1
|
Dabrowski KR, Daws SE. Morphine-Driven m6A Epitranscriptomic Neuroadaptations in Primary Cortical Cultures. Mol Neurobiol 2024; 61:10684-10704. [PMID: 38780720 PMCID: PMC11584444 DOI: 10.1007/s12035-024-04219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Opioid overdose is the leading cause of accidental death in the United States and remains a major public health concern, despite significant resources aimed at combating opioid misuse. Neurobiological research to elucidate molecular and cellular consequences of opioid exposure is required to define avenues to explore for reversal of opioid-induced neuroadaptations. Opioids impart well-documented regulation of the transcriptome and epigenetic modifications in the brain, but opioid-induced epitranscriptomic posttranscriptional regulation of RNA is vastly understudied. N6-methyladenosine (m6A) RNA methylation is significantly enriched in the brain and involved in learning, memory, and reward. m6A modifications have not been studied in opioid use disorder, despite being the most common RNA modification. We detected significant regulation of m6A-modifying enzymes in rat primary cortical cultures following morphine treatment, including AlkB Homolog 5 (Alkbh5). The m6a demethylase ALKBH5 functions as an m6A eraser, removing m6A modifications from mRNA. We hypothesized that chronic opioid treatment regulates m6A modifications through modulation of Alkbh5 and profiled m6A modifications in primary cortical cultures following chronic morphine treatment and Alkbh5 knock-down. We observed differential regulation of m6A modifications for a common set of transcripts following morphine or Alkbh5 knock-down, and the two treatments elicited concordant m6A epitranscriptomic profiles, suggesting that a subset of morphine-driven m6A modifications may be mediated through downregulation of Alkbh5 in cortical cultures. Gene Ontology terms of commonly regulated transcripts included serotonin secretion, synapse disassembly, neuron remodeling, and immune response. Thus, we conclude that morphine can drive epitranscriptomic changes, a subset of which may occur in an Alkbh5-dependent manner.
Collapse
Affiliation(s)
- Konrad R Dabrowski
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Stephanie E Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA.
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Hejnova L, Hronova A, Drastichova Z, Novotny J. Long-term administration of morphine specifically alters the level of protein expression in different brain regions and affects the redox state. Open Life Sci 2024; 19:20220858. [PMID: 38681734 PMCID: PMC11049758 DOI: 10.1515/biol-2022-0858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 05/01/2024] Open
Abstract
We investigated the changes in redox state and protein expression in selected parts of the rat brain induced by a 4 week administration of morphine (10 mg/kg/day). We found a significant reduction in lipid peroxidation that mostly persisted for 1 week after morphine withdrawal. Morphine treatment led to a significant increase in complex II in the cerebral cortex (Crt), which was accompanied by increased protein carbonylation, in contrast to the other brain regions studied. Glutathione levels were altered differently in the different brain regions after morphine treatment. Using label-free quantitative proteomic analysis, we found some specific changes in protein expression profiles in the Crt, hippocampus, striatum, and cerebellum on the day after morphine withdrawal and 1 week later. A common feature was the upregulation of anti-apoptotic proteins and dysregulation of the extracellular matrix. Our results indicate that the tested protocol of morphine administration has no significant toxic effect on the rat brain. On the contrary, it led to a decrease in lipid peroxidation and activation of anti-apoptotic proteins. Furthermore, our data suggest that long-term treatment with morphine acts specifically on different brain regions and that a 1 week drug withdrawal is not sufficient to normalize cellular redox state and protein levels.
Collapse
Affiliation(s)
- Lucie Hejnova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anna Hronova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Mews P, Sosnick L, Gurung A, Sidoli S, Nestler EJ. Decoding cocaine-induced proteomic adaptations in the mouse nucleus accumbens. Sci Signal 2024; 17:eadl4738. [PMID: 38626009 PMCID: PMC11170322 DOI: 10.1126/scisignal.adl4738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/28/2024] [Indexed: 04/18/2024]
Abstract
Cocaine use disorder (CUD) is a chronic neuropsychiatric condition that results from enduring cellular and molecular adaptations. Among substance use disorders, CUD is notable for its rising prevalence and the lack of approved pharmacotherapies. The nucleus accumbens (NAc), a region that is integral to the brain's reward circuitry, plays a crucial role in the initiation and continuation of maladaptive behaviors that are intrinsic to CUD. Leveraging advancements in neuroproteomics, we undertook a proteomic analysis that spanned membrane, cytosolic, nuclear, and chromatin compartments of the NAc in a mouse model. The results unveiled immediate and sustained proteomic modifications after cocaine exposure and during prolonged withdrawal. We identified congruent protein regulatory patterns during initial cocaine exposure and reexposure after withdrawal, which contrasted with distinct patterns during withdrawal. Pronounced proteomic shifts within the membrane compartment indicated adaptive and long-lasting molecular responses prompted by cocaine withdrawal. In addition, we identified potential protein translocation events between soluble-nuclear and chromatin-bound compartments, thus providing insight into intracellular protein dynamics after cocaine exposure. Together, our findings illuminate the intricate proteomic landscape that is altered in the NAc by cocaine use and provide a dataset for future research toward potential therapeutics.
Collapse
Affiliation(s)
- Philipp Mews
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lucas Sosnick
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ashik Gurung
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
4
|
Olusakin J, Kumar G, Basu M, Calarco CA, Fox ME, Alipio JB, Haga C, Turner MD, Keller A, Ament SA, Lobo MK. Transcriptomic profiling of reward and sensory brain areas in perinatal fentanyl exposed juvenile mice. Neuropsychopharmacology 2023; 48:1724-1734. [PMID: 37400565 PMCID: PMC10579237 DOI: 10.1038/s41386-023-01639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
Use of the synthetic opioid fentanyl increased ~300% in the last decade, including among women of reproductive ages. Adverse neonatal outcomes and long-term behavioral disruptions are associated with perinatal opioid exposure. Our previous work demonstrated that perinatal fentanyl exposed mice displayed enhanced negative affect and somatosensory circuit and behavioral disruptions during adolescence. However, little is known about molecular adaptations across brain regions that underlie these outcomes. We performed RNA sequencing across three reward and two sensory brain areas to study transcriptional programs in perinatal fentanyl exposed juvenile mice. Pregnant dams received 10 μg/ml fentanyl in the drinking water from embryonic day 0 (E0) through gestational periods until weaning at postnatal day 21 (P21). RNA was extracted from nucleus accumbens (NAc), prelimbic cortex (PrL), ventral tegmental area (VTA), somatosensory cortex (S1) and ventrobasal thalamus (VBT) from perinatal fentanyl exposed mice of both sexes at P35. RNA sequencing was performed, followed by analysis of differentially expressed genes (DEGs) and gene co-expression networks. Transcriptome analysis revealed DEGs and gene modules significantly associated with exposure to perinatal fentanyl in a sex-wise manner. The VTA had the most DEGs, while robust gene enrichment occurred in NAc. Genes enriched in mitochondrial respiration were pronounced in NAc and VTA of perinatal fentanyl exposed males, extracellular matrix (ECM) and neuronal migration enrichment were pronounced in NAc and VTA of perinatal fentanyl exposed males, while genes associated with vesicular cycling and synaptic signaling were markedly altered in NAc of perinatal fentanyl exposed female mice. In sensory areas from perinatal fentanyl exposed females, we found alterations in mitochondrial respiration, synaptic and ciliary organization processes. Our findings demonstrate distinct transcriptomes across reward and sensory brain regions, with some showing discordance between sexes. These transcriptome adaptations may underlie structural, functional, and behavioral changes observed in perinatal fentanyl exposed mice.
Collapse
Affiliation(s)
- Jimmy Olusakin
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gautam Kumar
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mahashweta Basu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cali A Calarco
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Megan E Fox
- Department of Anesthesiology, Penn State College of Medicine, Hershey, PA, USA
| | - Jason B Alipio
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Catherine Haga
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Makeda D Turner
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Asaf Keller
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Seth A Ament
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Nino P, Mzia Z, Nadezhda J, Yousef T, Giorgi L, Tamar L. Short- and long-term effects of chronic toluene exposure on spatial memory in adolescent and adult male Wistar rats. Neurosci Lett 2023; 805:137238. [PMID: 37037302 DOI: 10.1016/j.neulet.2023.137238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/12/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
Addiction to toluene-containing volatile inhalants is of significant medical and social concern, particularly among youth. These concerns are underscored by the fact that the majority of adult abusers of toluene started as teenagers. Surprisingly, however, the lasting effects of chronic toluene exposure, especially in various age groups, have not been well investigated. Recently, we reported that adolescent and adult male Wistar rats show differential responses to chronic toluene exposure in recognition memory tasks. Since different cognitive functions may be differentially affected by drugs of abuse, we used the same model to evaluate the short- and long-term effects of chronic toluene on spatial learning and memory using Morris water maze. Daily exposure to toluene (2000 ppm) for 40 days (5 min/day) resulted in age-dependent behavioral changes. For example, only adolescent animals showed a decrease in time and distance travelled to find the hidden platform 24 h after the last toluene exposure. In contrast, only adult rats exhibited a decrease in acquisition time and distance travelled at 90 days' post toluene exposure. Our data provide further support for the contention that age-dependent responses should be taken into consideration in interventional attempts to overcome specific detrimental consequences of chronic toluene exposure.
Collapse
Affiliation(s)
- Pochkhidze Nino
- School of Natural Sciences and Medicine, Ilia State University. Tbilisi, Georgia; Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Zhvania Mzia
- School of Natural Sciences and Medicine, Ilia State University. Tbilisi, Georgia; Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.
| | - Japaridze Nadezhda
- Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia; Medical School of New Vision University, Tbilisi, Georgia
| | - Tizabi Yousef
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Lobzhanidze Giorgi
- Department of Brain Ultrastructure and Nanoarchitecture, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Lordkipanidze Tamar
- School of Natural Sciences and Medicine, Ilia State University. Tbilisi, Georgia
| |
Collapse
|
6
|
Ujcikova H, Roubalova L, Lee YS, Slaninova J, Brejchova J, Svoboda P. The Dose-Dependent Effects of Multifunctional Enkephalin Analogs on the Protein Composition of Rat Spleen Lymphocytes, Cortex, and Hippocampus; Comparison with Changes Induced by Morphine. Biomedicines 2022; 10:biomedicines10081969. [PMID: 36009516 PMCID: PMC9406115 DOI: 10.3390/biomedicines10081969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
This work aimed to test the effect of 7-day exposure of rats to multifunctional enkephalin analogs LYS739 and LYS744 at doses of 3 mg/kg and 10 mg/kg on the protein composition of rat spleen lymphocytes, brain cortex, and hippocampus. Alterations of proteome induced by LYS739 and LYS744 were compared with those elicited by morphine. The changes in rat proteome profiles were analyzed by label-free quantification (MaxLFQ). Proteomic analysis indicated that the treatment with 3 mg/kg of LYS744 caused significant alterations in protein expression levels in spleen lymphocytes (45), rat brain cortex (31), and hippocampus (42). The identified proteins were primarily involved in RNA processing and the regulation of cytoskeletal dynamics. In spleen lymphocytes, the administration of the higher 10 mg/kg dose of both enkephalin analogs caused major, extensive modifications in protein expression levels: LYS739 (119) and LYS744 (182). Among these changes, the number of proteins associated with immune responses and apoptotic processes was increased. LYS739 treatment resulted in the highest number of alterations in the rat brain cortex (152) and hippocampus (45). The altered proteins were functionally related to the regulation of transcription and cytoskeletal reorganization, which plays an essential role in neuronal plasticity. Administration with LYS744 did not increase the number of altered proteins in the brain cortex (26) and hippocampus (26). Our findings demonstrate that the effect of κ-OR full antagonism of LYS744 is opposite in the central nervous system and the peripheral region (spleen lymphocytes).
Collapse
Affiliation(s)
- Hana Ujcikova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
- Correspondence:
| | - Lenka Roubalova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Yeon Sun Lee
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Jirina Slaninova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Jana Brejchova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Petr Svoboda
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|
7
|
Improvement of conditions for the determination of neurotransmitters in rat brain tissue by HPLC with fluorimetric detection. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Franco D, Wulff AB, Lobo MK, Fox ME. Chronic Physical and Vicarious Psychosocial Stress Alter Fentanyl Consumption and Nucleus Accumbens Rho GTPases in Male and Female C57BL/6 Mice. Front Behav Neurosci 2022; 16:821080. [PMID: 35221946 PMCID: PMC8867005 DOI: 10.3389/fnbeh.2022.821080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Chronic stress can increase the risk of developing a substance use disorder in vulnerable individuals. Numerous models have been developed to probe the underlying neurobiological mechanisms, however, most prior work has been restricted to male rodents, conducted only in rats, or introduces physical injury that can complicate opioid studies. Here we sought to establish how chronic psychosocial stress influences fentanyl consumption in male and female C57BL/6 mice. We used chronic social defeat stress (CSDS), or the modified vicarious chronic witness defeat stress (CWDS), and used social interaction to stratify mice as stress-susceptible or resilient. We then subjected mice to a 15 days fentanyl drinking paradigm in the home cage that consisted of alternating forced and choice periods with increasing fentanyl concentrations. Male mice susceptible to either CWDS or CSDS consumed more fentanyl relative to unstressed mice. CWDS-susceptible female mice did not differ from unstressed mice during the forced periods, but showed increased preference for fentanyl over time. We also found decreased expression of nucleus accumbens Rho GTPases in male, but not female mice following stress and fentanyl drinking. We also compare fentanyl drinking behavior in mice that had free access to plain water throughout. Our results indicate that stress-sensitized fentanyl consumption is dependent on both sex and behavioral outcomes to stress.
Collapse
Affiliation(s)
- Daniela Franco
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andreas B. Wulff
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Megan E. Fox
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States,*Correspondence: Megan E. Fox,
| |
Collapse
|
9
|
Alterations in the Proteome and Phosphoproteome Profiles of Rat Hippocampus after Six Months of Morphine Withdrawal: Comparison with the Forebrain Cortex. Biomedicines 2021; 10:biomedicines10010080. [PMID: 35052759 PMCID: PMC8772819 DOI: 10.3390/biomedicines10010080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022] Open
Abstract
The knowledge about proteome changes proceeding during protracted opioid withdrawal is lacking. Therefore, the aim of this work was to analyze the spectrum of altered proteins in the rat hippocampus in comparison with the forebrain cortex after 6-month morphine withdrawal. We utilized 2D electrophoretic workflow (Pro-Q® Diamond staining and Colloidal Coomassie Blue staining) which was preceded by label-free quantification (MaxLFQ). The phosphoproteomic analysis revealed six significantly altered hippocampal (Calm1, Ywhaz, Tuba1b, Stip1, Pgk1, and Aldoa) and three cortical proteins (Tubb2a, Tuba1a, and Actb). The impact of 6-month morphine withdrawal on the changes in the proteomic profiles was higher in the hippocampus—14 proteins, only three proteins were detected in the forebrain cortex. Gene Ontology (GO) enrichment analysis of differentially expressed hippocampal proteins revealed the most enriched terms related to metabolic changes, cytoskeleton organization and response to oxidative stress. There is increasing evidence that energy metabolism plays an important role in opioid addiction. However, the way how morphine treatment and withdrawal alter energy metabolism is not fully understood. Our results indicate that the rat hippocampus is more susceptible to changes in proteome and phosphoproteome profiles induced by 6-month morphine withdrawal than is the forebrain cortex.
Collapse
|
10
|
Rivera A, Suárez-Boomgaard D, Miguelez C, Valderrama-Carvajal A, Baufreton J, Shumilov K, Taupignon A, Gago B, Real MÁ. Dopamine D 4 Receptor Is a Regulator of Morphine-Induced Plasticity in the Rat Dorsal Striatum. Cells 2021; 11:31. [PMID: 35011592 PMCID: PMC8750869 DOI: 10.3390/cells11010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Long-term exposition to morphine elicits structural and synaptic plasticity in reward-related regions of the brain, playing a critical role in addiction. However, morphine-induced neuroadaptations in the dorsal striatum have been poorly studied despite its key function in drug-related habit learning. Here, we show that prolonged treatment with morphine triggered the retraction of the dendritic arbor and the loss of dendritic spines in the dorsal striatal projection neurons (MSNs). In an attempt to extend previous findings, we also explored whether the dopamine D4 receptor (D4R) could modulate striatal morphine-induced plasticity. The combined treatment of morphine with the D4R agonist PD168,077 produced an expansion of the MSNs dendritic arbors and restored dendritic spine density. At the electrophysiological level, PD168,077 in combination with morphine altered the electrical properties of the MSNs and decreased their excitability. Finally, results from the sustantia nigra showed that PD168,077 counteracted morphine-induced upregulation of μ opioid receptors (MOR) in striatonigral projections and downregulation of G protein-gated inward rectifier K+ channels (GIRK1 and GIRK2) in dopaminergic cells. The present results highlight the key function of D4R modulating morphine-induced plasticity in the dorsal striatum. Thus, D4R could represent a valuable pharmacological target for the safety use of morphine in pain management.
Collapse
Affiliation(s)
- Alicia Rivera
- Facultad de Ciencias, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain; (D.S.-B.); (A.V.-C.); (K.S.); (M.Á.R.)
| | - Diana Suárez-Boomgaard
- Facultad de Ciencias, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain; (D.S.-B.); (A.V.-C.); (K.S.); (M.Á.R.)
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Alejandra Valderrama-Carvajal
- Facultad de Ciencias, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain; (D.S.-B.); (A.V.-C.); (K.S.); (M.Á.R.)
| | - Jérôme Baufreton
- Institut des Maladies Neurodegeneratives, Université de Bordeaux, UMR 5293, 33000 Bordeaux, France; (J.B.); (A.T.)
- Institut des Maladies Neurodegeneratives, CNRS, UMR 5293, 33000 Bordeaux, France
| | - Kirill Shumilov
- Facultad de Ciencias, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain; (D.S.-B.); (A.V.-C.); (K.S.); (M.Á.R.)
- School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Anne Taupignon
- Institut des Maladies Neurodegeneratives, Université de Bordeaux, UMR 5293, 33000 Bordeaux, France; (J.B.); (A.T.)
- Institut des Maladies Neurodegeneratives, CNRS, UMR 5293, 33000 Bordeaux, France
| | - Belén Gago
- Facultad de Medicina, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain;
| | - M. Ángeles Real
- Facultad de Ciencias, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain; (D.S.-B.); (A.V.-C.); (K.S.); (M.Á.R.)
| |
Collapse
|
11
|
Villa C, Yoon JH. Multi-Omics for the Understanding of Brain Diseases. Life (Basel) 2021; 11:life11111202. [PMID: 34833078 PMCID: PMC8618909 DOI: 10.3390/life11111202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022] Open
Abstract
Brain diseases, including both neurodegenerative diseases and mental disorders, represent the third largest healthcare problem in developed countries, after cardiovascular disorders and cancer [...].
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: (C.V.); (J.H.Y.)
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Korea
- Correspondence: (C.V.); (J.H.Y.)
| |
Collapse
|