1
|
Xie X, Guo Z, Chen B, Lin L, Liu H, Xiao G, Wang Q. Surface display and characterization of recombinant α-l-Rhamnosidase from Emiliania huxleyi on Pichia pastoris. Bioorg Chem 2025; 155:108121. [PMID: 39764918 DOI: 10.1016/j.bioorg.2025.108121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/21/2025]
Abstract
An α-l-Rhamnosidase gene with an open reading frame of 3192 bp encoding a 1036-amino acid protein (EhRha) was cloned from Emiliania huxleyi for flavonoid hydrolysis on the cell surface of Pichia pastoris (P. pastoris) strain GS115 by fusing with the anchor protein (AGα1) from Saccharomyces cerevisiae. Fluorescence microscopy and flow cytometry assays revealed that EhRha was successfully displayed on the cell surface of P. pastoris GS115. The enzyme activity assay and substrate specificity analysis showed that the enzyme activity of displayed EhRha was 78 U/g (cell wet weight). EhRha demonstrated a preference for the α-1,6 linkage l-rhamnose in hesperidin and rutin as its optimal substrates, while showing low activity towards the α-1,2 linkage l-rhamnose in naringin. Furthermore, EhRha demonstrated optimal activity at pH 7.0 and 30 °C, maintaining stability within a pH range of 4.5-9.0 at temperatures below 50 °C, and remained functional at temperatures ranging from 15 °C-30 °C. The enzyme activity was significantly enhanced by the presence of 10 mM Mn2+ and Fe3+, whereas 10 mM Ca2+ and 1 mM Fe3+ had an inhibitory effect. These findings suggested that displayed EhRha holds promise for enhancing the bioavailability of health-beneficial polyphenols in low-temperature processing applications.
Collapse
Affiliation(s)
- Xi Xie
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Department of Education of Medicinal and Edible Food Intensive Processing Engineering Technology Research Center, Guangzhou 510225, China.
| | - Ziwei Guo
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch 7647, New Zealand
| | - Bihan Chen
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Huifan Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Department of Education of Medicinal and Edible Food Intensive Processing Engineering Technology Research Center, Guangzhou 510225, China
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qin Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
2
|
Ge L, Liu Y, Zhou F, Zhan L, Zhao L. Heterologous Expression and Characterization of a Thermostable α-L-Rhamnosidase from Thermoclostridium stercorarium subsp. thermolacticum DSM 2910 and Its Application in the Biotransformation of Rutin. J Microbiol Biotechnol 2023; 33:1521-1530. [PMID: 37644729 DOI: 10.4014/jmb.2305.05032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/31/2023]
Abstract
An α-L-rhamnosidase gene from Thermoclostridium. stercorarium subsp. thermolacticum DSM 2910 (TstRhaA) was cloned and expressed. The maximum TstRhaA activity of the protein reached 25.2 U/ml, and the molecular mass was approximately 106.6 kDa. The protein was purified 8.0-fold by Ni-TED affinity with an overall recovery of 16.6% and a specific activity of 187.9 U/mg. TstRhaA activity was the highest at 65°C and pH 6.5. In addition, it exhibited excellent thermal stability, better pH stability, good tolerance to low concentrations of organic reagents, and high catalytic activity for p-nitrophenyl-α-L-rhamnopyranoside (pNPR). Substrate specificity studies showed that TstRhaA exhibited a high specific activity for rutin. At 60°C, pH 6.5, and 0.3 U/ml enzyme dosage, 60 g/l rutin was converted to 45.55 g/l isoquercitrin within 150 min. The molar conversion rate of rutin and the yield of isoquercitrin were 99.8% and 12.22 g/l/h, respectively. The results suggested that TstRhaA could be used for mass production of isoquercitrin.
Collapse
Affiliation(s)
- Lin Ge
- Department of Medical Science and Technology, Suzhou Chien-Shiung Institute of Technology, 1 Jian Xiong Road, Taicang 215411, P.R. China
| | - Yingying Liu
- Department of Medical Science and Technology, Suzhou Chien-Shiung Institute of Technology, 1 Jian Xiong Road, Taicang 215411, P.R. China
| | - Fangming Zhou
- Department of Medical Science and Technology, Suzhou Chien-Shiung Institute of Technology, 1 Jian Xiong Road, Taicang 215411, P.R. China
| | - Lingling Zhan
- Department of Medical Science and Technology, Suzhou Chien-Shiung Institute of Technology, 1 Jian Xiong Road, Taicang 215411, P.R. China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P.R. China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, P.R. China
| |
Collapse
|
3
|
Zhang X, Tang B, Wen S, Wang Y, Pan C, Qu L, Yin Y, Wei Y. Advancements in the Biotransformation and Biosynthesis of the Primary Active Flavonoids Derived from Epimedium. Molecules 2023; 28:7173. [PMID: 37894651 PMCID: PMC10609448 DOI: 10.3390/molecules28207173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Epimedium is a classical Chinese herbal medicine, which has been used extensively to treat various diseases, such as sexual dysfunction, osteoporosis, cancer, rheumatoid arthritis, and brain diseases. Flavonoids, such as icariin, baohuoside I, icaritin, and epimedin C, are the main active ingredients with diverse pharmacological activities. Currently, most Epimedium flavonoids are extracted from Epimedium plants, but this method cannot meet the increasing market demand. Biotransformation strategies promised huge potential for increasing the contents of high-value Epimedium flavonoids, which would promote the full use of the Epimedium herb. Complete biosynthesis of major Epimedium flavonoids by microbial cell factories would enable industrial-scale production of Epimedium flavonoids. This review summarizes the structures, pharmacological activities, and biosynthesis pathways in the Epimedium plant, as well as the extraction methods of major Epimedium flavonoids, and advancements in the biotransformation and complete microbial synthesis of Epimedium flavonoids, which would provide valuable insights for future studies on Epimedium herb usage and the production of Epimedium flavonoids.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Zhengzhou 450003, China
| | - Bingling Tang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sijie Wen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yitong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chengxue Pan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China
| | - Yongjun Wei
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Pan L, Zhang Y, Zhang F, Wang Z, Zheng J. α-L-rhamnosidase: production, properties, and applications. World J Microbiol Biotechnol 2023; 39:191. [PMID: 37160824 DOI: 10.1007/s11274-023-03638-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/30/2023] [Indexed: 05/11/2023]
Abstract
α-L-rhamnosidase [EC 3.2.1.40] belongs to glycoside hydrolase (GH) families (GH13, GH78, and GH106 families) in the carbohydrate-active enzymes (CAZy) database, which specifically hydrolyzes the non-reducing end of α-L-rhamnose. Αccording to the sites of catalytic hydrolysis, α-L-rhamnosidase can be divided into α-1, 2-rhamnosidase, α-1, 3-rhamnosidase, α-1, 4-rhamnosidase and α-1, 6-rhamnosidase. α-L-rhamnosidase is an important enzyme for various biotechnological applications, especially in food, beverage, and pharmaceutical industries. α-L-rhamnosidase has a wide range of sources and is commonly found in animals, plants, and microorganisms, and its microbial source includes a variety of bacteria, molds and yeasts (such as Lactobacillus sp., Aspergillus sp., Pichia angusta and Saccharomyces cerevisiae). In recent years, a series of advances have been achieved in various aspects of α-validates the above-described-rhamnosidase research. A number of α-L-rhamnosidases have been successfully recombinant expressed in prokaryotic systems as well as eukaryotic systems which involve Pichia pastoris, Saccharomyces cerevisiae and Aspergillus niger, and the catalytic properties of the recombinant enzymes have been improved by enzyme modification techniques. In this review, the sources and production methods, general and catalytic properties and biotechnological applications of α-L-rhamnosidase in different fields are summarized and discussed, concluding with the directions for further in-depth research on α-L-rhamnosidase.
Collapse
Affiliation(s)
- Lixia Pan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Yueting Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Fei Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|