1
|
Zobel CM, Kuhn H, Schreiner M, Wenzel W, Wendtland J, Goekeri C, Scheit L, Oltmanns K, Rauschning D, Grossegesse M, Hofmann N, Wirtz H, Spethmann S. Impact of ACE I gene insertion/deletion, A-240T polymorphisms and the renin-angiotensin-aldosterone system on COVID-19 disease. Virol J 2024; 21:15. [PMID: 38200555 PMCID: PMC10782794 DOI: 10.1186/s12985-023-02283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic is driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which has led to an enormous burden on patient morbidity and mortality. The renin-angiotensin-aldosterone system (RAAS) plays a significant role in various pulmonary diseases. Since SARS-CoV-2 utilizes the angiotensin-converting enzyme (ACE)2 receptor to exert its virulence and pathogenicity, the RAAS is of particular importance in COVID 19. METHODS Our preliminary study investigates retrospectively the influence of selected ACE-polymorphisms (I/D location at intron 16 in the B-coding sequence (rs4646994) and A-240T (rs 4291) at the A-promoter) as well as ACE1 and ACE2 serum levels on disease severity and the inflammatory response in inpatients and outpatients with COVID-19. RESULTS Our study included 96 outpatients and 88 inpatients (65.9% male, mean age 60 years) with COVID-19 from April to December 2020 in four locations in Germany. Of the hospitalized patients, 88.6% participants were moderately ill (n = 78, 64% male, median age 60 years), and 11.4% participants were severely ill or deceased (n = 10, 90% male, median age 71 years). We found no polymorphism-related difference in disease, in age distribution, time to hospitalization and time of hospitalization for the inpatient group. ACE1 serum levels were significantly increased in the DD compared to the II polymorphism and in the TT compared to the AA polymorphism. There was no significant difference in ACE 1 serum levels l between moderately ill and severely ill patients. However, participants requiring oxygen supplementation had significantly elevated ACE1 levels compared to participants not requiring oxygen, with no difference in ACE2 levels whereas females had significantly higher ACE2 levels. CONCLUSIONS Although there were no differences in the distribution of ACE polymorphisms in disease severity, we found increased proinflammatory regulation of the RAAS in patients with oxygen demand and increased serum ACE2 levels in women, indicating a possible enhanced anti-inflammatory immune response. CLINICAL TRIAL REGISTRATION PreBiSeCov: German Clinical Trials Register, DRKS-ID: DRKS00021591, Registered on 27th April 2020.
Collapse
Affiliation(s)
- Christian M Zobel
- Department of Internal Medicine, Bundeswehr Hospital Berlin, Scharnhorstrstr. 13, 10115, Berlin, Germany.
| | - Hartmut Kuhn
- Department of Respiratory Medicine, University of Leipzig, Leipzig, Germany
| | - Maximilian Schreiner
- Department of Internal Medicine, Bundeswehr Hospital Berlin, Scharnhorstrstr. 13, 10115, Berlin, Germany
| | - Werner Wenzel
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Berlin, Berlin, Germany
| | - Jasper Wendtland
- Department of Internal Medicine, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - Cengiz Goekeri
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| | - Lorenz Scheit
- Department of Internal Medicine, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - Klaas Oltmanns
- Department of Internal Medicine, Bundeswehr Hospital Westerstede, Westerstede, Germany
| | - Dominic Rauschning
- Department of Internal Medicine, Bundeswehr Hospital Koblenz, Koblenz, Germany
| | - Marica Grossegesse
- Centre for Biological Threats and Special Pathogens, ZBS1, Robert Koch Institute, Highly Pathogenic Viruses, Berlin, Germany
| | - Natalie Hofmann
- Centre for Biological Threats and Special Pathogens, ZBS1, Robert Koch Institute, Highly Pathogenic Viruses, Berlin, Germany
| | - Hubert Wirtz
- Department of Respiratory Medicine, University of Leipzig, Leipzig, Germany
| | - Sebastian Spethmann
- Deutsches Herzzentrum der Charité Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Neves RL, Branquinho J, Arata JG, Bittencourt CA, Gomes CP, Riguetti M, da Mata GF, Fernandes DE, Icimoto MY, Kirsztajn GM, Pesquero JB. ACE2, ACE, DPPIV, PREP and CAT L enzymatic activities in COVID-19: imbalance of ACE2/ACE ratio and potential RAAS dysregulation in severe cases. Inflamm Res 2023; 72:1719-1731. [PMID: 37537367 DOI: 10.1007/s00011-023-01775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
OBJECTIVE AND DESIGN Circulating enzymatic activity and RAAS regulation in severe cases of COVID-19 remains unclear, therefore we measured the serum activity of several proteases as potential targets to control the SARS-CoV-2 infection. MATERIAL OR SUBJECTS 152 patients with COVID-19-like symptoms were grouped according to the severity of symptoms (COVID-19 negative, mild, moderate and severe). METHODS Serum samples of COVID-19 patients and controls were subjected to biochemical analysis and enzymatic assays of ACE2, ACE, DPPIV, PREP and CAT L. One-way ANOVA and multivariate logistic regression analysis were used. Statistical significance was accepted at p < 0.05. RESULTS We detected a positive correlation among comorbidities, higher C-reactive protein (CRP) and D-dimer levels with disease severity. Enzymatic assays revealed an increase in serum ACE2 and CAT L activities in severe COVID-19 patients, while ACE, DPPIV and PREP activities were significantly reduced. Notably, analysis of ACE2/ACE activity ratio suggests a possible imbalance of ANG II/ANG(1-7) ratio, in a positive association with the disease severity. CONCLUSION Our findings reveal a correlation between proteases activity and the severity of COVID-19. These enzymes together contribute to the activation of pro-inflammatory pathways, trigger a systemic activation of inflammatory mediators, leading to a RAAS dysregulation and generating a significant damage in several organs, contributing to poor outcomes of severe cases.
Collapse
Affiliation(s)
- Raquel Leão Neves
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Jéssica Branquinho
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Júlia Galanakis Arata
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Clarissa Azevedo Bittencourt
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Caio Perez Gomes
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Michelle Riguetti
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Gustavo Ferreira da Mata
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | - João Bosco Pesquero
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Elbasan O, Bayram F, Yazan CD, Apaydın T, Dashdamirova S, Polat H, Arslan E, Yılmaz İ, Karimi N, Şengel BE, Yılmaz SS, Çelik ÖF, Ata P, Haklar G, Gözü H. Angiotensin-Converting Enzyme (ACE) level, but not ACE gene polymorphism, is associated with prognosis of COVID-19 infection: Implications for diabetes and hypertension. PLoS One 2023; 18:e0288338. [PMID: 37432962 DOI: 10.1371/journal.pone.0288338] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The renin-angiotensin-aldosterone system was shown to be activated in severe COVID-19 infection. We aimed to investigate the relationship between angiotensin converting enzyme (ACE) levels, ACE gene polymorphism, type 2 diabetes (T2DM), and hypertension (HT) and the prognosis of COVID-19 infection. METHODS This cross-sectional study analyzed the clinical features of adult patients with SARS-CoV-2 infection. ACE gene analysis and ACE level measurements were performed. The patients were grouped according to ACE gene polymorphism (DD, ID or II), disease severity (mild, moderate, or severe), and the use of dipeptidyl peptidase-4 enzyme inhibitor (DPP4i), ACE-inhibitor (ACEi) or angiotensin receptor blocker (ARB). Intensive care unit (ICU) admissions and mortality were also recorded. RESULTS A total of 266 patients were enrolled. Gene analysis detected DD polymorphism in the ACE 1 gene in 32.7% (n = 87), ID in 51.5% (n = 137), and II in 15.8% (n = 42) of the patients. ACE gene polymorphisms were not associated with disease severity, ICU admission, or mortality. ACE levels were higher in patients who died (p = 0.004) or were admitted to the ICU (p<0.001) and in those with severe disease compared to cases with mild (p = 0.023) or moderate (p<0.001) disease. HT, T2DM, and ACEi/ARB or DPP4i use were not associated with mortality or ICU admission. ACE levels were similar in patients with or without HT (p = 0.374) and with HT using or not using ACEi/ARB (p = 0.999). They were also similar in patients with and without T2DM (p = 0.062) and in those with and without DPP4i treatment (p = 0.427). ACE level was a weak predictor of mortality but an important predictor of ICU admission. It predicted ICU admission in total (cutoff value >37.092 ng/mL, AUC: 0.775, p<0.001). CONCLUSION Our findings suggest that higher ACE levels, but not ACE gene polymorphism, ACEi/ARB or DPP4i use, were associated with the prognosis of COVID-19 infection. The presence of HT and T2DM and ACEi/ARB or DPP4i use were not associated with mortality or ICU admission.
Collapse
Affiliation(s)
- Onur Elbasan
- Department of Endocrinology and Metabolism, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Feyza Bayram
- Department of Medical Genetics, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Ceyda Dinçer Yazan
- Department of Endocrinology and Metabolism, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Tuğçe Apaydın
- Department of Endocrinology and Metabolism, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Saida Dashdamirova
- Department of Endocrinology and Metabolism, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Hamza Polat
- Department of Medical Genetics, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Ebru Arslan
- Department of Medical Genetics, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - İpek Yılmaz
- Department of Medical Genetics, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Nastaran Karimi
- Department of Medical Genetics, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Buket Ertürk Şengel
- Department of Infectious Diseases and Microbiology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Sultan Seval Yılmaz
- Department of Biochemistry, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Ömer Faruk Çelik
- Department of Biochemistry, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Pınar Ata
- Department of Medical Genetics, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Goncagül Haklar
- Department of Biochemistry, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Hülya Gözü
- Department of Endocrinology and Metabolism, Marmara University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
4
|
König S, Vollenberg R, Tepasse PR. The Renin-Angiotensin System in COVID-19: Can Long COVID Be Predicted? Life (Basel) 2023; 13:1462. [PMID: 37511837 PMCID: PMC10381802 DOI: 10.3390/life13071462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Co-morbidities such as hypertension and cardiovascular disease are major risk factors for severe COVID-19. The renin-angiotensin system (RAS) is critically involved in their pathophysiology and is counter-balanced by both angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV-2, and the kallikrein-kinin system (KKS). Considerable research interest with respect to COVID-19 treatment is currently being directed towards the components of these systems. In earlier studies, we noticed significantly reduced carboxypeptidase N (CPN, KKS member) activity and excessive angiotensin-converting enzyme (ACE, RAS member) activity in the sera of both hospitalized COVID-19 patients and a subgroup of convalescent patients. The data had been obtained using labeled bradykinin (BK) as a reporter peptide, which is a target of both CPN and ACE. The data were supplemented with mass-spectrometry-based serum proteomic analysis. Here, we hypothesize that the degree of BK serum degradation could be indicative of Long COVID. (2) Review and Discussion: The recent literature is briefly reviewed. The fact that the levels of the BK serum degradation products did not reach normal concentrations in almost half of the patients during convalescences could have been partially due to a dysregulated RAS. (3) Conclusions: Standard tests for routine patient care in Long COVID come often back normal. We suggest that the measurement of selected members of the RAS such as ACE and angiotensin II or the use of our BK degradation assay could identify Long COVID candidates. Clinical studies are required to test this hypothesis.
Collapse
Affiliation(s)
- Simone König
- IZKF Core Unit Proteomics, University of Münster, 48149 Münster, Germany
| | - Richard Vollenberg
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, 48149 Münster, Germany
| | - Phil-Robin Tepasse
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, 48149 Münster, Germany
| |
Collapse
|
5
|
Cao H, Baranova A, Wei X, Wang C, Zhang F. Bidirectional causal associations between type 2 diabetes and COVID-19. J Med Virol 2022; 95:e28100. [PMID: 36029131 PMCID: PMC9538258 DOI: 10.1002/jmv.28100] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Observational studies have reported high comorbidity between type 2 diabetes (T2D) and severe COVID-19. However, the causality between T2D and COVID-19 has yet to be validated. We performed genetic correlation and Mendelian randomization (MR) analyses to assess genetic relationships and potential causal associations between T2D and three COVID-19 outcomes (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] infection, COVID-19 hospitalization, and critical COVID-19). Molecular pathways connecting SARS-CoV-2 and COVID-19 were reconstructed to extract insights into the potential mechanisms underlying the connection. We identified a high genetic overlap between T2D and each COVID-19 outcome (genetic correlations 0.21-0.28). The MR analyses indicated that genetic liability to T2D confers a causal effect on hospitalized COVID-19 (odds ratio 1.08, 95% confidence interval [CI] 1.04-1.12) and critical COVID-19 (1.09, 1.03-1.16), while genetic liability to SARS-CoV-2 infection exerts a causal effect on T2D (1.25, 1.00-1.56). There was suggestive evidence that T2D was associated with an increased risk for SARS-CoV-2 infection (1.02, 1.00-1.03), while critical COVID-19 (1.06, 1.00-1.13) and hospitalized COVID-19 (1.09, 0.99-1.19) were associated with an increased risk for T2D. Pathway analysis identified a panel of immunity-related genes that may mediate the links between T2D and COVID-19 at the molecular level. Our study provides robust support for the bidirectional causal associations between T2D and COVID-19. T2D may contribute to amplifying the severity of COVID-19, while the liability to COVID-19 may increase the risk for T2D.
Collapse
Affiliation(s)
- Hongbao Cao
- School of Systems BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Ancha Baranova
- School of Systems BiologyGeorge Mason UniversityManassasVirginiaUSA,Research Centre for Medical GeneticsMoscowRussia
| | - Xuejuan Wei
- Fengtai District Fangzhuang Community Health Service Center in BeijingBeijingChina
| | - Chun Wang
- Department of Medical PsychologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Fuquan Zhang
- Department of PsychiatryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina,Institute of NeuropsychiatryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
6
|
Välikangas T, Junttila S, Rytkönen KT, Kukkonen-Macchi A, Suomi T, Elo LL. COVID-19-specific transcriptomic signature detectable in blood across multiple cohorts. Front Genet 2022; 13:929887. [PMID: 35991542 PMCID: PMC9388772 DOI: 10.3389/fgene.2022.929887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/27/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading across the world despite vast global vaccination efforts. Consequently, many studies have looked for potential human host factors and immune mechanisms associated with the disease. However, most studies have focused on comparing COVID-19 patients to healthy controls, while fewer have elucidated the specific host factors distinguishing COVID-19 from other infections. To discover genes specifically related to COVID-19, we reanalyzed transcriptome data from nine independent cohort studies, covering multiple infections, including COVID-19, influenza, seasonal coronaviruses, and bacterial pneumonia. The identified COVID-19-specific signature consisted of 149 genes, involving many signals previously associated with the disease, such as induction of a strong immunoglobulin response and hemostasis, as well as dysregulation of cell cycle-related processes. Additionally, potential new gene candidates related to COVID-19 were discovered. To facilitate exploration of the signature with respect to disease severity, disease progression, and different cell types, we also offer an online tool for easy visualization of the selected genes across multiple datasets at both bulk and single-cell levels.
Collapse
Affiliation(s)
- Tommi Välikangas
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kalle T. Rytkönen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anu Kukkonen-Macchi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L. Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
7
|
The Dysregulation of the Renin–Angiotensin System in COVID-19 Studied by Serum Proteomics: Angiotensinogen Increases with Disease Severity. Molecules 2022; 27:molecules27082495. [PMID: 35458690 PMCID: PMC9025241 DOI: 10.3390/molecules27082495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 01/25/2023] Open
Abstract
(1) Background: ACE and CPN serum activity correlated with disease severity in an earlier study of 45 hospitalized COVID-19 patients. The serum protein profile was investigated in the same cohort here to shed more light on the involvement of the renin–angiotensin system (RAS). (2) Methods: High-definition mass spectrometry-based protein expression analysis was performed, followed by multivariate statistical and network analyses. (3) Results: The protein profiles of hospitalized patients (HoP) differed significantly from those of convalescent and healthy probands. Surprisingly, HoP samples separated into six groups according to their protein profiles: group (G) 1 represented the youngest and the least afflicted patients, and G6 the oldest and critically ill patients. At least two major pathophysiological schemes were indicated based on differing involvement of the kallikrein-kinin system (KKS), the RAS and complement activation. The serum angiotensinogen concentration increased with disease severity. (4) Conclusions: The important role of the RAS in the response to COVID-19 infection was substantiated, but other pathways such as the KKS, plasminogen activation and complement activation influence the systemic response to the infection.
Collapse
|