1
|
Intranuovo F, Majellaro M, Mastropasqua F, Delre P, Abatematteo FS, Mangiatordi GF, Stefanachi A, Brea J, Loza MI, Riganti C, Ligresti A, Kumar P, Esposito D, Cristino L, Nicois A, González L, Perrone MG, Colabufo NA, Sotelo E, Abate C, Contino M. N-Adamantyl-1-alkyl-4-oxo-1,4-dihydroquinoline-3-carboxamide Derivatives as Fluorescent Probes to Detect Microglia Activation through the Imaging of Cannabinoid Receptor Subtype 2 (CB2R). J Med Chem 2024; 67:11003-11023. [PMID: 38937147 DOI: 10.1021/acs.jmedchem.4c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Cannabinoid receptor subtype 2 (CB2R) is emerging as a pivotal biomarker to identify the first steps of inflammation-based diseases such as cancer and neurodegeneration. There is an urgent need to find specific probes that may result in green and safe alternatives to the commonly used radiative technologies, to deepen the knowledge of the CB2R pathways impacting the onset of the above-mentioned pathologies. Therefore, based on one of the CB2R pharmacophores, we developed a class of fluorescent N-adamantyl-1-alkyl-4-oxo-1,4-dihydroquinoline-3-carboxamide derivatives spanning from the green to the near-infrared (NIR) regions of the light spectrum. Among the synthesized fluorescent ligands, the green-emitting compound 55 exhibited a favorable binding profile (strong CB2R affinity and high selectivity). Notably, this ligand demonstrated versatility as its use was validated in different experimental settings such as flow cytometry saturation, competitive fluorescence assays, and in vitro microglia cells mimicking inflammation states where CB2R are overexpressed.
Collapse
Affiliation(s)
- Francesca Intranuovo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, via Orabona 4, 70125 Bari, Italy
| | - Maria Majellaro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago, Spain
- Departamento de Quimica Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Francesco Mastropasqua
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, via Orabona 4, 70125 Bari, Italy
| | - Pietro Delre
- Institute of Crystallography, National Research Council of Italy, Via Amendola, 122/o, 70126 Bari, Italy
| | - Francesca Serena Abatematteo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, via Orabona 4, 70125 Bari, Italy
| | | | - Angela Stefanachi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, via Orabona 4, 70125 Bari, Italy
| | - Josè Brea
- Innopharma Screening Platform, BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology. School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Isabel Loza
- Innopharma Screening Platform, BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology. School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Chiara Riganti
- Dipartimento di Oncologia, Università degli Studi di Torino, 10124 Torino, Italy
| | - Alessia Ligresti
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli (NA), Italy
| | - Poulami Kumar
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli (NA), Italy
| | - Daniela Esposito
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli (NA), Italy
| | - Luigia Cristino
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli (NA), Italy
| | - Alessandro Nicois
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli (NA), Italy
| | - Lucía González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago, Spain
- Departamento de Quimica Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Grazia Perrone
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, via Orabona 4, 70125 Bari, Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, via Orabona 4, 70125 Bari, Italy
| | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago, Spain
- Departamento de Quimica Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, via Orabona 4, 70125 Bari, Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
2
|
Kanwal H, Sangineto M, Ciarnelli M, Castaldo P, Villani R, Romano AD, Serviddio G, Cassano T. Potential Therapeutic Targets to Modulate the Endocannabinoid System in Alzheimer's Disease. Int J Mol Sci 2024; 25:4050. [PMID: 38612861 PMCID: PMC11012768 DOI: 10.3390/ijms25074050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease (NDD), is characterized by chronic neuronal cell death through progressive loss of cognitive function. Amyloid beta (Aβ) deposition, neuroinflammation, oxidative stress, and hyperphosphorylated tau proteins are considered the hallmarks of AD pathology. Different therapeutic approaches approved by the Food and Drug Administration can only target a single altered pathway instead of various mechanisms that are involved in AD pathology, resulting in limited symptomatic relief and almost no effect in slowing down the disease progression. Growing evidence on modulating the components of the endocannabinoid system (ECS) proclaimed their neuroprotective effects by reducing neurochemical alterations and preventing cellular dysfunction. Recent studies on AD mouse models have reported that the inhibitors of the fatty acid amide hydrolase (FAAH) and monoacylglycerol (MAGL), hydrolytic enzymes for N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), respectively, might be promising candidates as therapeutical intervention. The FAAH and MAGL inhibitors alone or in combination seem to produce neuroprotection by reversing cognitive deficits along with Aβ-induced neuroinflammation, oxidative responses, and neuronal death, delaying AD progression. Their exact signaling mechanisms need to be elucidated for understanding the brain intrinsic repair mechanism. The aim of this review was to shed light on physiology and pathophysiology of AD and to summarize the experimental data on neuroprotective roles of FAAH and MAGL inhibitors. In this review, we have also included CB1R and CB2R modulators with their diverse roles to modulate ECS mediated responses such as anti-nociceptive, anxiolytic, and anti-inflammatory actions in AD. Future research would provide the directions in understanding the molecular mechanisms and development of new therapeutic interventions for the treatment of AD.
Collapse
Affiliation(s)
- Hina Kanwal
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Moris Sangineto
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Martina Ciarnelli
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Pasqualina Castaldo
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, 60126 Ancona, Italy;
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Antonino Davide Romano
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| |
Collapse
|
3
|
Molecular Basis for Non-Covalent, Non-Competitive FAAH Inhibition. Int J Mol Sci 2022; 23:ijms232415502. [PMID: 36555144 PMCID: PMC9779292 DOI: 10.3390/ijms232415502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) plays a key role in the control of cannabinoid signaling and it represents a promising therapeutic strategy for the treatment of a wide range of diseases, including neuropathic pain and chronic inflammation. Starting from kinetics experiments carried out in our previous work for the most potent inhibitor 2-amino-3-chloropyridine amide (TPA14), we have investigated its non-competitive mechanism of action using molecular dynamics, thermodynamic integration and QM-MM/GBSA calculations. The computational studies highlighted the impact of mutations on the receptor binding pockets and elucidated the molecular basis of the non-competitive inhibition mechanism of TPA14, which prevents the endocannabinoid anandamide (AEA) from reaching its pro-active conformation. Our study provides a rationale for the design of non-competitive potent FAAH inhibitors for the treatment of neuropathic pain and chronic inflammation.
Collapse
|
4
|
Cannabinoid CB2 Receptors in Neurodegenerative Proteinopathies: New Insights and Therapeutic Potential. Biomedicines 2022; 10:biomedicines10123000. [PMID: 36551756 PMCID: PMC9775106 DOI: 10.3390/biomedicines10123000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Some of the most prevalent neurodegenerative disorders, including Alzheimer's and Parkinson's disease, are proteinopathies characterized by the accumulation of specific protein aggregates in the brain. Such misfolded protein aggregates can trigger modulation of the innate and adaptive immune systems and subsequently lead to chronic neuroinflammation that drives the onset and progression of neurodegenerative diseases. Since there is still no effective disease-modifying treatment, new therapeutic targets for neurodegenerative proteinopathies have been sought. The endocannabinoid system, and in particular the cannabinoid CB2 receptors, have been extensively studied, due to their important role in neuroinflammation, especially in microglial cells. Several studies have shown promising effects of CB2 receptor activation on reducing protein aggregation-based pathology as well as on attenuating inflammation and several dementia-related symptoms. In this review, we discuss the available data on the role of CB2 receptors in neuroinflammation and the potential benefits and limitations of specific agonists of these receptors in the therapy of neurodegenerative proteinopathies.
Collapse
|
5
|
Dasram MH, Walker RB, Khamanga SM. Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery. Int J Mol Sci 2022; 23:13223. [PMID: 36362014 PMCID: PMC9658826 DOI: 10.3390/ijms232113223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.
Collapse
Affiliation(s)
| | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
6
|
Ferrisi R, Gado F, Polini B, Ricardi C, Mohamed KA, Stevenson LA, Ortore G, Rapposelli S, Saccomanni G, Pertwee RG, Laprairie RB, Manera C, Chiellini G. Design, synthesis and biological evaluation of novel orthosteric-allosteric ligands of the cannabinoid receptor type 2 (CB 2R). Front Chem 2022; 10:984069. [PMID: 36238097 PMCID: PMC9551276 DOI: 10.3389/fchem.2022.984069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
It is well known that G protein–coupled receptors (GPCRs) assume multiple active states. Orthosteric ligands and/or allosteric modulators can preferentially stabilize specific conformations, giving rise to pathway-biased signaling. One of the most promising strategies to expand the repertoire of signaling-selective GPCR activators consists of dualsteric agents, which are hybrid compounds consisting of orthosteric and allosteric pharmacophoric units. This approach proved to be very promising showing several advantages over monovalent targeting strategies, including an increased affinity or selectivity, a bias in signaling pathway activation, reduced off-target activity and therapeutic resistance. Our study focused on the cannabinoid receptor type 2 (CB2R), considered a clinically promising target for the control of brain damage in neurodegenerative disorders. Indeed, CB2R was found highly expressed in microglial cells, astrocytes, and even in some neuron subpopulations. Here, we describe the design, synthesis, and biological evaluation of two new classes of potential dualsteric (bitopic) CB2R ligands. The new compounds were obtained by connecting, through different linkers, the pharmacophoric portion of the CB2R positive allosteric modulator (PAM), EC21a, with that of the CB2R selective orthosteric agonist LV62, both developed in our laboratories. A preliminary screening enabled us to identify compound JR64a as the most promising of the series. Indeed, functional examination highlighted a signaling ‘bias’ in favor of G protein activation over βarrestin2 recruitment, combined with high affinity for CB2R and the ability to efficiently prevent inflammation in human microglial cells (HMC3) exposed to LPS/TNFα stimulation, thus demonstrating great promise for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Francesca Gado
- Department of Pharmacy, University of Pisa, Pisa, Italy,Department of Pharmaceutical Sciences, University of Milano Statale, Milan, Italy,*Correspondence: Francesca Gado, ; Clementina Manera, ; Grazia Chiellini,
| | | | | | - Kawthar A. Mohamed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lesley A. Stevenson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | | | | | | | - Roger G. Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Robert B. Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada,Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, Pisa, Italy,CISUP, Centre for Instrumentation Sharing Pisa University, Pisa, Italy,*Correspondence: Francesca Gado, ; Clementina Manera, ; Grazia Chiellini,
| | - Grazia Chiellini
- Department of Pathology, University of Pisa, Pisa, Italy,CISUP, Centre for Instrumentation Sharing Pisa University, Pisa, Italy,*Correspondence: Francesca Gado, ; Clementina Manera, ; Grazia Chiellini,
| |
Collapse
|
7
|
Ferranti AS, Foster DJ. Cannabinoid type-2 receptors: An emerging target for regulating schizophrenia-relevant brain circuits. Front Neurosci 2022; 16:925792. [PMID: 36033626 PMCID: PMC9403189 DOI: 10.3389/fnins.2022.925792] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Although the cannabinoid type-2 receptor (CB2) is highly expressed in the immune system, emerging evidence points to CB2 playing a key role in regulating neuronal function in the central nervous system. Recent anatomical studies, combined with electrophysiological studies, indicate that CB2 receptors are expressed in specific dopaminergic and glutamatergic brain circuits that are hyperactive in schizophrenia patients. The ability of CB2 receptors to inhibit dopaminergic and hippocampal circuits, combined with the anti-inflammatory effects of CB2 receptor activation, make this receptor an intriguing target for treating schizophrenia, a disease where novel interventions that move beyond dopamine receptor antagonists are desperately needed. The development of new CB2-related pharmacological and genetic tools, including the first small molecule positive allosteric modulator of CB2 receptors, has greatly advanced our understanding of this receptor. While more work is needed to further elucidate the translational value of selectively targeting CB2 receptors with respect to schizophrenia, the studies discussed below could suggest that CB2 receptors are anatomically located in schizophrenia-relevant circuits, where the physiological consequence of CB2 receptor activation could correct circuit-based deficits commonly associated with positive and cognitive deficits.
Collapse
Affiliation(s)
- Anthony S. Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Daniel J. Foster
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
8
|
Gado F, Ferrisi R, Polini B, Mohamed KA, Ricardi C, Lucarini E, Carpi S, Domenichini F, Stevenson LA, Rapposelli S, Saccomanni G, Nieri P, Ortore G, Pertwee RG, Ghelardini C, Di Cesare Mannelli L, Chiellini G, Laprairie RB, Manera C. Design, Synthesis, and Biological Activity of New CB2 Receptor Ligands: from Orthosteric and Allosteric Modulators to Dualsteric/Bitopic Ligands. J Med Chem 2022; 65:9918-9938. [PMID: 35849804 PMCID: PMC10168668 DOI: 10.1021/acs.jmedchem.2c00582] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The design of dualsteric/bitopic agents as single chemical entities able to simultaneously interact with both the orthosteric and an allosteric binding site represents a novel approach in medicinal chemistry. Biased dualsteric/bitopic agents could enhance certain signaling pathways while diminishing the others that cause unwanted side effects. We have designed, synthesized, and functionally characterized the first CB2R heterobivalent bitopic ligands. In contrast to the parent orthosteric compound, our bitopic ligands selectively target CB2R versus CB1R and show a functional selectivity for the cAMP signaling pathway versus βarrestin2 recruitment. Moreover, the most promising bitopic ligand FD-22a displayed anti-inflammatory activity in a human microglial cell inflammatory model and antinociceptive activity in vivo in an experimental mouse model of neuropathic pain. Finally, computational studies clarified the binding mode of these compounds inside the CB2R, further confirming their bitopic nature.
Collapse
Affiliation(s)
- Francesca Gado
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | - Rebecca Ferrisi
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy.,Department of Pathology, University of Pisa, Pisa 56126, Italy
| | - Kawthar A Mohamed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada
| | | | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence 50139, Italy
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy.,NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, Pisa 56126, Italy
| | | | - Lesley A Stevenson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, Pisa 56126, Italy
| | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | | | - Roger G Pertwee
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence 50139, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence 50139, Italy
| | - Grazia Chiellini
- Department of Pathology, University of Pisa, Pisa 56126, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, Pisa 56126, Italy
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon SK S7N 5E5, Canada.,Department of Pharmacology, College of Medicine, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, Pisa 56126, Italy
| |
Collapse
|
9
|
Neuronal alarmin IL-1α evokes astrocyte-mediated protective signals: Effectiveness in chemotherapy-induced neuropathic pain. Neurobiol Dis 2022; 168:105716. [PMID: 35367629 DOI: 10.1016/j.nbd.2022.105716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
The distinction between glial painful and protective pathways is unclear and the possibility to finely modulate the system is lacking. Focusing on painful neuropathies, we studied the role of interleukin 1α (IL-1α), an alarmin belonging to the larger family of damage-associated molecular patterns endogenously secreted to restore homeostasis. The treatment of rat primary neurons with increasing dose of the neurotoxic anticancer drug oxaliplatin (0.3-100μM, 48 h) induced the release of IL-1α. The knockdown of the alarmin in neurons leads to their higher mortality when co-cultured with astrocytes. This toxicity was related to increased extracellular ATP and decreased release of transforming growth factor β1, mostly produced by astrocytes. In a rat model of neuropathy induced by oxaliplatin, the intrathecal treatment with IL-1α was able to reduce mechanical and thermal hypersensitivity both after acute injection and continuous infusion. Ex vivo analysis on spinal purified astrocyte processes (gliosomes) and nerve terminals (synaptosomes) revealed the property of IL-1α to reduce the endogenous glutamate release induced by oxaliplatin. This protective effect paralleled with an increased number of GFAP-positive cells in the spinal cord, suggesting the ability of IL-1α to evoke a positive, conservative astrocyte phenotype. Endogenous IL-1α induces protective signals in the cross-talk between neurons and astrocytes. Exogenously administered in rats, IL-1α prevents neuropathic pain in the presence of spinal glutamate decrease and astrocyte activation.
Collapse
|
10
|
Vasincu A, Rusu RN, Ababei DC, Larion M, Bild W, Stanciu GD, Solcan C, Bild V. Endocannabinoid Modulation in Neurodegenerative Diseases: In Pursuit of Certainty. BIOLOGY 2022; 11:biology11030440. [PMID: 35336814 PMCID: PMC8945712 DOI: 10.3390/biology11030440] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 01/13/2023]
Abstract
Simple Summary Neurodegenerative diseases represent an important cause of morbidity and mortality worldwide. Existing therapeutic options are limited and focus mostly on improving symptoms and reducing exacerbations. The endocannabinoid system is involved in the pathophysiology of such disorders, an idea which has been highlighted by recent scientific work. The current work focusses its attention on the importance and implications of this system and its synthetic and natural ligands in disorders such as Alzheimer’s, Parkinson’s, Huntington’s and multiple sclerosis. Abstract Neurodegenerative diseases are an increasing cause of global morbidity and mortality. They occur in the central nervous system (CNS) and lead to functional and mental impairment due to loss of neurons. Recent evidence highlights the link between neurodegenerative and inflammatory diseases of the CNS. These are typically associated with several neurological disorders. These diseases have fundamental differences regarding their underlying physiology and clinical manifestations, although there are aspects that overlap. The endocannabinoid system (ECS) is comprised of receptors (type-1 (CB1R) and type-2 (CB2R) cannabinoid-receptors, as well as transient receptor potential vanilloid 1 (TRPV1)), endogenous ligands and enzymes that synthesize and degrade endocannabinoids (ECBs). Recent studies revealed the involvement of the ECS in different pathological aspects of these neurodegenerative disorders. The present review will explore the roles of cannabinoid receptors (CBRs) and pharmacological agents that modulate CBRs or ECS activity with reference to Alzheimer’s Disease (AD), Parkinson’s Disease (PD), Huntington’s Disease (HD) and multiple sclerosis (MS).
Collapse
Affiliation(s)
- Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.V.); (D.-C.A.); (V.B.)
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.V.); (D.-C.A.); (V.B.)
- Correspondence:
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.V.); (D.-C.A.); (V.B.)
| | - Mădălina Larion
- Department of Anaesthesiology Intensive Therapy, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 19 Croitorilor Street, 400162 Cluj-Napoca, Romania;
- Department of Anaesthetics, Midland Regional Hospital, Longford Road, Mullingar, N91 NA43 Co. Westmeath, Ireland
| | - Walther Bild
- Department of Physiology, “Grigore T Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
| | - Gabriela Dumitrița Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Carmen Solcan
- Preclinics Department, “Ion Ionescu de la Brad” University of Life Sciences, 8 M. Sadoveanu Alley, 700489 Iasi, Romania;
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.V.); (D.-C.A.); (V.B.)
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
11
|
Cervetto C, Averna M, Vergani L, Pedrazzi M, Amato S, Pelassa S, Giuliani S, Baldini F, Maura G, Mariottini P, Marcoli M, Cervelli M. Reactive Astrocytosis in a Mouse Model of Chronic Polyamine Catabolism Activation. Biomolecules 2021; 11:1274. [PMID: 34572487 PMCID: PMC8467798 DOI: 10.3390/biom11091274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In the brain, polyamines are mainly synthesized in neurons, but preferentially accumulated in astrocytes, and are proposed to be involved in neurodegenerative/neuroinflammatory disorders and neuron injury. A transgenic mouse overexpressing spermine oxidase (SMOX, which specifically oxidizes spermine) in the neocortex neurons (Dach-SMOX mouse) was proved to be a model of increased susceptibility to excitotoxic injury. METHODS To investigate possible alterations in synapse functioning in Dach-SMOX mouse, both cerebrocortical nerve terminals (synaptosomes) and astrocytic processes (gliosomes) were analysed by assessing polyamine levels, ezrin and vimentin content, glutamate AMPA receptor activation, calcium influx, and catalase activity. RESULTS The main findings are as follows: (i) the presence of functional calcium-permeable AMPA receptors in synaptosomes from both control and Dach-SMOX mice, and in gliosomes from Dach-SMOX mice only; (ii) reduced content of spermine in gliosomes from Dach-SMOX mice; and (iii) down-regulation and up-regulation of catalase activity in synaptosomes and gliosomes, respectively, from Dach-SMOX mice. CONCLUSIONS Chronic activation of SMOX in neurons leads to major changes in the astrocyte processes including reduced spermine levels, increased calcium influx through calcium-permeable AMPA receptors, and stimulation of catalase activity. Astrocytosis and the astrocyte process alterations, depending on chronic activation of polyamine catabolism, result in synapse dysregulation and neuronal suffering.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (C.C.); (S.A.); (S.P.); (G.M.)
| | - Monica Averna
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genoa, Italy; (M.A.); (M.P.)
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genoa, Italy; (L.V.); (F.B.)
| | - Marco Pedrazzi
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genoa, Italy; (M.A.); (M.P.)
| | - Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (C.C.); (S.A.); (S.P.); (G.M.)
| | - Simone Pelassa
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (C.C.); (S.A.); (S.P.); (G.M.)
| | - Stefano Giuliani
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (S.G.); (P.M.)
| | - Francesca Baldini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genoa, Italy; (L.V.); (F.B.)
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (C.C.); (S.A.); (S.P.); (G.M.)
| | - Paolo Mariottini
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (S.G.); (P.M.)
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genoa, Italy; (C.C.); (S.A.); (S.P.); (G.M.)
| | - Manuela Cervelli
- Department of Science, University of Rome “Roma Tre”, Viale Marconi 446, 00146 Rome, Italy; (S.G.); (P.M.)
- Neurodevelopment, Neurogenetics and Molecular Neurobiology Unit, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
12
|
Graczyk M, Lewandowska AA, Dzierżanowski T. The Therapeutic Potential of Cannabis in Counteracting Oxidative Stress and Inflammation. Molecules 2021; 26:molecules26154551. [PMID: 34361704 PMCID: PMC8347461 DOI: 10.3390/molecules26154551] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
Significant growth of interest in cannabis (Cannabis sativa L.), especially its natural anti-inflammatory and antioxidative properties, has been observed recently. This narrative review aimed to present the state of the art of research concerning the anti-inflammatory activity of all classes of cannabinoids published in the last five years. Multimodal properties of cannabinoids include their involvement in immunological processes, anti-inflammatory, and antioxidative effects. Cannabinoids and non-cannabinoid compounds of cannabis proved their anti-inflammatory effects in numerous animal models. The research in humans is missing, and the results are unconvincing. Although preclinical evidence suggests cannabinoids are of value in treating chronic inflammatory diseases, the clinical evidence is scarce, and further well-designed clinical trials are essential to determine the prospects for using cannabinoids in inflammatory conditions.
Collapse
Affiliation(s)
- Michał Graczyk
- Department of Palliative Care, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | | | - Tomasz Dzierżanowski
- Laboratory of Palliative Medicine, Department of Social Medicine and Public Health, Medical University of Warsaw, 02-007 Warsaw, Poland
- Correspondence:
| |
Collapse
|
13
|
Navarro G, Gonzalez A, Sánchez-Morales A, Casajuana-Martin N, Gómez-Ventura M, Cordomí A, Busqué F, Alibés R, Pardo L, Franco R. Design of Negative and Positive Allosteric Modulators of the Cannabinoid CB 2 Receptor Derived from the Natural Product Cannabidiol. J Med Chem 2021; 64:9354-9364. [PMID: 34161090 DOI: 10.1021/acs.jmedchem.1c00561] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cannabidiol (CBD), the second most abundant of the active compounds found in the Cannabis sativa plant, is of increasing interest because it is approved for human use and is neither euphorizing nor addictive. Here, we design and synthesize novel compounds taking into account that CBD is both a partial agonist, when it binds to the orthosteric site, and a negative allosteric modulator, when it binds to the allosteric site of the cannabinoid CB2 receptor. Molecular dynamic simulations and site-directed mutagenesis studies have identified the allosteric site near the receptor entrance. This knowledge has permitted to perform structure-guided design of negative and positive allosteric modulators of the CB2 receptor with potential therapeutic utility.
Collapse
Affiliation(s)
- Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Angel Gonzalez
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Adrià Sánchez-Morales
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Nil Casajuana-Martin
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Marc Gómez-Ventura
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Arnau Cordomí
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Félix Busqué
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Ramon Alibés
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
14
|
Ferrisi R, Ceni C, Bertini S, Macchia M, Manera C, Gado F. Medicinal Chemistry approach, pharmacology and neuroprotective benefits of CB 2R modulators in neurodegenerative diseases. Pharmacol Res 2021; 170:105607. [PMID: 34089867 DOI: 10.1016/j.phrs.2021.105607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 12/01/2022]
Abstract
In the last decades, cannabinoid receptor 2 (CB2R) has continued to receive attention as a key therapeutic target in neuroprotection. Indeed, several findings highlight the neuroprotective effects of CB2R through suppression of both neuronal excitability and reactive microglia. Additionally, CB2R seems to be a more promising target than cannabinoid receptor 1 (CB1R) thanks to the lack of central side effects, its lower expression levels in the central nervous system (CNS), and its inducibility, since its expression enhances quickly in the brain following pathological conditions. This review aims to provide a thorough overview of the main natural and synthetic selective CB2R modulators, their chemical classification and their potential therapeutic usefulness in neuroprotection, a crucial aspect for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rebecca Ferrisi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Costanza Ceni
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | | - Francesca Gado
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|