1
|
Bhattacharjee S, Chacon-Teran MA, Findlater M, Louie SM, Bailoo JD, Deonarine A. Suspect screening-data independent analysis workflow for the identification of arsenolipids in marine standard reference materials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.31.610588. [PMID: 39282420 PMCID: PMC11398336 DOI: 10.1101/2024.08.31.610588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
There has been limited research into arsenolipid toxicological risks and health-related outcomes due to challenges with their separation, identification, and quantification within complex biological matrices (e.g., fish, seaweed). Analytical approaches for arsenolipid identification such as suspect screening have not been well documented and there are no certified standard reference materials, leading to issues with reproducibility and uncertainty regarding the accuracy of results. In this study, a detailed workflow for the identification of arsenolipids utilizing suspect screening coupled with data independent analysis is presented and applied to three commercially available standard reference materials (Hijiki seaweed, dogfish liver, and tuna). Hexane and dichloromethane/methanol extraction, followed by reversed-phase high-performance liquid chromatography-inductively coupled plasma mass spectrometry and liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry. Using the workflow developed, mass fragmentation matching, mass error calculations, and retention time matching were performed to identify suspect arsenolipids. Arseno-fatty acids (AsFAs), arsenohydrocarbons (AsHCs), and arsenosugar phospholipids (AsSugPLs) were identified with high confidence; AsHC332, AsHC360, and AsSugPL720 in seaweed, AsHC332 in tuna, and AsFA474 and AsFA502 in the dogfish liver. AsHC332, AsHC360, and AsFA502 were identified as promising candidates for further work on synthesis, quantification using MS/MS, and toxicity testing.
Collapse
|
2
|
Raab A, Zhang J, Ge Y, Fernández-Mendoza F, Feldmann J. Lipophilic arsenic compounds in the cultured green alga Chlamydomonas reinhardtii. Anal Bioanal Chem 2024; 416:2809-2818. [PMID: 38189919 PMCID: PMC11009773 DOI: 10.1007/s00216-023-05122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
In this study, arsenic (As) speciation was investigated in the freshwater alga Chlamydomonas reinhardtii treated with 20 μg/L arsenate using fractionation as well as ICP-MS/ESI-MS analyses and was compared with the known As metabolite profile of wild-grown Saccharina latissima. While the total As accumulation in C. reinhardtii was about 85% lower than in S. latissima, the relative percentage of arsenolipids was significantly higher in C. reinhardtii (57.0% vs. 5.01%). As-containing hydrocarbons and phospholipids dominated the hydrophobic As profile in S. latissima, but no As-containing hydrocarbons were detectable in C. reinhardtii. Instead for the first time, an arsenoriboside-containing phytol (AsSugPhytol) was found to dominate the hydrophobic arsenicals of C. reinhardtii. Interestingly, this compound and its relatives had so far been only found in green marine microalgae, open sea plankton (mixed assemblage), and sediments but not in brown or red macroalgae. This compound family might therefore relate to differences in the arsenic metabolism between the algae phyla.
Collapse
Affiliation(s)
- Andrea Raab
- TESLA - Analytical Chemistry, University of Graz, Universitätsplatz 1, 8010, Graz, Austria.
| | - Jinyu Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, China
| | | | - Jörg Feldmann
- TESLA - Analytical Chemistry, University of Graz, Universitätsplatz 1, 8010, Graz, Austria
| |
Collapse
|
3
|
Liu XL. Streamlined Arsenolipid Identification via Direct Arsenic Detection Using RPLC-ESI-QTOF-MS with Collision-Induced Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:300-306. [PMID: 38147679 DOI: 10.1021/jasms.3c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Arsenolipids are organoarsenicals with a long aliphatic chain that have been identified in a wide array of marine organisms. Precise analysis of arsenolipids is crucial for evaluating their toxicity, ensuring food safety, monitoring the environment, and gaining insights into the evolution of arsenic biogeochemistry. However, the discovery of new arsenolipids is often impeded by existing analytical challenges, notably the need for multiple instruments, such as the combination of liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) and inductively coupled plasma mass spectrometry (LC-ICP-MS). This study introduces a high-throughput untargeted analytical method on the basis of an unsophisticated instrumental configuration, LC-ESI-MS with collision-induced dissociation (CID) at 200 eV. This approach provides efficient dissociation of arsenic atoms from their precursor lipids and direct detection of the organic-bound arsenic as monatomic cations, As+. Application of this method has shown promise in rapidly characterizing arsenolipids in diverse samples, which has led to the discovery of a wide range of novel arsenolipids, including seven previously unidentified thioxoarsenolipids in ancient marine sediments.
Collapse
Affiliation(s)
- Xiao-Lei Liu
- School of Geosciences, University of Oklahoma, 100 E. Boyd Street, Norman, Oklahoma 73019, United States
| |
Collapse
|
4
|
Pais-Costa AJ, Sánchez MI, Taggart MA, Green AJ, Hortas F, Vinagre PA, Marques JC, Martinez-Haro M. Trace element bioaccumulation in hypersaline ecosystems and implications of a global invasion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149349. [PMID: 34391156 DOI: 10.1016/j.scitotenv.2021.149349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Hypersaline ecosystems are under increasing threat due to anthropogenic pressures such as environmental pollution and biological invasions. Here we address the ecotoxicological implications of the Artemia franciscana (Crustacea) invasion in saltpans of southern Spain. This North American species is causing the extinction of native Artemia populations in many parts of the globe. The bioaccumulation of trace elements (As, Cd, Cu, Co, Cr, Mn, Ni, Pb and Zn) in native populations (A. parthenogenetica) from Cabo de Gata and Odiel saltpans and invasive Artemia from Cádiz saltpan was studied at different salinities. Furthermore, in Odiel, the most polluted study site, we also analysed the bioaccumulation of trace elements by Chironomus salinarius larvae (Diptera) and Ochthebius notabilis adults (Coleoptera). High levels of trace elements were detected in the studied saltpans, many of them exceeding the recommended threshold guidelines for aquatic life. Bioaccumulation of trace elements by Artemia was lowest at the highest salinity. The invasive A. franciscana showed higher potential to bioaccumulate trace elements than its native counterpart (in particular for As, Cd, Ni and Cr). In Odiel, O. notabilis stood out as showing the highest potential to bioaccumulate As and Cu. Results showed that the shift from a native to an alien Artemia species with a higher bioaccumulation capacity may increase the transfer of trace elements in hypersaline food webs, especially for waterbirds that depend on Artemia as food. Thus, our study identifies an indirect impact of the Artemia franciscana invasion that had not previously been recognised.
Collapse
Affiliation(s)
- Antónia Juliana Pais-Costa
- University of Coimbra, Marine and Environmental Sciences Centre (MARE), Department of Life Sciences, 3004-517 Coimbra, Portugal.
| | - Marta I Sánchez
- Wetland Ecology Department, Estación Biológica de Doñana, EBD-CSIC, 41092 Seville, Spain; Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Seville, Spain
| | - Mark A Taggart
- Environmental Research Institute, University of the Highlands and Islands, Thurso, Scotland KW14 7JD, UK
| | - Andy J Green
- Wetland Ecology Department, Estación Biológica de Doñana, EBD-CSIC, 41092 Seville, Spain
| | - Francisco Hortas
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional/Global del Mar (CEI·MAR), Universidad de Cádiz, Av. República Saharaui s/n, 11510 Puerto Real, Cádiz, Spain
| | | | - João Carlos Marques
- University of Coimbra, Marine and Environmental Sciences Centre (MARE), Department of Life Sciences, 3004-517 Coimbra, Portugal
| | - Mónica Martinez-Haro
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Centro de Investigación Agroambiental El Chaparrillo, Ciudad Real, Spain
| |
Collapse
|
5
|
Metabolism of Photosynthetic Organisms. Life (Basel) 2021; 11:life11090946. [PMID: 34575095 PMCID: PMC8466308 DOI: 10.3390/life11090946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/03/2022] Open
|
6
|
Glabonjat RA, Raber G, Holm HC, Van Mooy BAS, Francesconi KA. Arsenolipids in Plankton from High- and Low-Nutrient Oceanic Waters Along a Transect in the North Atlantic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5515-5524. [PMID: 33789045 DOI: 10.1021/acs.est.0c06901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although the natural occurrence of arsenic-containing lipids (arsenolipids) in marine organisms is now well established, the possible role of these unusual compounds in organisms and in the cycling of arsenic in marine systems remains largely unexplored. We report the finding of arsenolipids in 61 plankton samples collected from surface marine waters of high- and low-nutrient content along a transect spanning the Gulf Stream in the North Atlantic Ocean. Using high-performance liquid chromatography (HPLC) coupled to both elemental and molecular mass spectrometry, we show that all 61 plankton samples contained six identifiable arsenolipids, namely, three arsenosugar phospholipids (AsPL958, 10-13%; AsPL978, 13-25%; and AsPL1006, 7-10% of total arsenolipids), two arsenic-containing hydrocarbons (AsHC332, 4-10% and AsHC360, 1-2%), and a methoxy-sugar arsenolipid that contained phytol (AsSugPhytol, 1-3%). The relative amounts of the six arsenolipids showed clear dependence on the nutrient status of the ambient water with plankton collected from high-nutrient waters having less of the arsenosugar phospholipids and more of the three non-P containing arsenolipids compared to low-nutrient waters. By combining these first field data of arsenolipids in plankton with reported global phytoplankton productivity, we estimate that the oceans' phytoplankton transform per year 50 000-100 000 tons of arsenic into arsenolipids.
Collapse
Affiliation(s)
- Ronald A Glabonjat
- Institute of Chemistry, University of Graz, NAWI-Graz, 8010 Graz, Austria
| | - Georg Raber
- Institute of Chemistry, University of Graz, NAWI-Graz, 8010 Graz, Austria
| | - Henry C Holm
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Benjamin A S Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | | |
Collapse
|