1
|
Sui L, Zhu H, Wang D, Zhang Z, Bidochka MJ, Barelli L, Lu Y, Li Q. Tripartite interactions of an endophytic entomopathogenic fungus, Asian corn borer, and host maize under elevated carbon dioxide. PEST MANAGEMENT SCIENCE 2024; 80:4575-4584. [PMID: 38738508 DOI: 10.1002/ps.8163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Biological control of insect pests is encountering an unprecedented challenge in agricultural systems due to the ongoing rise in carbon dioxide (CO2) level. The use of entomopathogenic fungi (EPF) in these systems is gaining increased attention, and EPF as crop endophytes hold the potential for combining insect pest control and yield enhancement of crops, but the effects of increased CO2 concentration on this interaction are poorly understood. Here, the introduction of endophytic EPF was explored as an alternative sustainable management strategy benefiting crops under elevated CO2, using maize (Zea mays), Asian corn borer (Ostrinia furnacalis), and EPF (Beauveria bassiana) to test changes in damage to maize plants from O. furnacalis, and the nutritional status (content of carbon, nitrogen, phosphorus, potassium), biomass, and yield of maize. RESULTS The results showed that endophytic B. bassiana could alleviate the damage caused by O. furnacalis larvae for maize plants under ambient CO2 concentration, and this effect was enhanced under higher CO2 concentration. Inoculation with B. bassiana effectively counteracted the adverse impact of elevated CO2 on maize plants by preserving the nitrogen content at its baseline level (comparable with ambient CO2 conditions without B. bassiana). Both simultaneous effects could explain the improvement of biomass and yield of maize under B. bassiana inoculation and elevated CO2. CONCLUSION This finding provides key information about the multifaceted benefits of B. bassiana as a maize endophyte. Our results highlight the promising potential of incorporating EPF as endophytes into integrated pest management strategies, particularly under elevated CO2 concentrations. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Hui Zhu
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Deli Wang
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
| | - Michael J Bidochka
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada
| | - Larissa Barelli
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
| | - Qiyun Li
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin, China
| |
Collapse
|
2
|
Abdelhameed RE, Soliman ERS, Gahin H, Metwally RA. Enhancing drought tolerance in Malva parviflora plants through metabolic and genetic modulation using Beauveria bassiana inoculation. BMC PLANT BIOLOGY 2024; 24:662. [PMID: 38987668 PMCID: PMC11238386 DOI: 10.1186/s12870-024-05340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Enhancing crops' drought resilience is necessary to maintain productivity levels. Plants interact synergistically with microorganisms like Beauveria bassiana to improve drought tolerance. Therefore, the current study investigates the effects of biopriming with B. bassiana on drought tolerance in Malva parviflora plants grown under regular irrigation (90% water holding capacity (WHC)), mild (60% WHC), and severe drought stress (30% WHC). RESULTS The results showed that drought stress reduced the growth and physiological attributes of M. parviflora. However, those bioprimed with B. bassiana showed higher drought tolerance and enhanced growth, physiological, and biochemical parameters: drought stress enriched malondialdehyde and H2O2 contents. Conversely, exposure to B. bassiana reduced stress markers and significantly increased proline and ascorbic acid content under severe drought stress; it enhanced gibberellic acid and reduced ethylene. Bioprimed M. parviflora, under drought conditions, improved antioxidant enzymatic activity and the plant's nutritional status. Besides, ten Inter-Simple Sequence Repeat primers detected a 25% genetic variation between treatments. Genomic DNA template stability (GTS) decreased slightly and was more noticeable in response to drought stress; however, for drought-stressed plants, biopriming with B. bassiana retained the GTS. CONCLUSION Under drought conditions, biopriming with B. bassiana enhanced Malva's growth and nutritional value. This could attenuate photosynthetic alterations, up-regulate secondary metabolites, activate the antioxidant system, and maintain genome integrity.
Collapse
Affiliation(s)
- Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Elham R S Soliman
- Cytogenetics and Molecular Genetics Unit, Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt
| | - Hanan Gahin
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
3
|
Ramírez-Ordorica A, Adame-Garnica SG, Ramos-Aboites HE, Winkler R, Macías-Rodríguez L. Volatile Semiochemicals Emitted by Beauveria bassiana Modulate Larval Feeding Behavior and Food Choice Preference in Spodoptera frugiperda (Lepidoptera: Noctuidae). J Fungi (Basel) 2024; 10:438. [PMID: 38921424 PMCID: PMC11204931 DOI: 10.3390/jof10060438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Beauveria bassiana is an entomopathogenic fungus that parasitizes and kills insects. The role of volatile organic compounds (VOCs) emitted by B. bassiana acting as semiochemicals during its interaction with lepidopterans is poorly explored. Here, we studied the effect of VOCs from B. bassiana and 3-methylbutanol (as a single compound) on the feeding behavior of L2 larvae of Spodoptera frugiperda in sorghum plants. Additionally, we assessed whether fungal VOCs induce chemical modifications in the plants that affect larval food preferences. Metabolomic profiling of plant tissues was performed by mass spectrometry and bioassays in a dual-choice olfactometer. The results showed that the larval feeding behavior was affected by the B. bassiana strain AI2, showing that the insect response is strain-specific. Furthermore, 80 µg of 3-methylbutanol affected the number of bites. The larval feeding choice was dependent on the background context. Fragment spectra and a matching precursor ion mass of 165.882 m/z enabled the putative identification of 4-coumaric acid in sorghum leaves exposed to fungal VOCs, which may be associated with larval deterrent responses. These results provide valuable insights into the bipartite interaction of B. bassiana with lepidopterans through VOC emission, with the plant as a mediator of the interaction.
Collapse
Affiliation(s)
- Arturo Ramírez-Ordorica
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia C.P. 58030, Mexico;
| | - Sandra Goretti Adame-Garnica
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia C.P. 58030, Mexico;
| | - Hilda Eréndira Ramos-Aboites
- Laboratorio de Análisis Bioquímico e Instrumental, Unidad de Genómica Avanzada, Cinvestav, Km 9.6, Libramiento Norte, Carretera Irapuato-León, Irapuato C.P. 36824, Mexico; (H.E.R.-A.); (R.W.)
| | - Robert Winkler
- Laboratorio de Análisis Bioquímico e Instrumental, Unidad de Genómica Avanzada, Cinvestav, Km 9.6, Libramiento Norte, Carretera Irapuato-León, Irapuato C.P. 36824, Mexico; (H.E.R.-A.); (R.W.)
| | - Lourdes Macías-Rodríguez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia C.P. 58030, Mexico;
| |
Collapse
|
4
|
Ramírez-Ordorica A, Patiño-Medina JA, Meza-Carmen V, Macías-Rodríguez L. Volatile Fingerprint Mediates Yeast-to-Mycelial Conversion in Two Strains of Beauveria bassiana Exhibiting Varied Virulence. J Fungi (Basel) 2023; 9:1135. [PMID: 38132736 PMCID: PMC10744692 DOI: 10.3390/jof9121135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Beauveria bassiana is a dimorphic and entomopathogenic fungus with different ecological roles in nature. In pathogenic fungi, yeast-to-mycelial conversion, which is controlled by environmental factors, is required for virulence. Here, we studied the effects of different stimuli on the morphology of two B. bassiana strains and compared the toxicities of culture filtrates. In addition, we explored the role of volatiles as quorum sensing-like signals during dimorphic transition. The killing assays in Caenorhabditis elegans (Nematoda: Rhabditidae) showed that strain AI2 isolated from a mycosed insect cadaver had higher toxicity than strain AS5 isolated from soil. Furthermore, AI2 showed earlier yeast-to-mycelial switching than AS5. However, an increase in inoculum size induced faster yeast-to-mycelium conversion in AS5 cells, suggesting a cell-density-dependent phenomenon. Gas chromatography-mass spectrometry (GC-MS) analyses showed that the fingerprint of the volatiles was strain-specific; however, during the morphological switching, an inverse relationship between the abundance of total terpenes and 3-methylbutanol was observed in both strains. Fungal exposure to 3-methylbutanol retarded the yeast-to-mycelium transition. Hence, this study provides evidence that volatile compounds are associated with critical events in the life cycle of B. bassiana.
Collapse
Affiliation(s)
| | | | | | - Lourdes Macías-Rodríguez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia C.P. 58030, Michoacán, Mexico; (A.R.-O.); (J.A.P.-M.); (V.M.-C.)
| |
Collapse
|
5
|
Dubovskiy IM, Butt T. Entomopathogenic Fungi in Biological Plant Protection: The Machinery of Multicomponent System Interactions. J Fungi (Basel) 2023; 9:825. [PMID: 37623596 PMCID: PMC10455726 DOI: 10.3390/jof9080825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Plant protection faces a growing number of challenges, partly stemming from intensification of plant cultivation to ensure food security for a rapidly growing global population [...].
Collapse
Affiliation(s)
- Ivan M. Dubovskiy
- Laboratory of Biological Plant Protection and Biotechnology, Novosibirsk State Agrarian University, Dobrolubova Str. 160, 630039 Novosibirsk, Russia
- Laboratory of Biotechnology of Microorganisms and Plants, Tomsk State University, 634050 Tomsk, Russia
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, 630501 Krasnoobsk, Russia
| | - Tariq Butt
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 PP, UK;
| |
Collapse
|