. This study improves our understanding of the community composition and ecological functions of plant-associated microbial communities inhabiting scattered niches in the desert ecosystem. In addition, the study provides insight into the biodiversity assessment in the desert region.
Collapse
Affiliation(s)
- Jiaqiang Liu
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Xiang Sun
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Yiling Zuo
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Qiannan Hu
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Xueli He
- School of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
14
|
Cui XX, Wang L, Fang HY, Zheng YG, Su CY. The cultivable endophytic fungal community of Scutellaria baicalensis: diversity and relevance to flavonoid production by the host. PLANT SIGNALING & BEHAVIOR 2022; 17:2068834. [PMID: 35531979 PMCID: PMC9090296 DOI: 10.1080/15592324.2022.2068834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Scutellaria baicalensis (SB), a traditional Chinese medicinal plant, is widely used because of its important pharmacological activities. However, the endophytic fungi that promote flavonoid accumulation in SB remain unclear. Therefore, we analyzed the endophytic fungal community of SB and screened the endophytic fungi that might promote flavonoid synthesis in SB. ITS1/ITS4Blast was used to identify the endophytic fungi in SB. In total, 687 strains were identified in 57 genera. The dominant genus in the leaves and stems was Alternaria and that in the roots was Fusarium. Alternaria was the dominant genus in SB collected from all sites and in wild and cultivated SB. Alpha diversity indexes indicated more abundant endophytic fungi in samples from Chengde, the genuine producing area of SB, than in those from other sites. Beta diversity index analysis indicated that SB plants with closer geographical relationships showed more similar endophytic fungal community profiles. Spearman correlation analysis revealed that baicalin, wogonoside, wogonin, and oroxylin A contents were significantly correlated with the relative abundance of Alternaria. Overall, the results indicate the importance of geographical factors in influencing the endophytic fungal community of SB and suggest that the presence of Alternaria spp. might contribute to flavonoid synthesis in SB.
Collapse
Affiliation(s)
- Xiao-Xuan Cui
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Lei Wang
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Hui-Yong Fang
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yu-Guang Zheng
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei, China
| | - Chun-Yan Su
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
15
|
Ye G, Chen J, Yang P, Hu HW, He ZY, Wang D, Cao D, Zhang W, Wu B, Wu Y, Wei X, Lin Y. Non-native Plant Species Invasion Increases the Importance of Deterministic Processes in Fungal Community Assembly in a Coastal Wetland. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02144-z. [PMID: 36372840 DOI: 10.1007/s00248-022-02144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Fungal communities are essential to the maintenance of soil multifunctionality. Plant invasion represents a growing challenge for the conservation of soil biodiversity across the globe, but the impact of non-native species invasion on fungal diversity, community structure, and assembly processes remains largely unknown. Here, we examined the diversity, community composition, functional guilds, and assembly process of fungi at three soil depths underneath a native species, three non-native species, and a bare tidal flat from a coastal wetland. Plant species was more important than soil depth in regulating the diversity, community structure, and functional groups of fungi. Non-native species, especially Spartina alterniflora, increased fungal diversity, altered fungal community structure, and increased the relative abundance of saprotrophic and pathogenic fungi in coastal wetland soils. Stochastic processes played a predominant role in driving fungal community assembly, explaining more than 70% of the relative contributions. However, compared to a native species, non-native species, especially S. alterniflora, reduced the relative influence of stochastic processes in fungal community assembly. Collectively, our results provide novel evidence that non-native species can increase fungal diversity, the relative abundance of saprotrophic and pathogenic fungi, and deterministic processes in the assembly of fungi in coastal wetlands, which can expand our knowledge of the dynamics of fungal communities in subtropical coastal wetlands.
Collapse
Affiliation(s)
- Guiping Ye
- Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jianming Chen
- Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Ping Yang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010, Melbourne, Australia
| | - Zi-Yang He
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010, Melbourne, Australia
| | - Dan Wang
- Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Dingding Cao
- Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Wenbin Zhang
- Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Bingyu Wu
- Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yonghong Wu
- Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Xiangying Wei
- Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Yongxin Lin
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
16
|
Morales-Quintana L, Miño R, Mendez-Yañez A, Gundel PE, Ramos P. Do fungal-endosymbionts improve crop nutritional quality and tolerance to stress by boosting flavonoid-mediated responses? Food Res Int 2022; 161:111850. [DOI: 10.1016/j.foodres.2022.111850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/04/2022]
|
17
|
Ben zineb A, Barkaoui K, Karray F, Mhiri N, Sayadi S, Mliki A, Gargouri M. Olive agroforestry shapes rhizosphere microbiome networks associated with annual crops and impacts the biomass production under low-rainfed conditions. Front Microbiol 2022; 13:977797. [PMID: 36386625 PMCID: PMC9650424 DOI: 10.3389/fmicb.2022.977797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/06/2022] [Indexed: 09/08/2024] Open
Abstract
Agroforestry (AF) is a promising land-use system to mitigate water deficiency, particularly in semi-arid areas. However, the belowground microbes associated with crops below trees remain seldom addressed. This study aimed at elucidating the effects of olive AF system intercropped with durum wheat (Dw), barely (Ba), chickpea (Cp), or faba bean (Fb) on crops biomass and their soil-rhizosphere microbial networks as compared to conventional full sun cropping (SC) under rainfed conditions. To test the hypothesis, we compared the prokaryotic and the fungal communities inhabiting the rhizosphere of two cereals and legumes grown either in AF or SC. We determined the most suitable annual crop species in AF under low-rainfed conditions. Moreover, to deepen our understanding of the rhizosphere network dynamics of annual crops under AF and SC systems, we characterized the microbial hubs that are most likely responsible for modifying the microbial community structure and the variability of crop biomass of each species. Herein, we found that cereals produced significantly more above-ground biomass than legumes following in descending order: Ba > Dw > Cp > Fb, suggesting that crop species play a significant role in improving soil water use and that cereals are well-suited to rainfed conditions within both types of agrosystems. The type of agrosystem shapes crop microbiomes with the only marginal influence of host selection. However, more relevant was to unveil those crops recruits specific bacterial and fungal taxa from the olive-belowground communities. Of the selected soil physicochemical properties, organic matter was the principal driver in shaping the soil microbial structure in the AF system. The co-occurrence network analyses indicated that the AF system generates higher ecological stability than the SC system under stressful climate conditions. Furthermore, legumes' rhizosphere microbiome possessed a higher resilient capacity than cereals. We also identified different fungal keystones involved in litter decomposition and drought tolerance within AF systems facing the water-scarce condition and promoting crop production within the SC system. Overall, we showed that AF reduces cereal and legume rhizosphere microbial diversity, enhances network complexity, and leads to more stable beneficial microbial communities, especially in severe drought, thus providing more accurate predictions to preserve soil diversity under unfavorable environmental conditions.
Collapse
Affiliation(s)
- Ameni Ben zineb
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Karim Barkaoui
- CIRAD, UMR ABSys, Montpellier, France
- ABSys, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Najla Mhiri
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Mahmoud Gargouri
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
18
|
Liu L, Wang X, Chen S, Liu D, Song C, Yi S, Zhu F, Wang W, Wang F, Wang G, Song X, Jia B, Chen C, Peng H, Guo L, Han B. Fungal isolates influence the quality of Peucedanum praeruptorum Dunn. FRONTIERS IN PLANT SCIENCE 2022; 13:1011001. [PMID: 36352875 PMCID: PMC9638934 DOI: 10.3389/fpls.2022.1011001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The symbiotic relationship between beneficial microorganisms and plants plays a vital role in natural and agricultural ecosystems. Although Peucedanum praeruptorum Dunn is widely distributed, its development is greatly limited by early bolting. The reason for early bolting in P. praeruptorum remains poorly characterized. We focus on the plant related microorganisms, including endophytes and rhizosphere microorganisms, by combining the traditional isolation and culture method with metagenomic sequencing technology. We found that the OTUs of endophytes and rhizosphere microorganisms showed a positive correlation in the whole growth stage of P. praeruptorum. Meanwhile, the community diversity of endophytic and rhizosphere fungi showed an opposite change trend, and bacteria showed a similar change trend. Besides, the microbial communities differed during the pre- and post-bolting stages of P. praeruptorum. Beneficial bacterial taxa, such as Pseudomonas and Burkholderia, and fungal taxa, such as Didymella and Fusarium, were abundant in the roots in the pre-bolting stage. Further, a strain belonging to Didymella was obtained by traditional culture and was found to contain praeruptorin A, praeruptorin B, praeruptorin E. In addition, we showed that the fungus could affect its effective components when it was inoculated into P. praeruptorum. This work provided a research reference for the similar biological characteristics of perennial one-time flowering plants, such as Saposhnikovia divaricate, Angelica sinensis and Angelica dahurica.
Collapse
Affiliation(s)
- Li Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Xuejun Wang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Shaotong Chen
- College of Life Science, South China Agricultural University, Guangzhou, China
| | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Shanyong Yi
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Fucheng Zhu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Wei Wang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Fang Wang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Guanglin Wang
- Analytical and Testing Center, West Anhui University, Lu’an, China
| | - Xiangwen Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Bin Jia
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Cunwu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| | - Huasheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an, China
| |
Collapse
|
19
|
Wang Y, Xu Y, Maitra P, Babalola BJ, Zhao Y. Temporal variations in root-associated fungal communities of Potaninia mongolica, an endangered relict shrub species in the semi-arid desert of Northwest China. FRONTIERS IN PLANT SCIENCE 2022; 13:975369. [PMID: 36311128 PMCID: PMC9597089 DOI: 10.3389/fpls.2022.975369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The semi-arid region of the Western Ordos plateau in Inner Mongolia, China, is home to a critically endangered shrub species, Potaninia mongolica, which originates from ancient Mediterranean regions. Root-associated microbiomes play important roles in plant nutrition, productivity, and resistance to environmental stress particularly in the harsh desert environment; however, the succession of root-associated fungi during the growth stages of P. mongolica is still unclear. This study aimed to examine root-associated fungal communities of this relict plant species across three seasons (spring, summer and autumn) using root sampling and Illumina Miseq sequencing of internal transcribed spacer 2 (ITS 2) region to target fungi. The analysis detected 698 fungal OTUs in association with P. mongolica roots, and the fungal richness increased significantly from spring to summer and autumn. Eurotiales, Hypocreales, Chaetothyriales, Pleosporales, Helotiales, Agaricales and Xylariales were the dominant fungal orders. Fungal community composition was significantly different between the three seasons, and the fungal taxa at various levels showed biased distribution and preferences. Stochastic processes predominantly drove community assembly of fungi in spring while deterministic processes acted more in the later seasons. The findings revealed the temporal dynamics of root-associated fungal communities of P. mongolica, which may enhance our understanding of biodiversity and changes along with seasonal alteration in the desert, and predict the response of fungal community to future global changes.
Collapse
Affiliation(s)
- Yonglong Wang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Ying Xu
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Pulak Maitra
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanling Zhao
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| |
Collapse
|
20
|
Metabarcoding and Metabolome Analyses Reveal Mechanisms of Leymus chinensis Growth Promotion by Fairy Ring of Leucocalocybe mongolica. J Fungi (Basel) 2022; 8:jof8090944. [PMID: 36135669 PMCID: PMC9505569 DOI: 10.3390/jof8090944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Fairy rings are a unique ecological phenomenon caused by the growth of the fungal mycelium in the soil. Fairy rings formed by Leucocalocybe mongolica (LM) are generally distributed in the Mongolian Plateau, where they promote plant growth without fertilization and alleviate fertilizer use. We previously investigated the soil factors regulating growth promotion in a fairy ring ecosystem; however, the aspects of the plant (Leymus chinensis, LC) that promote growth have not been explored. Therefore, the present study investigated the endophyte diversity and metabolome of LC in an LM fairy ring ecosystem. We analyzed the leaf and root samples of LC from the DARK (FR) and OUT (CK) zones. The fairy rings significantly improved the fungal diversity of roots and leaves and the bacterial diversity of leaves in the FR zone. Ralstonia was the dominant bacteria detected in the LC leaves. In addition, Marasmius, another fairy ring fungal genus, was also detected with a high abundance in the roots of the FR zone. Furthermore, widely targeted metabolome analysis combined with KEGG annotation identified 1011 novel metabolites from the leaves and roots of LC and seven pathways significantly regulated by the fairy ring in the FR zone. The fairy ring ecosystem significantly downregulated the flavonoid metabolism in the leaves and roots of LC. The correlation analysis found Ralstonia is a potential regulatory factor of flavonoid biosynthesis in LC. In addition, salicylic acid and jasmonic acid were found upregulated in the leaves, probably related to Marasmius enrichment. Thus, the study details plant factors associated with enhanced growth in an LM fairy ring ecosystem. These findings lay a theoretical foundation for developing the fairy ring ecosystem in an agricultural system.
Collapse
|
21
|
Zuo YL, Hu QN, Qin L, Liu JQ, He XL. Species identity and combinations differ in their overall benefits to Astragalus adsurgens plants inoculated with single or multiple endophytic fungi under drought conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:933738. [PMID: 36160950 PMCID: PMC9490189 DOI: 10.3389/fpls.2022.933738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Although desert plants often establish multiple simultaneous symbiotic associations with various endophytic fungi in their roots, most studies focus on single fungus inoculation. Therefore, combined inoculation of multiple fungi should be applied to simulate natural habitats with the presence of a local microbiome. Here, a pot experiment was conducted to test the synergistic effects between three extremely arid habitat-adapted root endophytes (Alternaria chlamydospora, Sarocladium kiliense, and Monosporascus sp.). For that, we compared the effects of single fungus vs. combined fungi inoculation, on plant morphology and rhizospheric soil microhabitat of desert plant Astragalus adsurgens grown under drought and non-sterile soil conditions. The results indicated that fungal inoculation mainly influenced root biomass of A. adsurgens, but did not affect the shoot biomass. Both single fungus and combined inoculation decreased plant height (7-17%), but increased stem branching numbers (13-34%). However, fungal inoculation influenced the root length and surface area depending on their species and combinations, with the greatest benefits occurring on S. kiliense inoculation alone and its co-inoculation with Monosporascus sp. (109% and 61%; 54% and 42%). Although A. chlamydospora and co-inoculations with S. kiliense and Monosporascus sp. also appeared to promote root growth, these inoculations resulted in obvious soil acidification. Despite no observed root growth promotion, Monosporascus sp. associated with its combined inoculations maximally facilitated soil organic carbon accumulation. However, noticeably, combined inoculation of the three species had no significant effects on root length, surface area, and biomass, but promoted rhizospheric fungal diversity and abundance most, with Sordariomycetes being the dominant fungal group. This indicates the response of plant growth to fungal inoculation may be different from that of the rhizospheric fungal community. Structural equation modeling also demonstrated that fungal inoculation significantly influenced the interactions among the growth of A. adsurgens, soil factors, and rhizospheric fungal groups. Our findings suggest that, based on species-specific and combinatorial effects, endophytic fungi enhanced the plant root growth, altered soil nutrients, and facilitated rhizospheric fungal community, possibly contributing to desert plant performance and ecological adaptability. These results will provide the basis for evaluating the potential application of fungal inoculants for developing sustainable management for desert ecosystems.
Collapse
Affiliation(s)
- Yi-Ling Zuo
- School of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| | - Qian-Nan Hu
- School of Life Sciences, Hebei University, Baoding, China
| | - Le Qin
- School of Life Sciences, Hebei University, Baoding, China
| | - Jia-Qiang Liu
- School of Life Sciences, Hebei University, Baoding, China
| | - Xue-Li He
- School of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| |
Collapse
|
22
|
Yang H, Yang Z, Wang QC, Wang YL, Hu HW, He JZ, Zheng Y, Yang Y. Compartment and Plant Identity Shape Tree Mycobiome in a Subtropical Forest. Microbiol Spectr 2022; 10:e0134722. [PMID: 35863008 PMCID: PMC9430249 DOI: 10.1128/spectrum.01347-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/26/2022] [Indexed: 11/20/2022] Open
Abstract
Deciphering the relationships between microbes and their host plants is critical for a better understanding of microbial diversity maintenance and community stability. Here, we investigated fungal diversity and community assembly in the phyllosphere and rhizosphere of 13 tree species in a subtropical common-garden experiment. The results showed that fungal community structures significantly differed across compartments (leaf, root, and soil) and different tree species. Higher α-diversity was observed in the phyllosphere than in the roots and rhizospheric soil. Fungal community composition (β-diversity) was significantly affected by both compartment and species identity. The fungal community compositions were significantly correlated with soil pH in the roots and the soils as well as with soil nitrate and leaf total phosphorus in the leaves. We found that fungal community assemblies were mainly driven by deterministic processes, regardless of compartments. Moreover, host preference analyses indicated that stronger plant/fungus preferences occurred in leaves than in roots and soils. Our results highlight the differences in tree mycobiome between aboveground and belowground compartments and have important implications for the promotion of biodiversity conservation and management sustainability for the subtropical forest. IMPORTANCE Subtropical mountain forests are widely distributed in Southern China and are characterized by high biodiversity. The interactions between plants and fungi play pivotal roles in biodiversity maintenance and community stability. Nevertheless, knowledge of fungal diversity and of the community assembly patterns of woody plants is scarce. Here, we investigated fungal diversity and community assembly in the phyllosphere and rhizosphere of 13 tree species in a common-garden experiment. We found that both compartment and plant identity influenced fungal diversity, community, and guild compositions, while deterministic processes mainly governed the fungal community assembly, especially in the rhizospheric fungal communities. Our results demonstrate that tree leaves represent stronger host/fungi preferences than do roots and soils. Together, our findings enhance the understanding of the roles of compartment and plant identity in structuring fungal communities as well as promote fungal diversity maintenance in subtropical mountain forest ecosystems.
Collapse
Affiliation(s)
- Hao Yang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Zhijie Yang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Sanming Forest Ecosystem National Observation and Research Station, Sanming, Fujian, China
| | - Quan-Cheng Wang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Yong-Long Wang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, Inner Mongolia, China
| | - Hang-Wei Hu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Ji-Zheng He
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Sanming Forest Ecosystem National Observation and Research Station, Sanming, Fujian, China
| | - Yong Zheng
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Yusheng Yang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Sanming Forest Ecosystem National Observation and Research Station, Sanming, Fujian, China
| |
Collapse
|
23
|
Improved Tolerance of Artemisia ordosica to Drought Stress via Dark Septate Endophyte (DSE) Symbiosis. J Fungi (Basel) 2022; 8:jof8070730. [PMID: 35887485 PMCID: PMC9320036 DOI: 10.3390/jof8070730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022] Open
Abstract
Dark septate endophytes (DSEs) usually colonize plant roots, especially in stress environments. However, their relationship with plants ranges from beneficial to harmful and has remained largely uncharacterized. In the present study, 14 DSE species grouped into 11 genera were isolated from the roots of a desert plant, Artemisia ordosica, which is widely distributed in northwest China. Three dominant DSE species—Paraphoma chrysanthemicola (Pc), Alternaria chartarum (Ac), and Acrocalymma vagum (Av)—were selected and tested for their resistance to drought in vitro. Furthermore, we characterized the responses of A. ordosica under drought conditions in relation to the presence of these DSEs following inoculation. The results showed that all three strains grew well under in vitro drought stress, and the biomass of Ac and Av was significantly higher than that of the unstressed control. The effects of DSE inoculation on the growth of A. ordosica under drought stress varied according to the different DSE species but were generally beneficial. Under drought stress, Av and Pc promoted plant growth, antioxidant enzyme activity, and root development of the hosts. The Ac strain conferred obvious positive effects on the antioxidant enzyme activity of the hosts. In general, Av and Pc demonstrated better application potential for improving the drought resistance of A. ordosica.
Collapse
|
24
|
Al-Askar AA, Ghoneem KM, Hafez EE, Saber WIA. A Case Study in Saudi Arabia: Biodiversity of Maize Seed-Borne Pathogenic Fungi in Relation to Biochemical, Physiological, and Molecular Characteristics. PLANTS (BASEL, SWITZERLAND) 2022; 11:829. [PMID: 35336711 PMCID: PMC8954539 DOI: 10.3390/plants11060829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 05/02/2023]
Abstract
Microbiodiversity is usually correlated with environmental conditions. This investigation is a case study to cover the lack of knowledge on the correlation of biochemical, physiological, and molecular attributes with the distribution of seed-borne pathogenic fungi of maize under the environmental conditions of the Kingdom of Saudi Arabia to help forecast any destructive epidemics. Forty-one fungal species belonging to 24 genera were detected using standard moist blotter (SMB), deep freezing blotter (DFB), and agar plate (AP) techniques. SMB was superior in detecting the maximum numbers (36 species) of seed-borne mycoflora. The pathogenicity assay revealed that, among 18 seed-borne fungal pathogens used, 12 isolates caused high percentages of rotted seeds and seedling mortality symptoms, which were identified molecularly using an internal transcribed spacer sequence. Two Curvularia spp. and Sarocladium zeae were reported for the first time in KSA. The strains showed various enzymatic activities and amino acid profiles under different environmental setups. Temperature and humidity were the environmental variables influencing the fungal pathogenicity. The highest pathogenicity was correlated with the presence and concentration of threonine, alanine, glutamic, aspartic acids, and protein. The study concluded with the discovery of four new phytopathogens in KSA and, further, evidenced a marked correlation among the investigated variables. Nevertheless, more studies are encouraged to include additional physiological properties of the phytopathogens, such as toxigenic activity, as well as extend the fungal biodiversity study to other plants.
Collapse
Affiliation(s)
- Abdulaziz A. Al-Askar
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid M. Ghoneem
- Seed Pathology Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt;
| | - Elsayed E. Hafez
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City 21934, Egypt;
| | - WesamEldin I. A. Saber
- Microbial Activity Unit, Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
25
|
de Medeiros Azevedo T, Aburjaile FF, Ferreira-Neto JRC, Pandolfi V, Benko-Iseppon AM. The endophytome (plant-associated microbiome): methodological approaches, biological aspects, and biotech applications. World J Microbiol Biotechnol 2021; 37:206. [PMID: 34708327 DOI: 10.1007/s11274-021-03168-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
Similar to other organisms, plants establish interactions with a variety of microorganisms in their natural environment. The plant microbiome occupies the host plant's tissues, either internally or on its surfaces, showing interactions that can assist in its growth, development, and adaptation to face environmental stresses. The advance of metagenomics and metatranscriptomics approaches has strongly driven the study and recognition of plant microbiome impacts. Research in this regard provides comprehensive information about the taxonomic and functional aspects of microbial plant communities, contributing to a better understanding of their dynamics. Evidence of the plant microbiome's functional potential has boosted its exploitation to develop more ecological and sustainable agricultural practices that impact human health. Although microbial inoculants' development and use are promising to revolutionize crop production, interdisciplinary studies are needed to identify new candidates and promote effective practical applications. On the other hand, there are challenges in understanding and analyzing complex data generated within a plant microbiome project's scope. This review presents aspects about the complex structuring and assembly of the microbiome in the host plant's tissues, metagenomics, and metatranscriptomics approaches for its understanding, covering descriptions of recent studies concerning metagenomics to characterize the microbiome of non-model plants under different aspects. Studies involving bio-inoculants, isolated from plant microbial communities, capable of assisting in crops' productivity, are also reviewed.
Collapse
Affiliation(s)
- Thamara de Medeiros Azevedo
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Flávia Figueira Aburjaile
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - José Ribamar Costa Ferreira-Neto
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Valesca Pandolfi
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Ana Maria Benko-Iseppon
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil.
| |
Collapse
|