1
|
Acúrcio RC, Kleiner R, Vaskovich‐Koubi D, Carreira B, Liubomirski Y, Palma C, Yeheskel A, Yeini E, Viana AS, Ferreira V, Araújo C, Mor M, Freund NT, Bacharach E, Gonçalves J, Toister‐Achituv M, Fabregue M, Matthieu S, Guerry C, Zarubica A, Aviel‐Ronen S, Florindo HF, Satchi‐Fainaro R. Intranasal Multiepitope PD-L1-siRNA-Based Nanovaccine: The Next-Gen COVID-19 Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404159. [PMID: 39116324 PMCID: PMC11515909 DOI: 10.1002/advs.202404159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/28/2024] [Indexed: 08/10/2024]
Abstract
The first approved vaccines for human use against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are nanotechnology-based. Although they are modular, rapidly produced, and can reduce disease severity, the currently available vaccines are restricted in preventing infection, stressing the global demand for novel preventive vaccine technologies. Bearing this in mind, we set out to develop a flexible nanovaccine platform for nasal administration to induce mucosal immunity, which is fundamental for optimal protection against respiratory virus infection. The next-generation multiepitope nanovaccines co-deliver immunogenic peptides, selected by an immunoinformatic workflow, along with adjuvants and regulators of the PD-L1 expression. As a case study, we focused on SARS-CoV-2 peptides as relevant antigens to validate the approach. This platform can evoke both local and systemic cellular- and humoral-specific responses against SARS-CoV-2. This led to the secretion of immunoglobulin A (IgA), capable of neutralizing SARS-CoV-2, including variants of concern, following a heterologous immunization strategy. Considering the limitations of the required cold chain distribution for current nanotechnology-based vaccines, it is shown that the lyophilized nanovaccine is stable for long-term at room temperature and retains its in vivo efficacy upon reconstitution. This makes it particularly relevant for developing countries and offers a modular system adaptable to future viral threats.
Collapse
Affiliation(s)
- Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Ron Kleiner
- Department of Physiology and PharmacologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Daniella Vaskovich‐Koubi
- Department of Physiology and PharmacologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Bárbara Carreira
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Yulia Liubomirski
- Department of Physiology and PharmacologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Carolina Palma
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Adva Yeheskel
- The Blavatnik Center for Drug DiscoveryTel Aviv UniversityTel Aviv6997801Israel
| | - Eilam Yeini
- Department of Physiology and PharmacologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Ana S. Viana
- Center of Chemistry and BiochemistryFaculty of SciencesUniversity of LisbonLisbon1749‐016Portugal
| | - Vera Ferreira
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Carlos Araújo
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Michael Mor
- Department of Clinical Microbiology and ImmunologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Natalia T. Freund
- Department of Clinical Microbiology and ImmunologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Eran Bacharach
- The Shmunis School of Biomedicine and Cancer ResearchGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - João Gonçalves
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | | | - Manon Fabregue
- Centre d'ImmunophénomiqueAix Marseille UniversitéInserm, CNRS, PHENOMINMarseille13284France
| | - Solene Matthieu
- Centre d'ImmunophénomiqueAix Marseille UniversitéInserm, CNRS, PHENOMINMarseille13284France
| | - Capucine Guerry
- Centre d'ImmunophénomiqueAix Marseille UniversitéInserm, CNRS, PHENOMINMarseille13284France
| | - Ana Zarubica
- Centre d'ImmunophénomiqueAix Marseille UniversitéInserm, CNRS, PHENOMINMarseille13284France
| | | | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Ronit Satchi‐Fainaro
- Department of Physiology and PharmacologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
- Sagol School of NeuroscienceTel Aviv UniversityTel Aviv6997801Israel
| |
Collapse
|
2
|
Shafiee A, Seighali N, Teymouri Athar M, Abdollahi AK, Jafarabady K, Bakhtiyari M. Levels of brain-derived neurotrophic factor (BDNF) among patients with COVID-19: a systematic review and meta-analysis. Eur Arch Psychiatry Clin Neurosci 2024; 274:1137-1152. [PMID: 37646849 DOI: 10.1007/s00406-023-01681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Many individuals have been suffering from consistent neurological and neuropsychiatric manifestations even after the remission of coronavirus disease (COVID-19). Brain-derived neurotrophic factor (BDNF) is a protein involved in the regulation of several processes, including neuroplasticity, neurogenesis, and neuronal differentiation, and has been linked to a range of neurological and psychiatric disorders. In this study, we aimed to synthesize the available evidence on the profile of BDNF in COVID-19. A comprehensive search was done in the Web of Science core collection, Scopus, and MEDLINE (PubMed), and Embase to identify relevant studies reporting the level of BDNF in patients with COVID-19 or those suffering from long COVID. We used the NEWCASTLE-OTTAWA tool for quality assessment. We pooled the effect sizes of individual studies using the random effect model for our meta-analysis. Fifteen articles were included in the systematic review. The sample sizes ranged from 16 to 183 participants. Six studies compared the level of BDNF in COVID-19 patients with healthy controls. The pooled estimate of the standardized mean difference in BDNF level between patients with COVID-19 and healthy individuals was - 0.84 (95% CI - 1.49 to - 0.18, p = 0.01, I2 = 81%) indicating a significantly lower BDNF level in patients with COVID-19. Seven studies assessed BDNF in different severity statuses of patients with COVID-19. The pooled estimate of the standardized mean difference in BDNF level was - 0.53 (95% CI - 0.85 to - 0.21, p = 0.001, I2 = 46%), indicating a significantly lower BDNF level in patients with more severe COVID-19. Three studies evaluated BDNF levels in COVID-19 patients through different follow-up periods. Only one study assessed the BDNF levels in long COVID patients. Sensitivity analyses did not alter the significance of the association. In this study, we showed a significant dysregulation of BDNF following COVID-19 infection. These findings may support the pathogenesis behind the long-lasting effects of this disease among infected patients. PROSPERO: CRD42023413536.
Collapse
Affiliation(s)
- Arman Shafiee
- Student Research Committee, School of Medicine, Alborz University of Medical Science, Karaj, Iran.
| | - Niloofar Seighali
- Student Research Committee, School of Medicine, Alborz University of Medical Science, Karaj, Iran
| | - Mohammad Teymouri Athar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl King Abdollahi
- Student Research Committee, School of Medicine, Alborz University of Medical Science, Karaj, Iran
| | - Kyana Jafarabady
- Student Research Committee, School of Medicine, Alborz University of Medical Science, Karaj, Iran
| | - Mahmood Bakhtiyari
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Community Medicine and Epidemiology, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
3
|
Wong NSQ, Liu C, Lin MTY, Lee IXY, Tong L, Liu YC. Neuropathic Corneal Pain after Coronavirus Disease 2019 (COVID-19) Infection. Diseases 2024; 12:37. [PMID: 38391784 PMCID: PMC10887979 DOI: 10.3390/diseases12020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
INTRODUCTION This is a case report of a patient with neuropathic corneal pain after coronavirus disease 2019 (COVID-19) infection. METHODS A previously healthy 27-year-old female presented with bilateral eye pain accompanied by increased light sensitivity 5 months after COVID-19 infection. She was diagnosed with neuropathic corneal pain based on clear corneas without fluorescein staining, alongside the presence of microneuromas, dendritic cells, and activated stromal keratocytes identified bilaterally on in vivo confocal microscopy. RESULTS The patient's tear nerve growth factor, substance P, and calcitonin gene-related peptide levels were 5.9 pg/mL, 2978.7 pg/mL, and 1.1 ng/mL, respectively, for the right eye and 23.1 pg/mL, 4798.7 pg/mL, and 1.2 ng/mL, respectively, for the left eye, suggesting corneal neuroinflammatory status. After 6 weeks of topical 0.1% flurometholone treatment, decreased microneuroma size, less extensive dendritic cells, and reduced tear nerve growth factor and substance P levels were observed. The scores on the Ocular Pain Assessment Survey showed an improvement in burning sensation and light sensitivity, decreasing from 80% and 70% to 50% for both. CONCLUSIONS Neuropathic corneal pain is a potential post-COVID-19 complication that warrants ophthalmologists' and neurologists' attention.
Collapse
Affiliation(s)
- Natalie Shi Qi Wong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Chang Liu
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | | | | | - Louis Tong
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore 168751, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Yu-Chi Liu
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore 168751, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
4
|
Zaa CA, Espitia C, Reyes-Barrera KL, An Z, Velasco-Velázquez MA. Neuroprotective Agents with Therapeutic Potential for COVID-19. Biomolecules 2023; 13:1585. [PMID: 38002267 PMCID: PMC10669388 DOI: 10.3390/biom13111585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
COVID-19 patients can exhibit a wide range of clinical manifestations affecting various organs and systems. Neurological symptoms have been reported in COVID-19 patients, both during the acute phase of the illness and in cases of long-term COVID. Moderate symptoms include ageusia, anosmia, altered mental status, and cognitive impairment, and in more severe cases can manifest as ischemic cerebrovascular disease and encephalitis. In this narrative review, we delve into the reported neurological symptoms associated with COVID-19, as well as the underlying mechanisms contributing to them. These mechanisms include direct damage to neurons, inflammation, oxidative stress, and protein misfolding. We further investigate the potential of small molecules from natural products to offer neuroprotection in models of neurodegenerative diseases. Through our analysis, we discovered that flavonoids, alkaloids, terpenoids, and other natural compounds exhibit neuroprotective effects by modulating signaling pathways known to be impacted by COVID-19. Some of these compounds also directly target SARS-CoV-2 viral replication. Therefore, molecules of natural origin show promise as potential agents to prevent or mitigate nervous system damage in COVID-19 patients. Further research and the evaluation of different stages of the disease are warranted to explore their potential benefits.
Collapse
Affiliation(s)
- César A. Zaa
- School of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Lima 15081, Peru;
| | - Clara Espitia
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (C.E.); (K.L.R.-B.)
| | - Karen L. Reyes-Barrera
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (C.E.); (K.L.R.-B.)
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Marco A. Velasco-Velázquez
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
5
|
Bonomini F, Favero G, Castrezzati S, Borsani E. Role of Neurotrophins in Orofacial Pain Modulation: A Review of the Latest Discoveries. Int J Mol Sci 2023; 24:12438. [PMID: 37569811 PMCID: PMC10419393 DOI: 10.3390/ijms241512438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Orofacial pain represents a multidisciplinary biomedical challenge involving basic and clinical research for which no satisfactory solution has been found. In this regard, trigeminal pain is described as one of the worst pains perceived, leaving the patient with no hope for the future. The aim of this review is to evaluate the latest discoveries on the involvement of neurotrophins in orofacial nociception, describing their role and expression in peripheral tissues, trigeminal ganglion, and trigeminal nucleus considering their double nature as "supporters" of the nervous system and as "promoters" of nociceptive transmission. In order to scan recent literature (last ten years), three independent researchers referred to databases PubMed, Embase, Google Scholar, Scopus, and Web of Science to find original research articles and clinical trials. The researchers selected 33 papers: 29 original research articles and 4 clinical trials. The results obtained by the screening of the selected articles show an interesting trend, in which the precise modulation of neurotrophin signaling could switch neurotrophins from being a "promoter" of pain to their beneficial neurotrophic role of supporting the nerves in their recovery, especially when a structural alteration is present, as in neuropathic pain. In conclusion, neurotrophins could be interesting targets for orofacial pain modulation but more studies are necessary to clarify their role for future application in clinical practice.
Collapse
Affiliation(s)
- Francesca Bonomini
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.B.); (G.F.); (S.C.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| | - Gaia Favero
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.B.); (G.F.); (S.C.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| | - Stefania Castrezzati
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.B.); (G.F.); (S.C.)
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.B.); (G.F.); (S.C.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| |
Collapse
|
6
|
Petrella C, Zingaropoli MA, Ceci FM, Pasculli P, Latronico T, Liuzzi GM, Ciardi MR, Angeloni A, Ettorre E, Menghi M, Barbato C, Ferraguti G, Minni A, Fiore M. COVID-19 Affects Serum Brain-Derived Neurotrophic Factor and Neurofilament Light Chain in Aged Men: Implications for Morbidity and Mortality. Cells 2023; 12:cells12040655. [PMID: 36831321 PMCID: PMC9954454 DOI: 10.3390/cells12040655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND AND METHODS Severe COVID-19 is known to induce neurological damage (NeuroCOVID), mostly in aged individuals, by affecting brain-derived neurotrophic factor (BDNF), matrix metalloproteinases (MMP) 2 and 9 and the neurofilament light chain (NFL) pathways. Thus, the aim of this pilot study was to investigate BDNF, MMP-2, MMP-9, and NFL in the serum of aged men affected by COVID-19 at the beginning of the hospitalization period and characterized by different outcomes, i.e., attending a hospital ward or an intensive care unit (ICU) or with a fatal outcome. As a control group, we used a novelty of the study, unexposed age-matched men. We also correlated these findings with the routine blood parameters of the recruited individuals. RESULTS We found in COVID-19 individuals with severe or lethal outcomes disrupted serum BDNF, NFL, and MMP-2 presence and gross changes in ALT, GGT, LDH, IL-6, ferritin, and CRP. We also confirmed and extended previous data, using ROC analyses, showing that the ratio MMPs (2 and 9) versus BDNF and NFL might be a useful tool to predict a fatal COVID-19 outcome. CONCLUSIONS Serum BDNF and NFL and/or their ratios with MMP-2 and MMP-9 could represent early predictors of NeuroCOVID in aged men.
Collapse
Affiliation(s)
- Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (C.P.); (M.F.)
| | - Maria Antonella Zingaropoli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| | - Flavio Maria Ceci
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Evaristo Ettorre
- Department of Clinical, Internal Medicine, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Michela Menghi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
- Division of Otolaryngology-Head and Neck Surgery, ASL Rieti-Sapienza University, Ospedale San Camillo de Lellis, Viale Kennedy, 02100 Rieti, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (C.P.); (M.F.)
| |
Collapse
|