1
|
Dansu DK, Selcen I, Sauma S, Prentice E, Huang D, Li M, Moyon S, Casaccia P. Histone H4 acetylation differentially modulates proliferation in adult oligodendrocyte progenitors. J Cell Biol 2024; 223:e202308064. [PMID: 39133301 PMCID: PMC11318668 DOI: 10.1083/jcb.202308064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 06/18/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
Adult oligodendrocyte progenitors (aOPCs) generate myelinating oligodendrocytes like neonatal progenitors (nOPCs), and they also display unique functional features. Here, using unbiased histone proteomics analysis and ChIP sequencing analysis of PDGFRα+ OPCs sorted from neonatal and adult Pdgfra-H2B-EGFP reporter mice, we identify the activating H4K8ac histone mark as enriched in the aOPCs. We detect increased occupancy of the H4K8ac activating mark at chromatin locations corresponding to genes related to the progenitor state (e.g., Hes5, Gpr17), metabolic processes (e.g., Txnip, Ptdgs), and myelin components (e.g., Cnp, Mog). aOPCs showed higher levels of transcripts related to lipid metabolism and myelin, and lower levels of transcripts related to cell cycle and proliferation compared with nOPCs. In addition, pharmacological inhibition of histone acetylation decreased the expression of the H4K8ac target genes in aOPCs and decreased their proliferation. Overall, this study identifies acetylation of the histone H4K8 as a regulator of the proliferative capacity of aOPCs.
Collapse
Affiliation(s)
- David K Dansu
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - Ipek Selcen
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - Sami Sauma
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Graduate Program in Biology, The Graduate Center of The City University of New York, New York, NY, USA
| | - Emily Prentice
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Graduate Program in Biology, The Graduate Center of The City University of New York, New York, NY, USA
| | - Dennis Huang
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Graduate Program in Biology, The Graduate Center of The City University of New York, New York, NY, USA
| | - Meng Li
- Norris Medical Library, University of Southern California, Los Angeles, CA, USA
| | - Sarah Moyon
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Institute of NeuroPhysiopathology (INP) UMR7051, Aix-Marseille University, CNRS, Marseille, France
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY, USA
- Graduate Program in Biology, The Graduate Center of The City University of New York, New York, NY, USA
| |
Collapse
|
2
|
Pruvost M, Moyon S. Correction: Pruvost, M.; Moyon, S. Oligodendroglial Epigenetics, from Lineage Specification to Activity-Dependent Myelination. Life 2021, 11, 62. Life (Basel) 2024; 14:620. [PMID: 38792671 PMCID: PMC11122379 DOI: 10.3390/life14050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 05/26/2024] Open
Abstract
The authors wish to make the following corrections to this paper [...].
Collapse
|
3
|
Dansu DK, Sauma S, Huang D, Li M, Moyon S, Casaccia P. The epigenetic landscape of oligodendrocyte progenitors changes with time. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579145. [PMID: 38501119 PMCID: PMC10946295 DOI: 10.1101/2024.02.06.579145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
SUMMARY Dansu et al. identify distinct histone H4 modifications as potential mechanism underlying the functional differences between adult and neonatal progenitors. While H4K8ac favors the expression of differentiation genes, their expression is halted by H4K20me3. Adult oligodendrocyte progenitors (aOPCs) generate myelinating oligodendrocytes, like neonatal progenitors (nOPCs), but they also display unique functional features. Here, using RNA-sequencing, unbiased histone proteomics analysis and ChIP-sequencing, we define the transcripts and histone marks underlying the unique properties of aOPCs. We describe the lower proliferative capacity and higher levels of expression of oligodendrocyte specific genes in aOPCs compared to nOPCs, as well as the greater levels of H4 histone marks. We also report increased occupancy of the H4K8ac mark at chromatin locations corresponding to oligodendrocyte-specific transcription factors and lipid metabolism genes. Pharmacological inhibition of H4K8ac deposition reduces the levels of these transcripts in aOPCs, rendering their transcriptome more similar to nOPCs. The repressive H4K20me3 mark is also higher in aOPCs compared to nOPCs and pharmacological inhibition of its deposition results in increased levels of genes related to the mature oligodendrocyte state. Overall, this study identifies two histone marks which are important for the unique transcriptional and functional identity of aOPCs.
Collapse
|
4
|
Sprinzen L, Garcia F, Mela A, Lei L, Upadhyayula P, Mahajan A, Humala N, Manier L, Caprioli R, Quiñones-Hinojosa A, Casaccia P, Canoll P. EZH2 Inhibition Sensitizes IDH1R132H-Mutant Gliomas to Histone Deacetylase Inhibitor. Cells 2024; 13:219. [PMID: 38334611 PMCID: PMC10854521 DOI: 10.3390/cells13030219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
Isocitrate Dehydrogenase-1 (IDH1) is commonly mutated in lower-grade diffuse gliomas. The IDH1R132H mutation is an important diagnostic tool for tumor diagnosis and prognosis; however, its role in glioma development, and its impact on response to therapy, is not fully understood. We developed a murine model of proneural IDH1R132H-mutated glioma that shows elevated production of 2-hydroxyglutarate (2-HG) and increased trimethylation of lysine residue K27 on histone H3 (H3K27me3) compared to IDH1 wild-type tumors. We found that using Tazemetostat to inhibit the methyltransferase for H3K27, Enhancer of Zeste 2 (EZH2), reduced H3K27me3 levels and increased acetylation on H3K27. We also found that, although the histone deacetylase inhibitor (HDACi) Panobinostat was less cytotoxic in IDH1R132H-mutated cells (either isolated from murine glioma or oligodendrocyte progenitor cells infected in vitro with a retrovirus expressing IDH1R132H) compared to IDH1-wild-type cells, combination treatment with Tazemetostat is synergistic in both mutant and wild-type models. These findings indicate a novel therapeutic strategy for IDH1-mutated gliomas that targets the specific epigenetic alteration in these tumors.
Collapse
Affiliation(s)
- Lisa Sprinzen
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; (L.S.); (F.G.); (A.M.)
| | - Franklin Garcia
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; (L.S.); (F.G.); (A.M.)
| | - Angeliki Mela
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; (L.S.); (F.G.); (A.M.)
| | - Liang Lei
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10032, USA; (L.L.); (P.U.); (N.H.)
| | - Pavan Upadhyayula
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10032, USA; (L.L.); (P.U.); (N.H.)
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10032, USA; (L.L.); (P.U.); (N.H.)
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10032, USA; (L.L.); (P.U.); (N.H.)
| | - Lisa Manier
- Department of Chemistry, Vanderbilt School of Medicine, Nashville, TN 37240, USA; (L.M.); (R.C.)
| | - Richard Caprioli
- Department of Chemistry, Vanderbilt School of Medicine, Nashville, TN 37240, USA; (L.M.); (R.C.)
| | | | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center, City University of New York, New York, NY 10031, USA;
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; (L.S.); (F.G.); (A.M.)
| |
Collapse
|
5
|
Kozlenkov A, Vadukapuram R, Zhou P, Fam P, Wegner M, Dracheva S. Novel method of isolating nuclei of human oligodendrocyte precursor cells reveals substantial developmental changes in gene expression and H3K27ac histone modification. Glia 2024; 72:69-89. [PMID: 37712493 PMCID: PMC10697634 DOI: 10.1002/glia.24462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) generate differentiated mature oligodendrocytes (MOs) during development. In adult brain, OPCs replenish MOs in adaptive plasticity, neurodegenerative disorders, and after trauma. The ability of OPCs to differentiate to MOs decreases with age and is compromised in disease. Here we explored the cell specific and age-dependent differences in gene expression and H3K27ac histone mark in these two cell types. H3K27ac is indicative of active promoters and enhancers. We developed a novel flow-cytometry-based approach to isolate OPC and MO nuclei from human postmortem brain and profiled gene expression and H3K27ac in adult and infant OPCs and MOs genome-wide. In adult brain, we detected extensive H3K27ac differences between the two cell types with high concordance between gene expression and epigenetic changes. Notably, the expression of genes that distinguish MOs from OPCs appears to be under a strong regulatory control by the H3K27ac modification in MOs but not in OPCs. Comparison of gene expression and H3K27ac between infants and adults uncovered numerous developmental changes in each cell type, which were linked to several biological processes, including cell proliferation and glutamate signaling. A striking example was a subset of histone genes that were highly active in infant samples but fully lost activity in adult brain. Our findings demonstrate a considerable rearrangement of the H3K27ac landscape that occurs during the differentiation of OPCs to MOs and during postnatal development of these cell types, which aligned with changes in gene expression. The uncovered regulatory changes justify further in-depth epigenetic studies of OPCs and MOs in development and disease.
Collapse
Affiliation(s)
- Alexey Kozlenkov
- James J. Peters VA Medical Center, Bronx, NY, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramu Vadukapuram
- James J. Peters VA Medical Center, Bronx, NY, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ping Zhou
- James J. Peters VA Medical Center, Bronx, NY, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Fam
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stella Dracheva
- James J. Peters VA Medical Center, Bronx, NY, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Pruvost M, Patzig J, Yattah C, Selcen I, Hernandez M, Park HJ, Moyon S, Liu S, Morioka MS, Shopland L, Al-Dalahmah O, Bendl J, Fullard JF, Roussos P, Goldman J, He Y, Dupree JL, Casaccia P. The stability of the myelinating oligodendrocyte transcriptome is regulated by the nuclear lamina. Cell Rep 2023; 42:112848. [PMID: 37515770 PMCID: PMC10600948 DOI: 10.1016/j.celrep.2023.112848] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/26/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023] Open
Abstract
Oligodendrocytes are specialized cells that insulate and support axons with their myelin membrane, allowing proper brain function. Here, we identify lamin A/C (LMNA/C) as essential for transcriptional and functional stability of myelinating oligodendrocytes. We show that LMNA/C levels increase with differentiation of progenitors and that loss of Lmna in differentiated oligodendrocytes profoundly alters their chromatin accessibility and transcriptional signature. Lmna deletion in myelinating glia is compatible with normal developmental myelination. However, altered chromatin accessibility is detected in fully differentiated oligodendrocytes together with increased expression of progenitor genes and decreased levels of lipid-related transcription factors and inner mitochondrial membrane transcripts. These changes are accompanied by altered brain metabolism, lower levels of myelin-related lipids, and altered mitochondrial structure in oligodendrocytes, thereby resulting in myelin thinning and the development of a progressively worsening motor phenotype. Overall, our data identify LMNA/C as essential for maintaining the transcriptional and functional stability of myelinating oligodendrocytes.
Collapse
Affiliation(s)
- Mathilde Pruvost
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - Julia Patzig
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - Camila Yattah
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of The City University of New York, 365 5(th) Avenue, New York, NY 10016, USA
| | - Ipek Selcen
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of The City University of New York, 365 5(th) Avenue, New York, NY 10016, USA
| | - Marylens Hernandez
- Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hye-Jin Park
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - Sarah Moyon
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - Shibo Liu
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Structural Biology Initiative, Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY 10031, USA
| | - Malia S Morioka
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Macaulay Honors College, City College of New York, New York, NY 10031, USA
| | - Lindsay Shopland
- Jackson Laboratory, 1650 Santa Ana Ave, Sacramento, CA 95835, USA
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Division of Neuropathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Jaroslav Bendl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John F Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY 10468, USA; Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - James Goldman
- Department of Pathology and Cell Biology, Division of Neuropathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Ye He
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Macaulay Honors College, City College of New York, New York, NY 10031, USA
| | - Jeffrey L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Patrizia Casaccia
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of The City University of New York, 365 5(th) Avenue, New York, NY 10016, USA; Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate Program in Biology, The Graduate Center of The City University of New York, 365 5th Avenue, New York, NY 10016, USA.
| |
Collapse
|
7
|
Fodder K, de Silva R, Warner TT, Bettencourt C. The contribution of DNA methylation to the (dys)function of oligodendroglia in neurodegeneration. Acta Neuropathol Commun 2023; 11:106. [PMID: 37386505 PMCID: PMC10311741 DOI: 10.1186/s40478-023-01607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Neurodegenerative diseases encompass a heterogeneous group of conditions characterised by the progressive degeneration of the structure and function of the central or peripheral nervous systems. The pathogenic mechanisms underlying these diseases are not fully understood. However, a central feature consists of regional aggregation of proteins in the brain, such as the accumulation of β-amyloid plaques in Alzheimer's disease (AD), inclusions of hyperphosphorylated microtubule-binding tau in AD and other tauopathies, or inclusions containing α-synuclein in Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Various pathogenic mechanisms are thought to contribute to disease, and an increasing number of studies implicate dysfunction of oligodendrocytes (the myelin producing cells of the central nervous system) and myelin loss. Aberrant DNA methylation, the most widely studied epigenetic modification, has been associated with many neurodegenerative diseases, including AD, PD, DLB and MSA, and recent findings highlight aberrant DNA methylation in oligodendrocyte/myelin-related genes. Here we briefly review the evidence showing that changes to oligodendrocytes and myelin are key in neurodegeneration, and explore the relevance of DNA methylation in oligodendrocyte (dys)function. As DNA methylation is reversible, elucidating its involvement in pathogenic mechanisms of neurodegenerative diseases and in dysfunction of specific cell-types such as oligodendrocytes may bring opportunities for therapeutic interventions for these diseases.
Collapse
Affiliation(s)
- Katherine Fodder
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Rohan de Silva
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas T Warner
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
8
|
Maitre M, Jeltsch-David H, Okechukwu NG, Klein C, Patte-Mensah C, Mensah-Nyagan AG. Myelin in Alzheimer's disease: culprit or bystander? Acta Neuropathol Commun 2023; 11:56. [PMID: 37004127 PMCID: PMC10067200 DOI: 10.1186/s40478-023-01554-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with neuronal and synaptic losses due to the accumulation of toxic amyloid β (Αβ) peptide oligomers, plaques, and tangles containing tau (tubulin-associated unit) protein. While familial AD is caused by specific mutations, the sporadic disease is more common and appears to result from a complex chronic brain neuroinflammation with mitochondriopathies, inducing free radicals' accumulation. In aged brain, mutations in DNA and several unfolded proteins participate in a chronic amyloidosis response with a toxic effect on myelin sheath and axons, leading to cognitive deficits and dementia. Αβ peptides are the most frequent form of toxic amyloid oligomers. Accumulations of misfolded proteins during several years alters different metabolic mechanisms, induce chronic inflammatory and immune responses with toxic consequences on neuronal cells. Myelin composition and architecture may appear to be an early target for the toxic activity of Aβ peptides and others hydrophobic misfolded proteins. In this work, we describe the possible role of early myelin alterations in the genesis of neuronal alterations and the onset of symptomatology. We propose that some pathophysiological and clinical forms of the disease may arise from structural and metabolic disorders in the processes of myelination/demyelination of brain regions where the accumulation of non-functional toxic proteins is important. In these forms, the primacy of the deleterious role of amyloid peptides would be a matter of questioning and the initiating role of neuropathology would be primarily the fact of dysmyelination.
Collapse
Affiliation(s)
- Michel Maitre
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France.
| | - Hélène Jeltsch-David
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
- Biotechnologie et signalisation cellulaire, UMR 7242 CNRS, Université de Strasbourg, 300 Boulevard Sébastien Brant CS 10413, Illkirch cedex, 67412, France
| | - Nwife Getrude Okechukwu
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Christian Klein
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Christine Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| |
Collapse
|
9
|
Recent Insights into the Functional Role of AMPA Receptors in the Oligodendrocyte Lineage Cells In Vivo. Int J Mol Sci 2023; 24:ijms24044138. [PMID: 36835546 PMCID: PMC9967469 DOI: 10.3390/ijms24044138] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
This review discusses the experimental findings of several recent studies which investigated the functional role of AMPA receptors (AMPARs) in oligodendrocyte lineage cells in vivo, in mice and in zebrafish. These studies provided valuable information showing that oligodendroglial AMPARs may be involved in the modulation of proliferation, differentiation, and migration of oligodendroglial progenitors, as well as survival of myelinating oligodendrocytes during physiological conditions in vivo. They also suggested that targeting the subunit composition of AMPARs may be an important strategy for treating diseases. However, at the same time, the experimental findings taken together still do not provide a clear picture on the topic. Hence, new ideas and new experimental designs are required for understanding the functional role of AMPARs in the oligodendrocyte lineage cells in vivo. It is also necessary to consider more closely the temporal and spatial aspects of AMPAR-mediated signalling in the oligodendrocyte lineage cells. These two important aspects are routinely discussed by neuronal physiologists studying glutamatergic synaptic transmission, but are rarely debated and thought about by researchers studying glial cells.
Collapse
|
10
|
Dansu DK, Liang J, Selcen I, Zheng H, Moore DF, Casaccia P. PRMT5 Interacting Partners and Substrates in Oligodendrocyte Lineage Cells. Front Cell Neurosci 2022; 16:820226. [PMID: 35370564 PMCID: PMC8968030 DOI: 10.3389/fncel.2022.820226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
The protein arginine methyl transferase PRMT5 is an enzyme expressed in oligodendrocyte lineage cells and responsible for the symmetric methylation of arginine residues on histone tails. Previous work from our laboratory identified PRMT5 as critical for myelination, due to its transcriptional regulation of genes involved in survival and early stages of differentiation. However, besides its nuclear localization, PRMT5 is found at high levels in the cytoplasm of several cell types, including oligodendrocyte progenitor cells (OPCs) and yet, its interacting partners in this lineage, remain elusive. By using mass spectrometry on protein eluates from extracts generated from primary oligodendrocyte lineage cells and immunoprecipitated with PRMT5 antibodies, we identified 1196 proteins as PRMT5 interacting partners. These proteins were related to molecular functions such as RNA binding, ribosomal structure, cadherin and actin binding, nucleotide and protein binding, and GTP and GTPase activity. We then investigated PRMT5 substrates using iTRAQ-based proteomics on cytosolic and nuclear protein extracts from CRISPR-PRMT5 knockdown immortalized oligodendrocyte progenitors compared to CRISPR-EGFP controls. This analysis identified a similar number of peptides in the two subcellular fractions and a total number of 57 proteins with statistically decreased symmetric methylation of arginine residues in the CRISPR-PRMT5 knockdown compared to control. Several PRMT5 substrates were in common with cancer cell lines and related to RNA processing, splicing and transcription. In addition, we detected ten oligodendrocyte lineage specific substrates, corresponding to proteins with high expression levels in neural tissue. They included: PRC2C, a proline-rich protein involved in methyl-RNA binding, HNRPD an RNA binding protein involved in regulation of RNA stability, nuclear proteins involved in transcription and other proteins related to migration and actin cytoskeleton. Together, these results highlight a cell-specific role of PRMT5 in OPC in regulating several other cellular processes, besides RNA splicing and metabolism.
Collapse
Affiliation(s)
- David K. Dansu
- Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, NY, United States,Graduate Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, United States
| | - Jialiang Liang
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ipek Selcen
- Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, NY, United States,Graduate Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, United States
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ, United States,Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, Piscataway, NJ, United States
| | - Dirk F. Moore
- Department of Biostatistics, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, NY, United States,Graduate Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, United States,*Correspondence: Patrizia Casaccia,
| |
Collapse
|
11
|
EGF-Coupled Gold Nanoparticles Increase the Expression of CNPase and the Myelin-Associated Proteins MAG, MOG, and MBP in the Septal Nucleus Demyelinated by Cuprizone. Life (Basel) 2022; 12:life12030333. [PMID: 35330085 PMCID: PMC8955175 DOI: 10.3390/life12030333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 12/25/2022] Open
Abstract
Current pharmacological therapies against demyelinating diseases are not quite satisfactory to promote remyelination. Epidermal growth factor (EGF) can expand the population of oligodendrocyte precursor cells (OPCs) that may help with the remyelination process, but its delivery into the injured tissue is still a biomedical challenge. Gold nanoparticles (GNPs) may be a useful tool for drug delivery into the brain. To evaluate remyelination in the septal nucleus, we administered intracerebral GNPs coupled with EGF (EGF–GNPs). C57BL6/J mice were demyelinated with 0.4% cuprizone (CPZ) and divided into several groups: Sham, Ctrl, GNPs, EGF, and EGF–GNPs. We evaluated the remyelination process at two time-points: 2 weeks and 3 weeks post-injection (WPI) of each treatment. We used the rotarod for evaluating motor coordination. Then, we did a Western blot analysis myelin-associated proteins: CNPase, MAG, MOG, and MBP. EGF–GNPs increase the expression of CNPase, MAG, and MOG at 2 WPI. At 3 WPI, we found that the EGF–GNPs treatment improves motor coordination and increases MAG, MOG, and MBP. EGF–GNPs enhance the expression of myelin-associated proteins and improve the motor coordination in mice. Thus, EGF-associated GNPs may be a promising pharmacological vehicle for delivering long-lasting drugs into the brain.
Collapse
|