1
|
Marques PH, Tiwari S, Felice AG, Jaiswal AK, Aburjaile FF, Azevedo V, Silva-Vergara ML, Ferreira-Paim K, Soares SDC, Fonseca FM. Design of a Multi-Epitope Vaccine against Histoplasma capsulatum through Immunoinformatics Approaches. J Fungi (Basel) 2024; 10:43. [PMID: 38248954 PMCID: PMC10817582 DOI: 10.3390/jof10010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Histoplasmosis is a widespread systemic disease caused by Histoplasma capsulatum, prevalent in the Americas. Despite its significant morbidity and mortality rates, no vaccines are currently available. Previously, five vaccine targets and specific epitopes for H. capsulatum were identified. Immunoinformatics has emerged as a novel approach for determining the main immunogenic components of antigens through in silico methods. Therefore, we predicted the main helper and cytotoxic T lymphocytes and B-cell epitopes for these targets to create a potential multi-epitope vaccine known as HistoVAC-TSFM. A total of 38 epitopes were found: 23 common to CTL and B-cell responses, 11 linked to HTL and B cells, and 4 previously validated epitopes associated with the B subunit of cholera toxin, a potent adjuvant. In silico evaluations confirmed the stability, non-toxicity, non-allergenicity, and non-homology of these vaccines with the host. Notably, the vaccine exhibited the potential to trigger both innate and adaptive immune responses, likely involving the TLR4 pathway, as supported by 3D modeling and molecular docking. The designed HistoVAC-TSFM appears promising against Histoplasma, with the ability to induce important cytokines, such as IFN-γ, TNF-α, IL17, and IL6. Future studies could be carried out to test the vaccine's efficacy in in vivo models.
Collapse
Affiliation(s)
- Pedro Henrique Marques
- Postgraduate Interunits Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (P.H.M.); (A.K.J.)
- Department of Preventive Veterinary, Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Sandeep Tiwari
- Institute of Biology, Federal University of Bahia, Salvador 40170-115, Brazil;
- Institute of Health Sciences, Federal University of Bahia, Salvador 40170-115, Brazil
| | - Andrei Giacchetto Felice
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba 38015-050, Brazil; (A.G.F.); (S.d.C.S.)
| | - Arun Kumar Jaiswal
- Postgraduate Interunits Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (P.H.M.); (A.K.J.)
| | - Flávia Figueira Aburjaile
- Department of Preventive Veterinary, Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Mario León Silva-Vergara
- Department of Infectious Diseases, Federal University of Triangulo Mineiro, Uberaba 38025-440, Brazil;
| | - Kennio Ferreira-Paim
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba 38015-050, Brazil; (A.G.F.); (S.d.C.S.)
| | - Siomar de Castro Soares
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba 38015-050, Brazil; (A.G.F.); (S.d.C.S.)
| | | |
Collapse
|
2
|
Bao C, Li M, Zhao X, Shi J, Liu Y, Zhang N, Zhou Y, Ma J, Chen G, Zhang S, Chen H. Mining of key genes for cold adaptation from Pseudomonas fragi D12 and analysis of its cold-adaptation mechanism. Front Microbiol 2023; 14:1215837. [PMID: 37485517 PMCID: PMC10358777 DOI: 10.3389/fmicb.2023.1215837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
The psychrotroph Pseudomonas fragi D12, which grew strongly under low temperatures, was screened from tundra soil collected from the permanent alpine zone on Changbai Mountain. To mine the genes critical for cold tolerance and to investigate the cold-adaptation mechanism, whole-genome sequencing, comparative genomic analysis, and transcriptome analysis were performed with P. fragi. A total of 124 potential cold adaptation genes were identified, including nineteen unique cold-adaptive genes were detected in the genome of P. fragi D12. Three unique genes associated with pili protein were significantly upregulated at different degrees of low temperature, which may be the key to the strong low-temperature adaptability of P. fragi D12. Meanwhile, we were pleasantly surprised to find that Pseudomonas fragi D12 exhibited different cold-adaptation mechanisms under different temperature changes. When the temperature declined from 30°C to 15°C, the response included maintenance of the fluidity of cell membranes, increased production of extracellular polymers, elevation in the content of compatibility solutes, and reduction in the content of reactive oxygen species, thereby providing a stable metabolic environment. When the temperature decreased from 15°C to 4°C, the response mainly included increases in the expression of molecular chaperones and transcription factors, enabling the bacteria to restore normal transcription and translation. The response mechanism of P. fragi D12 to low-temperature exposure is discussed. The results provide new ideas for the cold-adaptation mechanism of cold-tolerant microorganisms.
Collapse
Affiliation(s)
- Changjie Bao
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Muzi Li
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Xuhui Zhao
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Jia Shi
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Yehui Liu
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Na Zhang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Yuqi Zhou
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Jie Ma
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Guang Chen
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Sitong Zhang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Huan Chen
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
3
|
Inácio MM, Moreira ALE, Cruz-Leite VRM, Mattos K, Silva LOS, Venturini J, Ruiz OH, Ribeiro-Dias F, Weber SS, Soares CMDA, Borges CL. Fungal Vaccine Development: State of the Art and Perspectives Using Immunoinformatics. J Fungi (Basel) 2023; 9:633. [PMID: 37367569 PMCID: PMC10301004 DOI: 10.3390/jof9060633] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Fungal infections represent a serious global health problem, causing damage to health and the economy on the scale of millions. Although vaccines are the most effective therapeutic approach used to combat infectious agents, at the moment, no fungal vaccine has been approved for use in humans. However, the scientific community has been working hard to overcome this challenge. In this sense, we aim to describe here an update on the development of fungal vaccines and the progress of methodological and experimental immunotherapies against fungal infections. In addition, advances in immunoinformatic tools are described as an important aid by which to overcome the difficulty of achieving success in fungal vaccine development. In silico approaches are great options for the most important and difficult questions regarding the attainment of an efficient fungal vaccine. Here, we suggest how bioinformatic tools could contribute, considering the main challenges, to an effective fungal vaccine.
Collapse
Affiliation(s)
- Moisés Morais Inácio
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74605-170, Brazil
- Estácio de Goiás University Center, Goiânia 74063-010, Brazil
| | - André Luís Elias Moreira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74605-170, Brazil
| | | | - Karine Mattos
- Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Lana O’Hara Souza Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74605-170, Brazil
| | - James Venturini
- Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Orville Hernandez Ruiz
- MICROBA Research Group—Cellular and Molecular Biology Unit—CIB, School of Microbiology, University of Antioquia, Medellín 050010, Colombia
| | - Fátima Ribeiro-Dias
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Federal University of Goiás, Goiânia 74001-970, Brazil
| | - Simone Schneider Weber
- Bioscience Laboratory, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74605-170, Brazil
| | - Clayton Luiz Borges
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74605-170, Brazil
| |
Collapse
|
4
|
Chechi JL, da Costa FAC, Figueiredo JM, de Souza CM, Valdez AF, Zamith-Miranda D, Camara AC, Taborda CP, Nosanchuk JD. Vaccine development for pathogenic fungi: current status and future directions. Expert Rev Vaccines 2023; 22:1136-1153. [PMID: 37936254 PMCID: PMC11500455 DOI: 10.1080/14760584.2023.2279570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Fungal infections are caused by a broad range of pathogenic fungi that are found worldwide with different geographic distributions, incidences, and mortality rates. Considering that there are relatively few approved medications available for combating fungal diseases and no vaccine formulation commercially available, multiple groups are searching for new antifungal drugs, examining drugs for repurposing and developing antifungal vaccines, in order to control deaths, sequels, and the spread of these complex infections. AREAS COVERED This review provides a summary of advances in fungal vaccine studies and the different approaches under development, such as subunit vaccines, whole organism vaccines, and DNA vaccines, as well as studies that optimize the use of adjuvants. We conducted a literature search of the PubMed with terms: fungal vaccines and genus of fungal pathogens (Cryptococcus spp. Candida spp. Coccidioides spp. Aspergillus spp. Sporothrix spp. Histoplasma spp. Paracoccidioides spp. Pneumocystis spp. and the Mucorales order), a total of 177 articles were collected from database. EXPERT OPINION Problems regarding the immune response development in an immunocompromised organism, the similarity between fungal and mammalian cells, and the lack of attention by health organizations to fungal infections are closely related to the fact that, at present, there are no fungal vaccines available for clinical use.
Collapse
Affiliation(s)
- Jéssica L. Chechi
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Felipe A. C. da Costa
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
- Laboratório de Micologia Médica (LIM-53), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Julia M. Figueiredo
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Cássia M. de Souza
- Laboratório de Fisiologia e Biologia Molecular de Fungos, Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, Brasil
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brasil
| | - Alessandro F. Valdez
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Daniel Zamith-Miranda
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Aline C. Camara
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
- Laboratório de Micologia Médica (LIM-53), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Carlos P. Taborda
- Laboratório de Fungos Dimórficos Patogênicos, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
- Laboratório de Micologia Médica (LIM-53), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Joshua D. Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| |
Collapse
|