1
|
Ndong Sima CAA, Step K, Swart Y, Schurz H, Uren C, Möller M. Methodologies underpinning polygenic risk scores estimation: a comprehensive overview. Hum Genet 2024; 143:1265-1280. [PMID: 39425790 PMCID: PMC11522080 DOI: 10.1007/s00439-024-02710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Polygenic risk scores (PRS) have emerged as a promising tool for predicting disease risk and treatment outcomes using genomic data. Thousands of genome-wide association studies (GWAS), primarily involving populations of European ancestry, have supported the development of PRS models. However, these models have not been adequately evaluated in non-European populations, raising concerns about their clinical validity and predictive power across diverse groups. Addressing this issue requires developing novel risk prediction frameworks that leverage genetic characteristics across diverse populations, considering host-microbiome interactions and a broad range of health measures. One of the key aspects in evaluating PRS is understanding the strengths and limitations of various methods for constructing them. In this review, we analyze strengths and limitations of different methods for constructing PRS, including traditional weighted approaches and new methods such as Bayesian and Frequentist penalized regression approaches. Finally, we summarize recent advances in PRS calculation methods development, and highlight key areas for future research, including development of models robust across diverse populations by underlining the complex interplay between genetic variants across diverse ancestral backgrounds in disease risk as well as treatment response prediction. PRS hold great promise for improving disease risk prediction and personalized medicine; therefore, their implementation must be guided by careful consideration of their limitations, biases, and ethical implications to ensure that they are used in a fair, equitable, and responsible manner.
Collapse
Affiliation(s)
- Carene Anne Alene Ndong Sima
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Kathryn Step
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Yolandi Swart
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Haiko Schurz
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Caitlin Uren
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
2
|
Lennon NJ, Kottyan LC, Kachulis C, Abul-Husn NS, Arias J, Belbin G, Below JE, Berndt SI, Chung WK, Cimino JJ, Clayton EW, Connolly JJ, Crosslin DR, Dikilitas O, Velez Edwards DR, Feng Q, Fisher M, Freimuth RR, Ge T, Glessner JT, Gordon AS, Patterson C, Hakonarson H, Harden M, Harr M, Hirschhorn JN, Hoggart C, Hsu L, Irvin MR, Jarvik GP, Karlson EW, Khan A, Khera A, Kiryluk K, Kullo I, Larkin K, Limdi N, Linder JE, Loos RJF, Luo Y, Malolepsza E, Manolio TA, Martin LJ, McCarthy L, McNally EM, Meigs JB, Mersha TB, Mosley JD, Musick A, Namjou B, Pai N, Pesce LL, Peters U, Peterson JF, Prows CA, Puckelwartz MJ, Rehm HL, Roden DM, Rosenthal EA, Rowley R, Sawicki KT, Schaid DJ, Smit RAJ, Smith JL, Smoller JW, Thomas M, Tiwari H, Toledo DM, Vaitinadin NS, Veenstra D, Walunas TL, Wang Z, Wei WQ, Weng C, Wiesner GL, Yin X, Kenny EE. Selection, optimization and validation of ten chronic disease polygenic risk scores for clinical implementation in diverse US populations. Nat Med 2024; 30:480-487. [PMID: 38374346 PMCID: PMC10878968 DOI: 10.1038/s41591-024-02796-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024]
Abstract
Polygenic risk scores (PRSs) have improved in predictive performance, but several challenges remain to be addressed before PRSs can be implemented in the clinic, including reduced predictive performance of PRSs in diverse populations, and the interpretation and communication of genetic results to both providers and patients. To address these challenges, the National Human Genome Research Institute-funded Electronic Medical Records and Genomics (eMERGE) Network has developed a framework and pipeline for return of a PRS-based genome-informed risk assessment to 25,000 diverse adults and children as part of a clinical study. From an initial list of 23 conditions, ten were selected for implementation based on PRS performance, medical actionability and potential clinical utility, including cardiometabolic diseases and cancer. Standardized metrics were considered in the selection process, with additional consideration given to strength of evidence in African and Hispanic populations. We then developed a pipeline for clinical PRS implementation (score transfer to a clinical laboratory, validation and verification of score performance), and used genetic ancestry to calibrate PRS mean and variance, utilizing genetically diverse data from 13,475 participants of the All of Us Research Program cohort to train and test model parameters. Finally, we created a framework for regulatory compliance and developed a PRS clinical report for return to providers and for inclusion in an additional genome-informed risk assessment. The initial experience from eMERGE can inform the approach needed to implement PRS-based testing in diverse clinical settings.
Collapse
Affiliation(s)
| | - Leah C Kottyan
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | | | | | - Josh Arias
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gillian Belbin
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Sonja I Berndt
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - James J Cimino
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - David R Crosslin
- Tulane University, New Orleans, LA, USA
- University of Washington, Seattle, WA, USA
| | | | | | - QiPing Feng
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Tian Ge
- Mass General Brigham, Boston, MA, USA
| | | | | | | | | | - Maegan Harden
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Margaret Harr
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joel N Hirschhorn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Clive Hoggart
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Hsu
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | | | | | - Amit Khera
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Katie Larkin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nita Limdi
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuan Luo
- Northwestern University, Evanston, IL, USA
| | | | - Teri A Manolio
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa J Martin
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Li McCarthy
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Tesfaye B Mersha
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | | | | | - Bahram Namjou
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Nihal Pai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | - Cynthia A Prows
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | | | - Heidi L Rehm
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dan M Roden
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Robb Rowley
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | - Hemant Tiwari
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | - Zhe Wang
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei-Qi Wei
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | - Eimear E Kenny
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Levi H, Carmi S, Rosset S, Yerushalmi R, Zick A, Yablonski-Peretz T, Wang Q, Bolla MK, Dennis J, Michailidou K, Lush M, Ahearn T, Andrulis IL, Anton-Culver H, Antoniou AC, Arndt V, Augustinsson A, Auvinen P, Beane Freeman L, Beckmann M, Behrens S, Bermisheva M, Bodelon C, Bogdanova NV, Bojesen SE, Brenner H, Byers H, Camp N, Castelao J, Chang-Claude J, Chirlaque MD, Chung W, Clarke C, Collee MJ, Colonna S, Couch F, Cox A, Cross SS, Czene K, Daly M, Devilee P, Dork T, Dossus L, Eccles DM, Eliassen AH, Eriksson M, Evans G, Fasching P, Fletcher O, Flyger H, Fritschi L, Gabrielson M, Gago-Dominguez M, García-Closas M, Garcia-Saenz JA, Genkinger J, Giles GG, Goldberg M, Guénel P, Hall P, Hamann U, He W, Hillemanns P, Hollestelle A, Hoppe R, Hopper J, Jakovchevska S, Jakubowska A, Jernström H, John E, Johnson N, Jones M, Vijai J, Kaaks R, Khusnutdinova E, Kitahara C, Koutros S, Kristensen V, Kurian AW, Lacey J, Lambrechts D, Le Marchand L, Lejbkowicz F, Lindblom A, Loibl S, Lori A, Lubinski J, Mannermaa A, Manoochehri M, Mavroudis D, Menon U, Mulligan A, Murphy R, Nevelsteen I, Newman WG, Obi N, O'Brien K, Offit K, Olshan A, Plaseska-Karanfilska D, Olson J, Panico S, Park-Simon TW, Patel A, Peterlongo P, Rack B, Radice P, Rennert G, Rhenius V, Romero A, Saloustros E, Sandler D, Schmidt MK, Schwentner L, Shah M, Sharma P, Simard J, Southey M, Stone J, Tapper WJ, Taylor J, Teras L, Toland AE, Troester M, Truong T, van der Kolk LE, Weinberg C, Wendt C, Yang XR, Zheng W, Ziogas A, Dunning AM, Pharoah P, Easton DF, Ben-Sachar S, Elefant N, Shamir R, Elkon R. Evaluation of European-based polygenic risk score for breast cancer in Ashkenazi Jewish women in Israel. J Med Genet 2023; 60:1186-1197. [PMID: 37451831 PMCID: PMC10715538 DOI: 10.1136/jmg-2023-109185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/28/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Polygenic risk score (PRS), calculated based on genome-wide association studies (GWASs), can improve breast cancer (BC) risk assessment. To date, most BC GWASs have been performed in individuals of European (EUR) ancestry, and the generalisation of EUR-based PRS to other populations is a major challenge. In this study, we examined the performance of EUR-based BC PRS models in Ashkenazi Jewish (AJ) women. METHODS We generated PRSs based on data on EUR women from the Breast Cancer Association Consortium (BCAC). We tested the performance of the PRSs in a cohort of 2161 AJ women from Israel (1437 cases and 724 controls) from BCAC (BCAC cohort from Israel (BCAC-IL)). In addition, we tested the performance of these EUR-based BC PRSs, as well as the established 313-SNP EUR BC PRS, in an independent cohort of 181 AJ women from Hadassah Medical Center (HMC) in Israel. RESULTS In the BCAC-IL cohort, the highest OR per 1 SD was 1.56 (±0.09). The OR for AJ women at the top 10% of the PRS distribution compared with the middle quintile was 2.10 (±0.24). In the HMC cohort, the OR per 1 SD of the EUR-based PRS that performed best in the BCAC-IL cohort was 1.58±0.27. The OR per 1 SD of the commonly used 313-SNP BC PRS was 1.64 (±0.28). CONCLUSIONS Extant EUR GWAS data can be used for generating PRSs that identify AJ women with markedly elevated risk of BC and therefore hold promise for improving BC risk assessment in AJ women.
Collapse
Grants
- R01 CA176785 NCI NIH HHS
- NU58DP006344 NCCDPHP CDC HHS
- R37 CA070867 NCI NIH HHS
- HHSN261201800015I NCI NIH HHS
- R01 CA064277 NCI NIH HHS
- P50 CA116201 NCI NIH HHS
- G1000143 Medical Research Council
- P30 CA062203 NCI NIH HHS
- R01 CA047305 NCI NIH HHS
- HHSN261201800009I NCI NIH HHS
- R01 CA163353 NCI NIH HHS
- UM1 CA164917 NCI NIH HHS
- U01 CA199277 NCI NIH HHS
- U01 CA179715 NCI NIH HHS
- HHSN261201800032C NCI NIH HHS
- U54 CA156733 NCI NIH HHS
- HHSN261201800009C NCI NIH HHS
- P30 ES010126 NIEHS NIH HHS
- Z01 CP010119 Intramural NIH HHS
- UM1 CA164973 NCI NIH HHS
- P01 CA087969 NCI NIH HHS
- UM1 CA164920 NCI NIH HHS
- NU58DP006320 CDC HHS
- UM1 CA176726 NCI NIH HHS
- R01 CA092447 NCI NIH HHS
- Z01 ES049030 Intramural NIH HHS
- R01 CA058860 NCI NIH HHS
- K07 CA092044 NCI NIH HHS
- HHSN261201800016C NCI NIH HHS
- P50 CA058223 NCI NIH HHS
- R01 CA100374 NCI NIH HHS
- P30 CA008748 NCI NIH HHS
- R01 CA128978 NCI NIH HHS
- R01 CA047147 NCI NIH HHS
- U19 CA148537 NCI NIH HHS
- R01 CA116167 NCI NIH HHS
- R01 CA148667 NCI NIH HHS
- R01 CA063464 NCI NIH HHS
- HHSN261201800016I NCI NIH HHS
- UM1 CA186107 NCI NIH HHS
- P30 CA023100 NCI NIH HHS
- U01 CA063464 NCI NIH HHS
- R01 CA077398 NCI NIH HHS
- R01 CA054281 NCI NIH HHS
- R01 CA132839 NCI NIH HHS
- P30 CA068485 NCI NIH HHS
- U01 CA058860 NCI NIH HHS
- U01 CA164920 NCI NIH HHS
- R35 CA253187 NCI NIH HHS
- 14136 Cancer Research UK
- U19 CA148112 NCI NIH HHS
- HHSN261201800032I NCI NIH HHS
- U01 CA098758 NCI NIH HHS
- Z01 ES044005 Intramural NIH HHS
- U19 CA148065 NCI NIH HHS
- P30 CA033572 NCI NIH HHS
- R01 CA069664 NCI NIH HHS
- Wellcome Trust
- MC_UU_00004/01 Medical Research Council
- HHSN261201800015C NCI NIH HHS
- 001 World Health Organization
- Z01 ES049033 Intramural NIH HHS
- R01 CA192393 NCI NIH HHS
- U01 CA164973 NCI NIH HHS
- R37 CA054281 NCI NIH HHS
- Consellería de Industria Programa Sectorial de Investigación Aplicada
- Statistics Netherlands
- South Eastern Norway Health Authority
- Lower Saxonian Cancer Society
- Lise Boserup Fund
- Heidelberger Zentrum für Personalisierte Onkologie Deutsches Krebsforschungszentrum In Der Helmholtz-Gemeinschaft
- Lon V. Smith Foundation
- Scottish Funding Council
- Komen Foundation
- Claudia von Schilling Foundation for Breast Cancer Research
- Russian Foundation for Basic Research
- Ligue Contre le Cancer
- Sigrid Juselius Foundation
- Kuopion Yliopistollinen Sairaala
- Sheffield Experimental Cancer Medicine Centre
- Stockholm läns landsting
- Department of Health and Human Services (USA)
- Department of Defence (USA)
- Stichting Tegen Kanker
- David F. and Margaret T. Grohne Family Foundation
- Sundhed og Sygdom, Det Frie Forskningsråd
- Stavros Niarchos Foundation
- Post-Cancer GWAS initiative
- Institute of the Ruhr University Bochum
- Instituto de Salud Carlos III
- Institute of Cancer Research
- Public Health Institute
- Fondation du cancer du sein du Québec
- Institut National de la Santé et de la Recherche Médicale
- Pink Ribbon
- Institute for Prevention and Occupational Medicine
- K.G. Jebsen Centre for Breast Cancer Research
- Research Centre for Genetic Engineering and Biotechnology
- Center of Excellence (Finland)
- Robert and Kate Niehaus Clinical Cancer Genetics Initiative
- Rudolf Bartling Foundation
- Center for Disease Control and Prevention (USA)
- Karolinska Institutet
- Norges Forskningsråd
- Robert Bosch Stiftung
- Intramural Research Funds of the National Cancer Institute (USA)
- Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra, ISCIII RETIC
- Intramural Research Program of the Division of Cancer Epidemiology and Genetics
- Centre International de Recherche sur le Cancer
- Queensland Cancer Fund
- Red Temática de Investigación Cooperativa en Cáncer
- Intramural Research Program of the National Institutes of Health
- National Health Service (UK)
- Ministerie van Volksgezondheid, Welzijn en Sport
- National cancer institute (USA)
- KWF Kankerbestrijding
- Märit and Hans Rausings Initiative Against Breast Cancer
- Associazione Italiana per la Ricerca sul Cancro
- Fundación Científica Asociación Española Contra el Cáncer
- ERC advanced grant
- Australian National Health and Medical Research Council
- Agence Nationale de la Recherche
- Dutch Prevention Funds,
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail
- American Cancer Society
- Dutch Zorg Onderzoek
- Alexander von Humboldt-Stiftung
- Ministerio de Economia y Competitividad (Spain)
- Ministère du Développement Économique, de l’Innovation et de l’Exportation
- Susan G. Komen for the Cure
- Minister of Science and Higher Education
- Medical Research Council UK
- Ministry of Science and Higher Education of the Russian Federation
- Ministry of Science and Higher Education (Sweden)
- Against Breast Cancer
- Mutuelle Générale de l’Education Nationale
- Academy of Finland
- Deutsche Krebshilfe e.V.
- Dietmar-Hopp Foundation,
- Division of Cancer Prevention, National Cancer Institute
- Deutsche Krebshilfe
- World Cancer Research Fund
- Genome Québec
- National Cancer Institute’s Surveillance, Epidemiology and End Results Program
- Breast Cancer Campaign
- National Cancer Research Network
- Berta Kamprad Foundation FBKS
- Bert von Kantzows foundation
- Biomedical Research Centre at Guy’s and St Thomas
- Genome Canada
- Freistaat Sachsen
- Biobanking and Biomolecular Resources Research Infrastructure
- Friends of Hannover Medical School
- Breast Cancer Research Foundation
- California Department of Public Health
- Government of Russian Federation
- Deutsche Forschungsgemeinschaft
- National Institute for Health and Care Research
- National Health and Medical Research Council (Australia)
- German Federal Ministry of Research and Education
- National Institute of Environmental Health Sciences
- Breast Cancer Now
- Seventh Framework Programme
- Transcan
- Centrum för idrottsforskning
- UK National Institute for Health Research Biomedical Research Centre
- University of Crete
- National Breast Cancer Foundation (Finland)
- European Regional Development Fund
- National Breast Cancer Foundation (Australia)
- United States Army Medical Research and Materiel Command
- EU Horizon 2020 Research and Innovation Programme
- Directorate-General XII, Science, Research, and Development
- Baden Württemberg Ministry of Science, Research and Arts
- VicHealth
- Fondo de Investigación Sanitario
- Victorian Breast Cancer Research Consortium.
- Finnish Cancer Foundation
- University of Southern California San Francisco
- Fomento de la Investigación Clínica Independiente
- the Cancer Biology Research Center (CBRC), Djerassi Oncology Center
- Bundesministerium für Bildung und Forschung
- Cancerfonden
- Tel Aviv University Center for AI and Data Science
- University of Oulu
- National Breast Cancer Foundation (JS)
- Safra Center for Bioinformatics
- Fondation de France, Institut National du Cancer
- Israeli Science Foundation
- University of Utah
- National Cancer Center Research and Development Fund (Japan)
- Chief Scientist Office, Scottish Government Health and Social Care Directorate
- Oak Foundation
- Health Research Fund (FIS)
- Ontario Familial Breast Cancer Registry
- New South Wales Cancer Council
- North Carolina University Cancer Research Fund
- Kreftforeningen
- Northern California Breast Cancer Family Registry
- Institut Gustave Roussy
- Huntsman Cancer Institute, University of Utah
- Ovarian Cancer Research Fund
- NIHR Oxford Biomedical Research Centre
- Hellenic Health Foundation
- Oulun Yliopistollinen Sairaala
- Helmholtz Society
- Herlev and Gentofte Hospital
- PSRSIIRI-701
- Helsinki University Hospital Research Fund
- Cancer Council Victoria
- National Research Council (Italy)
- Cancer Council Tasmania
- Cancer Council Western Australia
- Hamburger Krebsgesellschaft
- Gustav V Jubilee foundation
- National Program of Cancer Registries
- Canadian Cancer Society
- Cancer Council South Australia
- Canadian Institutes of Health Research
- Cancer Council NSW
- Guy's & St. Thomas' NHS Foundation Trust
- Netherlands Organisation of Scientific Research
- Cancer Institute NSW
- National Institutes of Health (USA)
- National Research Foundation of Korea
- Syöpäsäätiö
- Cancer Foundation of Western Australia
- Netherlands Cancer Registry (NKR),
- Cancer Fund of North Savo
Collapse
Affiliation(s)
- Hagai Levi
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, Israel
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Saharon Rosset
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel
| | - Rinat Yerushalmi
- Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aviad Zick
- Department of oncology, Hadassah Medical Center, Jerusalem, Israel
- Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Yablonski-Peretz
- Department of oncology, Hadassah Medical Center, Jerusalem, Israel
- Hebrew University of Jerusalem, Jerusalem, Israel
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Thomas Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annelie Augustinsson
- Oncology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Päivi Auvinen
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, Kuopio, Finland
- Department of Oncology, Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Laura Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthias Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - Clara Bodelon
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hamburg, Germany
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Helen Byers
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt lake city, UT, USA
| | - Jose Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Wendy Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | - Christine Clarke
- Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Margriet J Collee
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Sarah Colonna
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt lake city, UT, USA
| | - Fergus Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Angela Cox
- Department of Oncology and Metabolism, Sheffield Institute for Nucleic Acids (SInFoNiA), University of Sheffield, Sheffield, UK
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Department of Human Genetics, Leiden University Medical, Leiden, Netherlands
| | - Thilo Dork
- Gynaecology Research Unit, Hannover Medical School, Hamburg, Germany
| | - Laure Dossus
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Diana M Eccles
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gareth Evans
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Peter Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Lin Fritschi
- School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, International Cancer Genetics and Epidemiology Group, Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Jeanine Genkinger
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, New York, New York, USA
| | - Graham G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Mark Goldberg
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montreal, QU, Canada
| | - Pascal Guénel
- Team 'Exposome and Heredity', CESP, Gustave Roussy, INSERM, University Paris-Saclay, UVSQ, Villejuif, France
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Peter Hillemanns
- Gynaecology Research Unit, Hannover Medical School, Hamburg, Germany
| | | | - Reiner Hoppe
- Dr Margarete Fischer Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tubingen, Germany
| | - John Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Simona Jakovchevska
- Research Centre for Genetic Engineering and Biotechnology 'Georgi D. Efremov', Skopje, North Macedonia
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Helena Jernström
- Oncology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Esther John
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nichola Johnson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Michael Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
| | - Joseph Vijai
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Cari Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vessela Kristensen
- Institute of Clinical Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Allison W Kurian
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - James Lacey
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Flavio Lejbkowicz
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Annika Lindblom
- Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Adriana Lori
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, Heraklion, Greece
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College, London, UK
| | - AnnaMarie Mulligan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Rachel Murphy
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Ines Nevelsteen
- Leuven Multidisciplinary Breast Center, Department of Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - William G Newman
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katie O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Ken Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Olshan
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Janet Olson
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Salvatore Panico
- Dipertimento Di Medicina Clinca e Chirurgia, Federico II University, Naples, Italy
| | | | - Alpa Patel
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM ETS - the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Brigitte Rack
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Valerie Rhenius
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Atocha Romero
- Laboratorio de Oncología Molecular, Hospital Clínico San Carlos, Madrid, Spain
| | | | - Dale Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Lukas Schwentner
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Priyanka Sharma
- Department of Internal Medicine, Division of Medical Oncology, University of Kansas Medical Center, Westwood, KS, USA
| | - Jacques Simard
- Genomics Center, Molecular Medicine, Université Laval, Quebec, Quebec, Canada
| | - Melissa Southey
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia, Perth, Western Australia, Australia
| | - William J Tapper
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jack Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Lauren Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Melissa Troester
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thérèse Truong
- Team 'Exposome and Heredity', CESP, Gustave Roussy, INSERM, University Paris-Saclay, UVSQ, Villejuif, France
| | | | - Clarice Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Camilla Wendt
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | - Xiaohong Rose Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Argyrios Ziogas
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Shay Ben-Sachar
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Clalit Research Institute, Clalit Health Services, Ramat Gan, Israel
| | - Naama Elefant
- Clalit Research Institute, Clalit Health Services, Ramat Gan, Israel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Ron Shamir
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Al-Kafaji G, Jassim G, AlHajeri A, Alawadhi AMT, Fida M, Sahin I, Alali F, Fadel E. Investigation of germline variants in Bahraini women with breast cancer using next-generation sequencing based-multigene panel. PLoS One 2023; 18:e0291015. [PMID: 37656691 PMCID: PMC10473515 DOI: 10.1371/journal.pone.0291015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023] Open
Abstract
Germline variants in BRCA1 and BRCA2 (BRCA1/2) genes are the most common cause of hereditary breast cancer. However, a significant number of cases are not linked to these two genes and additional high-, moderate- and low-penetrance genes have been identified in breast cancer. The advent of next-generation sequencing (NGS) allowed simultaneous sequencing of multiple cancer-susceptibility genes and prompted research in this field. So far, cancer-predisposition genes other than BRCA1/2 have not been studied in the population of Bahrain. We performed a targeted NGS using a multi-panel covering 180 genes associated with cancer predisposition to investigate the spectrum and frequency of germline variants in 54 women with a positive personal and/or family history of breast cancer. Sequencing analysis revealed germline variants in 29 (53.7%) patients. Five pathogenic/likely pathogenic variants in four DNA repair pathway-related genes were identified in five unrelated patients (9.3%). Two BRCA1 variants, namely the missense variant c.287A>G (p.Asp96Gly) and the truncating variant c.1066C>T (p.Gln356Ter), were detected in two patients (3.7%). Three variants in non-BRCA1/2 genes were detected in three patients (1.85% each) with a strong family history of breast cancer. These included a monoallelic missense variant c.1187G>A (p.Gly396Asp) in MUTYH gene, and two truncating variants namely c.3343C>T (p.Arg1115Ter) in MLH3 gene and c.1826G>A (p.Trp609Ter) in PMS1 gene. Other variants of uncertain significance (VUS) were also detected, and some of them were found together with the deleterious variants. In this first application of NGS-based multigene testing in Bahraini women with breast cancer, we show that multigene testing can yield additional genomic information on low-penetrance genes, although the clinical significance of these genes has not been fully appreciated yet. Our findings also provide valuable epidemiological information for future studies and highlight the importance of genetic testing, and an NGS-based multigene analysis may be applied supplementary to traditional genetic counseling.
Collapse
Affiliation(s)
- Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Ghufran Jassim
- Department of Family Medicine, Royal College of Surgeons in Ireland-Bahrain, Manama, Kingdom of Bahrain
| | - Amani AlHajeri
- Department of Genetics, Salmaniya Medical Complex, Manama, Kingdom of Bahrain
| | | | - Mariam Fida
- Bahrain Oncology Center, King Hamad University Hospital, Manama, Kingdom of Bahrain
| | - Ibrahim Sahin
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Faisal Alali
- North western Hospital, Chicago Medical School, North Chicago, Illinois, United States of America
| | - Elias Fadel
- Bahrain Oncology Center, King Hamad University Hospital, Manama, Kingdom of Bahrain
| |
Collapse
|
5
|
Ko C, Brody JP. Evaluation of a genetic risk score computed using human chromosomal-scale length variation to predict breast cancer. Hum Genomics 2023; 17:53. [PMID: 37328908 PMCID: PMC10273758 DOI: 10.1186/s40246-023-00482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/30/2023] [Indexed: 06/18/2023] Open
Abstract
INTRODUCTION The ability to accurately predict whether a woman will develop breast cancer later in her life, should reduce the number of breast cancer deaths. Different predictive models exist for breast cancer based on family history, BRCA status, and SNP analysis. The best of these models has an accuracy (area under the receiver operating characteristic curve, AUC) of about 0.65. We have developed computational methods to characterize a genome by a small set of numbers that represent the length of segments of the chromosomes, called chromosomal-scale length variation (CSLV). METHODS We built machine learning models to differentiate between women who had breast cancer and women who did not based on their CSLV characterization. We applied this procedure to two different datasets: the UK Biobank (1534 women with breast cancer and 4391 women who did not) and the Cancer Genome Atlas (TCGA) 874 with breast cancer and 3381 without. RESULTS We found a machine learning model that could predict breast cancer with an AUC of 0.836 95% CI (0.830.0.843) in the UK Biobank data. Using a similar approach with the TCGA data, we obtained a model with an AUC of 0.704 95% CI (0.702, 0.706). Variable importance analysis indicated that no single chromosomal region was responsible for significant fraction of the model results. CONCLUSION In this retrospective study, chromosomal-scale length variation could effectively predict whether or not a woman enrolled in the UK Biobank study developed breast cancer.
Collapse
Affiliation(s)
- Charmeine Ko
- Department of Biomedical Engineering, University of California, Irvine, USA
| | - James P Brody
- Department of Biomedical Engineering, University of California, Irvine, USA.
| |
Collapse
|
6
|
Lennon NJ, Kottyan LC, Kachulis C, Abul-Husn N, Arias J, Belbin G, Below JE, Berndt S, Chung W, Cimino JJ, Clayton EW, Connolly JJ, Crosslin D, Dikilitas O, Velez Edwards DR, Feng Q, Fisher M, Freimuth R, Ge T, Glessner JT, Gordon A, Guiducci C, Hakonarson H, Harden M, Harr M, Hirschhorn J, Hoggart C, Hsu L, Irvin R, Jarvik GP, Karlson EW, Khan A, Khera A, Kiryluk K, Kullo I, Larkin K, Limdi N, Linder JE, Loos R, Luo Y, Malolepsza E, Manolio T, Martin LJ, McCarthy L, Meigs JB, Mersha TB, Mosley J, Namjou B, Pai N, Pesce LL, Peters U, Peterson J, Prows CA, Puckelwartz MJ, Rehm H, Roden D, Rosenthal EA, Rowley R, Sawicki KT, Schaid D, Schmidlen T, Smit R, Smith J, Smoller JW, Thomas M, Tiwari H, Toledo D, Vaitinadin NS, Veenstra D, Walunas T, Wang Z, Wei WQ, Weng C, Wiesner G, Xianyong Y, Kenny E. Selection, optimization, and validation of ten chronic disease polygenic risk scores for clinical implementation in diverse populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.25.23290535. [PMID: 37333246 PMCID: PMC10275001 DOI: 10.1101/2023.05.25.23290535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Polygenic risk scores (PRS) have improved in predictive performance supporting their use in clinical practice. Reduced predictive performance of PRS in diverse populations can exacerbate existing health disparities. The NHGRI-funded eMERGE Network is returning a PRS-based genome-informed risk assessment to 25,000 diverse adults and children. We assessed PRS performance, medical actionability, and potential clinical utility for 23 conditions. Standardized metrics were considered in the selection process with additional consideration given to strength of evidence in African and Hispanic populations. Ten conditions were selected with a range of high-risk thresholds: atrial fibrillation, breast cancer, chronic kidney disease, coronary heart disease, hypercholesterolemia, prostate cancer, asthma, type 1 diabetes, obesity, and type 2 diabetes. We developed a pipeline for clinical PRS implementation, used genetic ancestry to calibrate PRS mean and variance, created a framework for regulatory compliance, and developed a PRS clinical report. eMERGE's experience informs the infrastructure needed to implement PRS-based implementation in diverse clinical settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Li Hsu
- Fred Hutchinson Cancer Center and University of Washington
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ulrike Peters
- Fred Hutchinson Cancer Center and University of Washington
| | | | | | | | | | - Dan Roden
- Vanderbilt University Medical Center
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ndong Sima CAA, Smith D, Petersen DC, Schurz H, Uren C, Möller M. The immunogenetics of tuberculosis (TB) susceptibility. Immunogenetics 2022; 75:215-230. [DOI: 10.1007/s00251-022-01290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
|
8
|
Berger ER, Golshan M. Surgical Management of Hereditary Breast Cancer. Genes (Basel) 2021; 12:1371. [PMID: 34573353 PMCID: PMC8470490 DOI: 10.3390/genes12091371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022] Open
Abstract
The identification that breast cancer is hereditary was first described in the nineteenth century. With the identification of the BRCA1 and BRCA 2 breast/ovarian cancer susceptibility genes in the mid-1990s and the introduction of genetic testing, significant advancements have been made in tailoring surveillance, guiding decisions on medical or surgical risk reduction and cancer treatments for genetic variant carriers. This review discusses various medical and surgical management options for hereditary breast cancers.
Collapse
Affiliation(s)
- Elizabeth R. Berger
- Department of Surgery, School of Medicine, Yale University, New Haven, CT 06511, USA;
| | | |
Collapse
|
9
|
Krivokuca A, Mihajlovic M, Susnjar S, Spasojevic IB, Minic I, Popovic L, Brankovic-Magic M. Mutational profile of hereditary breast and ovarian cancer - Establishing genetic testing guidelines in a developing country. Curr Probl Cancer 2021; 46:100767. [PMID: 34284872 DOI: 10.1016/j.currproblcancer.2021.100767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 05/16/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Because many countries lack the capacity to follow the international guidelines for genetic testing, we suggest the specific approach for establishing local genetic testing guidelines that could be applied in developing countries. We focus on hereditary breast (BC) and ovarian cancer (OC) in Serbia. METHODS From the cohort of 550 persons who were referred for genetic counseling at the Institute for Oncology and Radiology of Serbia, 392 were selected. Personal and family histories were collected and germline DNA was sequenced with NGS in a panel of 20 genes. RESULTS Pathogenic (PV) and likely-pathogenic variants (LPV) were detected in 8 genes with the frequency of 23.7%. The most frequent were in BRCA1(7.6%), BRCA2(4.8%), PALB2(4.1%) and CHEK2(3.8%). They were also detected in ATM(1.8%), NBN(0.8%), TP53(0.5%) and RAD51C(0.3%). Whereas high carrier probability (CP), bilateral BC, BC and OC in the same patient and family history (FH) of BC/OC, were the strongest predictors for BRCA1/2 PV/LPV, lower CP values and early age of BC onset without FH were associated with higher frequency of PALB2 and CHEK2 PV/LPV. CONCLUSIONS Population specific studies to identify specific mutational patterns and predictors of PV/LPV should be conducted in order to make scientifically sound and cost-effective guidelines for genetic testing in developing countries.
Collapse
Affiliation(s)
- Ana Krivokuca
- Department for genetic counseling for hereditary cancers, Institute for Oncology and radiology of Serbia, Belgrade.
| | - Milica Mihajlovic
- Department for genetic counseling for hereditary cancers, Institute for Oncology and radiology of Serbia, Belgrade
| | - Snezana Susnjar
- Medical Oncology Department, Institute of Oncology and Radiology of Serbia, Belgrade
| | | | - Ivana Minic
- Medical Oncology Department, Institute of Oncology and Radiology of Serbia, Belgrade
| | - Lazar Popovic
- Medical Oncology Department, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia; Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Mirjana Brankovic-Magic
- Department for genetic counseling for hereditary cancers, Institute for Oncology and radiology of Serbia, Belgrade
| |
Collapse
|
10
|
Andreassen PR, Seo J, Wiek C, Hanenberg H. Understanding BRCA2 Function as a Tumor Suppressor Based on Domain-Specific Activities in DNA Damage Responses. Genes (Basel) 2021; 12:genes12071034. [PMID: 34356050 PMCID: PMC8307705 DOI: 10.3390/genes12071034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 01/14/2023] Open
Abstract
BRCA2 is an essential genome stability gene that has various functions in cells, including roles in homologous recombination, G2 checkpoint control, protection of stalled replication forks, and promotion of cellular resistance to numerous types of DNA damage. Heterozygous mutation of BRCA2 is associated with an increased risk of developing cancers of the breast, ovaries, pancreas, and other sites, thus BRCA2 acts as a classic tumor suppressor gene. However, understanding BRCA2 function as a tumor suppressor is severely limited by the fact that ~70% of the encoded protein has not been tested or assigned a function in the cellular DNA damage response. Remarkably, even the specific role(s) of many known domains in BRCA2 are not well characterized, predominantly because stable expression of the very large BRCA2 protein in cells, for experimental purposes, is challenging. Here, we review what is known about these domains and the assay systems that are available to study the cellular roles of BRCA2 domains in DNA damage responses. We also list criteria for better testing systems because, ultimately, functional assays for assessing the impact of germline and acquired mutations identified in genetic screens are important for guiding cancer prevention measures and for tailored cancer treatments.
Collapse
Affiliation(s)
- Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Correspondence: ; Tel.: +1-(513)-636-0499
| | - Joonbae Seo
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany; (C.W.); (H.H.)
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany; (C.W.); (H.H.)
- Department of Pediatrics III, Children’s Hospital, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
11
|
Privé F, Arbel J, Vilhjálmsson BJ. LDpred2: better, faster, stronger. Bioinformatics 2020; 36:5424-5431. [PMID: 33326037 PMCID: PMC8016455 DOI: 10.1093/bioinformatics/btaa1029] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Motivation Polygenic scores have become a central tool in human genetics research. LDpred is a popular method for deriving polygenic scores based on summary statistics and a matrix of correlation between genetic variants. However, LDpred has limitations that may reduce its predictive performance. Results Here, we present LDpred2, a new version of LDpred that addresses these issues. We also provide two new options in LDpred2: a ‘sparse’ option that can learn effects that are exactly 0, and an ‘auto’ option that directly learns the two LDpred parameters from data. We benchmark predictive performance of LDpred2 against the previous version on simulated and real data, demonstrating substantial improvements in robustness and predictive accuracy compared to LDpred1. We then show that LDpred2 also outperforms other polygenic score methods recently developed, with a mean AUC over the 8 real traits analyzed here of 65.1%, compared to 63.8% for lassosum, 62.9% for PRS-CS and 61.5% for SBayesR. Note that LDpred2 provides more accurate polygenic scores when run genome-wide, instead of per chromosome. Availability and implementation LDpred2 is implemented in R package bigsnpr. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Florian Privé
- National Centre for Register-Based Research, Aarhus University, Aarhus, 8210, Denmark
| | - Julyan Arbel
- Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, 38000, France
| | - Bjarni J Vilhjálmsson
- National Centre for Register-Based Research, Aarhus University, Aarhus, 8210, Denmark.,Bioinformatics Research Centre, Aarhus University, Aarhus, 8000, Denmark
| |
Collapse
|
12
|
Snir M, Nazareth S, Simmons E, Hayward L, Ashcraft K, Bristow SL, Esplin ED, Aradhya S. Democratizing genomics: Leveraging software to make genetics an integral part of routine care. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2020; 187:14-27. [PMID: 33296144 DOI: 10.1002/ajmg.c.31866] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Genetic testing can provide definitive molecular diagnoses and guide clinical management decisions from preconception through adulthood. Innovative solutions for scaling clinical genomics services are necessary if they are to transition from a niche specialty to a routine part of patient care. The expertise of specialists, like genetic counselors and medical geneticists, has traditionally been relied upon to facilitate testing and follow-up, and while ideal, this approach is limited in its ability to integrate genetics into primary care. As individuals, payors, and providers increasingly realize the value of genetics in mainstream medicine, several implementation challenges need to be overcome. These include electronic health record integration, patient and provider education, tools to stay abreast of guidelines, and simplification of the test ordering process. Currently, no single platform offers a holistic view of genetic testing that streamlines the entire process across specialties that begins with identifying at-risk patients in mainstream care settings, providing pretest education, facilitating consent and test ordering, and following up as a "genetic companion" for ongoing management. We describe our vision for using software that includes clinical-grade chatbots and decision support tools, with direct access to genetic counselors and pharmacists within a modular, integrated, end-to-end testing journey.
Collapse
|
13
|
Waltz M, Prince AER, O’Daniel JM, Foreman AKM, Powell BC, Berg JS. Referencing BRCA in hereditary cancer risk discussions: In search of an anchor in a sea of uncertainty. J Genet Couns 2020; 29:949-959. [PMID: 31967382 PMCID: PMC7374021 DOI: 10.1002/jgc4.1219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 01/14/2023]
Abstract
As panel testing and exome sequencing are increasingly incorporated into clinical care, clinicians must grapple with how to communicate the risks and treatment decisions surrounding breast cancer genes beyond BRCA1 and BRCA2. In this paper, we examine clinicians' practice of employing BRCA1 and BRCA2 to help contextualize less certain genetic information regarding cancer risk and the possible implications of this practice for patients within the context of an exome sequencing study, NCGENES. We audio-recorded return of results appointments for 14 women who participated in NCGENES, previously had breast cancer, and were suspected of having a hereditary cancer predisposition. These patients were also interviewed four weeks later regarding their understanding of their results. We found that BRCA1 and BRCA2 were held as the gold standard, where clinicians compared what is known about BRCA to the limited understanding of other breast cancer-related genes. BRCA1 and BRCA2 were used as anchors to shape patients' understandings of genetic knowledge, risk, and management, illustrating how the information clinicians provide to patients may work as an external anchor. Yet, presenting BRCA1 and BRCA2 as a means of scientific reassurance can run the risk of patients conflating knowledge about certainty of risk with degree of risk after receiving a result for a moderate penetrance gene. This can be further complicated by misperceptions of the precision of cancer predictability attributed to these or other described 'cancer genes' in public media.
Collapse
Affiliation(s)
- Margaret Waltz
- Department of Social Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Julianne M. O’Daniel
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ann Katherine M. Foreman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Bradford C. Powell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jonathan S. Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Babb de Villiers C, Kroese M, Moorthie S. Understanding polygenic models, their development and the potential application of polygenic scores in healthcare. J Med Genet 2020; 57:725-732. [PMID: 32376789 PMCID: PMC7591711 DOI: 10.1136/jmedgenet-2019-106763] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/09/2020] [Accepted: 03/28/2020] [Indexed: 02/06/2023]
Abstract
The use of genomic information to better understand and prevent common complex diseases has been an ongoing goal of genetic research. Over the past few years, research in this area has proliferated with several proposed methods of generating polygenic scores. This has been driven by the availability of larger data sets, primarily from genome-wide association studies and concomitant developments in statistical methodologies. Here we provide an overview of the methodological aspects of polygenic model construction. In addition, we consider the state of the field and implications for potential applications of polygenic scores for risk estimation within healthcare.
Collapse
Affiliation(s)
| | - Mark Kroese
- PHG Foundation, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Sowmiya Moorthie
- PHG Foundation, University of Cambridge, Cambridge, Cambridgeshire, UK
| |
Collapse
|
15
|
Reid S, Cadiz S, Pal T. Disparities in Genetic Testing and Care among Black women with Hereditary Breast Cancer. CURRENT BREAST CANCER REPORTS 2020; 12:125-131. [PMID: 33603954 PMCID: PMC7885902 DOI: 10.1007/s12609-020-00364-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Despite a steady improvement in breast cancer survival rates over the past several decades, mortality disparities remain among Black women, who have a 42% higher death rate compared to non-Hispanic white (NHW) women. Hereditary breast cancer (HBC) accounts for 5-10% of all breast cancer cases, the majority of which are due to the BRCA1 and BRCA2 (BRCA) genes. Despite the availability of BRCA testing for over 25 years, there remain disproportionately lower rates of genetic testing among Blacks compared to NHW due to a multitude of factors. The intent of this review is to discuss racial disparities focused on HBC across diverse populations and review the existing gaps to be addressed when delivering gene-based care. RECENT FINDINGS The factors contributing to the racial survival disparity are undoubtedly complex and likely an interplay between tumor biology, genomics, patterns of care and socioeconomic factors. Advances in genomic technologies that now allow for full characterization of germline DNA sequencing are integral in defining the complex and multifactorial cause of breast cancer and may help to explain the existing racial survival disparities. SUMMARY Identification of inherited cancer risk may lead to cancer prevention, early cancer detection, treatment guidance, and ultimately has great potential to improve outcomes. Consequently, advances in HBC diagnosis and treatment without widespread implementation have the potential to further widen the existing breast cancer mortality gap between Black and NHW women.
Collapse
Affiliation(s)
- Sonya Reid
- Vanderbilt University Medical Center, Nashville, TN
| | | | - Tuya Pal
- Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
16
|
Reid S, Pal T. Update on multi-gene panel testing and communication of genetic test results. Breast J 2020; 26:1513-1519. [PMID: 32639074 PMCID: PMC7484453 DOI: 10.1111/tbj.13971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
With technological advances, multi-gene panel testing has become increasingly used to identify patients at risk for hereditary breast cancer (HBC). There are currently evidence-based interventions and breast cancer screening strategies that exist for cancer prevention and early detection among patients with HBC. Moreover, in addition to the personal impact of identifying HBC, this information may be shared with at-risk family members to amplify the benefits of testing and subsequent care among those at high risk. Opportunities and challenges with the utilization of updated multi-gene panel testing for HBC, including: (a) tumor sequencing with germline consequences; (b) genetic counseling implications; and (c) strategies to improve the communication of genetic test results to family members will be reviewed. With the advances and expansion of genetic testing, all health care providers need to be updated on both the importance and complexities of HBC counseling and testing, in order to optimize patient care.
Collapse
Affiliation(s)
- Sonya Reid
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tuya Pal
- Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
17
|
Kozminsky M, Sohn LL. The promise of single-cell mechanophenotyping for clinical applications. BIOMICROFLUIDICS 2020; 14:031301. [PMID: 32566069 PMCID: PMC7286698 DOI: 10.1063/5.0010800] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/11/2020] [Indexed: 05/06/2023]
Abstract
Cancer is the second leading cause of death worldwide. Despite the immense research focused in this area, one is still not able to predict disease trajectory. To overcome shortcomings in cancer disease study and monitoring, we describe an exciting research direction: cellular mechanophenotyping. Cancer cells must overcome many challenges involving external forces from neighboring cells, the extracellular matrix, and the vasculature to survive and thrive. Identifying and understanding their mechanical behavior in response to these forces would advance our understanding of cancer. Moreover, used alongside traditional methods of immunostaining and genetic analysis, mechanophenotyping could provide a comprehensive view of a heterogeneous tumor. In this perspective, we focus on new technologies that enable single-cell mechanophenotyping. Single-cell analysis is vitally important, as mechanical stimuli from the environment may obscure the inherent mechanical properties of a cell that can change over time. Moreover, bulk studies mask the heterogeneity in mechanical properties of single cells, especially those rare subpopulations that aggressively lead to cancer progression or therapeutic resistance. The technologies on which we focus include atomic force microscopy, suspended microchannel resonators, hydrodynamic and optical stretching, and mechano-node pore sensing. These technologies are poised to contribute to our understanding of disease progression as well as present clinical opportunities.
Collapse
Affiliation(s)
- Molly Kozminsky
- California Institute for Quantitative Biosciences, University of California, 174 Stanley Hall, Berkeley, California 94720, USA
| | | |
Collapse
|
18
|
Hao J, Hassen D, Manickam K, Murray MF, Hartzel DN, Hu Y, Liu K, Rahm AK, Williams MS, Lazzeri A, Buchanan A, Sturm A, Snyder SR. Healthcare Utilization and Costs after Receiving a Positive BRCA1/2 Result from a Genomic Screening Program. J Pers Med 2020; 10:jpm10010007. [PMID: 32028596 PMCID: PMC7151600 DOI: 10.3390/jpm10010007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 01/08/2023] Open
Abstract
Population genomic screening has been demonstrated to detect at-risk individuals who would not be clinically identified otherwise. However, there are concerns about the increased utilization of unnecessary services and the associated increase in costs. The objectives of this study are twofold: (1) determine whether there is a difference in healthcare utilization and costs following disclosure of a pathogenic/likely pathogenic (P/LP) BRCA1/2 variant via a genomic screening program, and (2) measure the post-disclosure uptake of National Comprehensive Cancer Network (NCCN) guideline-recommended risk management. We retrospectively reviewed electronic health record (EHR) and billing data from a female population of BRCA1/2 P/LP variant carriers without a personal history of breast or ovarian cancer enrolled in Geisinger’s MyCode genomic screening program with at least a one-year post-disclosure observation period. We identified 59 women for the study cohort out of 50,726 MyCode participants. We found no statistically significant differences in inpatient and outpatient utilization and average total costs between one-year pre- and one-year post-disclosure periods ($18,821 vs. $19,359, p = 0.76). During the first year post-disclosure, 49.2% of women had a genetic counseling visit, 45.8% had a mammography and 32.2% had an MRI. The uptake of mastectomy and oophorectomy was 3.5% and 11.8%, respectively, and 5% of patients received chemoprevention.
Collapse
Affiliation(s)
- Jing Hao
- Department of Population Health Sciences, Geisinger, Danville, PA 17822, USA
| | - Dina Hassen
- Department of Population Health Sciences, Geisinger, Danville, PA 17822, USA
| | - Kandamurugu Manickam
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Michael F Murray
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Dustin N Hartzel
- Phenomic Analytics and Clinical Data Core, Geisinger, Danville, PA 17822, USA
| | - Yirui Hu
- Department of Population Health Sciences, Geisinger, Danville, PA 17822, USA
| | - Kunpeng Liu
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | | | - Marc S Williams
- Genomic Medicine Institute, Geisinger, Danville, PA 17822, USA
| | - Amanda Lazzeri
- Genomic Medicine Institute, Geisinger, Danville, PA 17822, USA
| | - Adam Buchanan
- Genomic Medicine Institute, Geisinger, Danville, PA 17822, USA
| | - Amy Sturm
- Genomic Medicine Institute, Geisinger, Danville, PA 17822, USA
| | - Susan R Snyder
- Department of Health Policy and Behavioral Science, School of Public Health, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
19
|
Lambert SA, Abraham G, Inouye M. Towards clinical utility of polygenic risk scores. Hum Mol Genet 2019; 28:R133-R142. [DOI: 10.1093/hmg/ddz187] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
Abstract
Prediction of disease risk is an essential part of preventative medicine, often guiding clinical management. Risk prediction typically includes risk factors such as age, sex, family history of disease and lifestyle (e.g. smoking status); however, in recent years, there has been increasing interest to include genomic information into risk models. Polygenic risk scores (PRS) aggregate the effects of many genetic variants across the human genome into a single score and have recently been shown to have predictive value for multiple common diseases. In this review, we summarize the potential use cases for seven common diseases (breast cancer, prostate cancer, coronary artery disease, obesity, type 1 diabetes, type 2 diabetes and Alzheimer’s disease) where PRS has or could have clinical utility. PRS analysis for these diseases frequently revolved around (i) risk prediction performance of a PRS alone and in combination with other non-genetic risk factors, (ii) estimation of lifetime risk trajectories, (iii) the independent information of PRS and family history of disease or monogenic mutations and (iv) estimation of the value of adding a PRS to specific clinical risk prediction scenarios. We summarize open questions regarding PRS usability, ancestry bias and transferability, emphasizing the need for the next wave of studies to focus on the implementation and health-economic value of PRS testing. In conclusion, it is becoming clear that PRS have value in disease risk prediction and there are multiple areas where this may have clinical utility.
Collapse
Affiliation(s)
- Samuel A Lambert
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Cambridge Substantive Site, Health Data Research UK, Wellcome Genome Campus, Hinxton, UK
| | - Gad Abraham
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Cambridge Substantive Site, Health Data Research UK, Wellcome Genome Campus, Hinxton, UK
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|