1
|
Jiang N, Yang T, Han H, Shui J, Hou M, Wei W, Kumar G, Song L, Ma C, Li X, Ding Z. Exploring Research Trend and Hotspots on Oxidative Stress in Ischemic Stroke (2001-2022): Insights from Bibliometric. Mol Neurobiol 2024; 61:6200-6216. [PMID: 38285289 DOI: 10.1007/s12035-023-03909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
Oxidative stress is widely involved in the pathological process of ischemic stroke and ischemia-reperfusion. Several research have demonstrated that eliminating or reducing oxidative stress can alleviate the pathological changes of ischemic stroke. However, current clinical antioxidant treatment did not always perform as expected. This bibliometric research aims to identify research trends, topics, hotspots, and evolution on oxidative stress in the field of ischemic stroke, and to find potentially antioxidant strategies in future clinical treatment. Relevant publications were searched from the Web of Science (WOS) Core Collection databases (2001-2022). VOSviewer was used to visualize and analyze the development trends and hotspots. In the field of oxidative stress and ischemic stroke, the number of publications increased significantly from 2001 to 2022. China and the USA were the leading countries for publication output. The most prolific institutions were Stanford University. Journal of Cerebral Blood Flow and Metabolism and Stroke were the most cited journals. The research topics in this field include inflammation with oxidative stress, mitochondrial damage with oxidative stress, oxidative stress in reperfusion injury, oxidative stress in cognitive impairment and basic research and clinical translation of oxidative stress. Moreover, "NLRP3 inflammasome," "autophagy," "mitophagy," "miRNA," "ferroptosis," and "signaling pathway" are the emerging research hotspots in recent years. At present, multi-target regulation focusing on multi-mechanism crosstalk has progressed across this period, while challenges come from the transformation of basic research to clinical application. New detection technology and new nanomaterials are expected to integrate oxidative stress into the clinical treatment of ischemic stroke better.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Ting Yang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Hongxia Han
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China
| | - Jing Shui
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Miaomiao Hou
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, 030032, Shanxi, China
| | - Wenyue Wei
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, Shanxi Province, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Hong Kong, 999077, Hong Kong SAR, China
| | - Lijuan Song
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Cungen Ma
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, Shanxi Province, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
| | - Xinyi Li
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China.
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China.
| | - Zhibin Ding
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
| |
Collapse
|
2
|
Oezer K, Kolibabka M, Gassenhuber J, Dietrich N, Fleming T, Schlotterer A, Morcos M, Wohlfart P, Hammes HP. The effect of GLP-1 receptor agonist lixisenatide on experimental diabetic retinopathy. Acta Diabetol 2023; 60:1551-1565. [PMID: 37423944 PMCID: PMC10520173 DOI: 10.1007/s00592-023-02135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/10/2023] [Indexed: 07/11/2023]
Abstract
AIMS Glucagon-like peptide-1 receptor agonists are effective treatments for type 2 diabetes, effectively lowering glucose without weight gain and with low risk for hypoglycemia. However, their influence on the retinal neurovascular unit remains unclear. In this study, we analyzed the effects of the GLP-1 RA lixisenatide on diabetic retinopathy. METHODS Vasculo- and neuroprotective effects were assessed in experimental diabetic retinopathy and high glucose-cultivated C. elegans, respectively. In STZ-diabetic Wistar rats, acellular capillaries and pericytes (quantitative retinal morphometry), neuroretinal function (mfERG), macroglia (GFAP western blot) and microglia (immunohistochemistry) quantification, methylglyoxal (LC-MS/MS) and retinal gene expressions (RNA-sequencing) were determined. The antioxidant properties of lixisenatide were tested in C. elegans. RESULTS Lixisenatide had no effect on glucose metabolism. Lixisenatide preserved the retinal vasculature and neuroretinal function. The macro- and microglial activation was mitigated. Lixisenatide normalized some gene expression changes in diabetic animals to control levels. Ets2 was identified as a regulator of inflammatory genes. In C. elegans, lixisenatide showed the antioxidative property. CONCLUSIONS Our data suggest that lixisenatide has a protective effect on the diabetic retina, most likely due to a combination of neuroprotective, anti-inflammatory and antioxidative effects of lixisenatide on the neurovascular unit.
Collapse
Affiliation(s)
- Kuebra Oezer
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Matthias Kolibabka
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Nadine Dietrich
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andrea Schlotterer
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Morcos
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Stoffwechselzentrum Rhein-Pfalz, Belchenstraße 1-5, 68163, Mannheim, Germany
| | - Paulus Wohlfart
- Sanofi, MSAT M&I Bioassays and Compliance, Frankfurt, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
3
|
Markitantova YV, Grigoryan EN. Cellular and Molecular Triggers of Retinal Regeneration in Amphibians. Life (Basel) 2023; 13:1981. [PMID: 37895363 PMCID: PMC10608152 DOI: 10.3390/life13101981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Understanding the mechanisms triggering the initiation of retinal regeneration in amphibians may advance the quest for prevention and treatment options for degenerating human retina diseases. Natural retinal regeneration in amphibians requires two cell sources, namely retinal pigment epithelium (RPE) and ciliary marginal zone. The disruption of RPE interaction with photoreceptors through surgery or injury triggers local and systemic responses for retinal protection. In mammals, disease-induced damage to the retina results in the shutdown of the function, cellular or oxidative stress, pronounced immune response, cell death and retinal degeneration. In contrast to retinal pathology in mammals, regenerative responses in amphibians have taxon-specific features ensuring efficient regeneration. These include rapid hemostasis, the recruitment of cells and factors of endogenous defense systems, activities of the immature immune system, high cell viability, and the efficiency of the extracellular matrix, cytoskeleton, and cell surface remodeling. These reactions are controlled by specific signaling pathways, transcription factors, and the epigenome, which are insufficiently studied. This review provides a summary of the mechanisms initiating retinal regeneration in amphibians and reveals its features collectively directed at recruiting universal responses to trauma to activate the cell sources of retinal regeneration. This study of the integrated molecular network of these processes is a prospect for future research in demand biomedicine.
Collapse
Affiliation(s)
| | - Eleonora N. Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
4
|
Lepre CC, Russo M, Trotta MC, Petrillo F, D'Agostino FA, Gaudino G, D'Amico G, Campitiello MR, Crisci E, Nicoletti M, Gesualdo C, Simonelli F, D'Amico M, Hermenean A, Rossi S. Inhibition of Galectins and the P2X7 Purinergic Receptor as a Therapeutic Approach in the Neurovascular Inflammation of Diabetic Retinopathy. Int J Mol Sci 2023; 24:ijms24119721. [PMID: 37298672 DOI: 10.3390/ijms24119721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Diabetic retinopathy (DR) is the most frequent microvascular retinal complication of diabetic patients, contributing to loss of vision. Recently, retinal neuroinflammation and neurodegeneration have emerged as key players in DR progression, and therefore, this review examines the neuroinflammatory molecular basis of DR. We focus on four important aspects of retinal neuroinflammation: (i) the exacerbation of endoplasmic reticulum (ER) stress; (ii) the activation of the NLRP3 inflammasome; (iii) the role of galectins; and (iv) the activation of purinergic 2X7 receptor (P2X7R). Moreover, this review proposes the selective inhibition of galectins and the P2X7R as a potential pharmacological approach to prevent the progression of DR.
Collapse
Affiliation(s)
- Caterina Claudia Lepre
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 310144 Arad, Romania
| | - Marina Russo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Francesco Petrillo
- Ph.D. Course in Translational Medicine, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Fabiana Anna D'Agostino
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Gennaro Gaudino
- School of Anesthesia and Intensive Care, University of Foggia, 71122 Foggia, Italy
| | | | - Maria Rosaria Campitiello
- Department of Obstetrics and Gynecology and Physiopathology of Human Reproduction, ASL Salerno, 84124 Salerno, Italy
| | - Erminia Crisci
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maddalena Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 310144 Arad, Romania
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
5
|
Lee JM, Lee JH, Kim SH, Sim TH, Kim YJ. NXP032 ameliorates cognitive impairment by alleviating the neurovascular aging process in aged mouse brain. Sci Rep 2023; 13:8594. [PMID: 37237085 DOI: 10.1038/s41598-023-35833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023] Open
Abstract
Vascular aging is well known to be associated with the breakdown of the neurovascular unit (NVU), which is essential for maintaining brain homeostasis and linked to higher cognitive dysfunction. Oxidative stress is believed to be a significant cause of the vascular aging process. Vitamin C is easily oxidized under physiological conditions, so it loses its potent antioxidant activity. We developed a DNA aptamer that enhances the function of vitamin C. NXP032 is the binding form of the aptamer and vitamin C. In this study, we investigated the effect of NXP032 on neurovascular stabilization through the changes of PECAM-1, PDGFR-β, ZO-1, laminin, and glial cells involved in maintaining the integrity of the blood-brain barrier (BBB) in aged mice. NXP032 was orally administered daily for 8 weeks. Compared to young mice and NXP032-treated mice, 20-month-old mice displayed cognitive impairments in Y-maze and passive avoidance tests. NXP032 treatment contributed to reducing the BBB damage by attenuating the fragmentation of microvessels and reducing PDGFR-β, ZO-1, and laminin expression, thereby mitigating astrocytes and microglia activation during normal aging. Based on the results, we suggest that NXP032 reduces vascular aging and may be a novel intervention for aging-induced cognitive impairment.
Collapse
Affiliation(s)
- Jae-Min Lee
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Joo Hee Lee
- Korea Armed Forces Nursing Academy, Daejeon, 34059, Republic of Korea
| | - So Hee Kim
- Department of Nursing, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Tae Hyeok Sim
- Department of Nursing, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Youn-Jung Kim
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
6
|
Tarricone G, Castagnola V, Mastronardi V, Cursi L, Debellis D, Ciobanu DZ, Armirotti A, Benfenati F, Boselli L, Pompa PP. Catalytic Bioswitch of Platinum Nanozymes: Mechanistic Insights of Reactive Oxygen Species Scavenging in the Neurovascular Unit. NANO LETTERS 2023; 23:4660-4668. [PMID: 37155280 PMCID: PMC10214484 DOI: 10.1021/acs.nanolett.3c01479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/03/2023] [Indexed: 05/10/2023]
Abstract
Oxidative stress is known to be the cause of several neurovascular diseases, including neurodegenerative disorders, since the increase of reactive oxygen species (ROS) levels can lead to cellular damage, blood-brain barrier leaking, and inflammatory pathways. Herein, we demonstrate the therapeutic potential of 5 nm platinum nanoparticles (PtNPs) to effectively scavenge ROS in different cellular models of the neurovascular unit. We investigated the mechanism underlying the PtNP biological activities, analyzing the influence of the evolving biological environment during particle trafficking and disclosing a key role of the protein corona, which elicited an effective switch-off of the PtNP catalytic properties, promoting their selective in situ activity. Upon cellular internalization, the lysosomal environment switches on and boosts the enzyme-like activity of the PtNPs, acting as an intracellular "catalytic microreactor" exerting strong antioxidant functionalities. Significant ROS scavenging was observed in the neurovascular cellular models, with an interesting protective mechanism of the Pt-nanozymes along lysosomal-mitochondrial axes.
Collapse
Affiliation(s)
- Giulia Tarricone
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
- Department
of Chemistry and Industrial Chemistry, University
of Genova, Via Dodecaneso
31, 16146 Genova, Italy
| | - Valentina Castagnola
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi, 10, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Valentina Mastronardi
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Lorenzo Cursi
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Doriana Debellis
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia (IIT), Via
Morego 30, 16163 Genova, Italy
| | - Dinu Zinovie Ciobanu
- Analytical
Chemistry Lab, Istituto Italiano di Tecnologia
(IIT), Via Morego 30, 16163 Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry Lab, Istituto Italiano di Tecnologia
(IIT), Via Morego 30, 16163 Genova, Italy
| | - Fabio Benfenati
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Largo Rosanna Benzi, 10, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Luca Boselli
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
7
|
Minić S, Cerovac N, Novaković I, Gazikalović S, Popadić S, Trpinac D. The Impact of the IKBKG Gene on the Appearance of the Corpus Callosum Abnormalities in Incontinentia Pigmenti. Diagnostics (Basel) 2023; 13:diagnostics13071300. [PMID: 37046518 PMCID: PMC10093331 DOI: 10.3390/diagnostics13071300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Incontinentia pigmenti (IP) is a rare skin disease combined with anomalies of the teeth, eyes, and central nervous system (CNS). Mutations of the IKBKG gene are responsible for IP. Among the most frequent CNS abnormalities found in IP using magnetic resonance imaging (MRI) are corpus callosum (CC) abnormalities. The aim of the study was to determine the presence of CC abnormalities, their relationship with the IKBKG mutations, and the possible presence of mutations of other genes. A group of seven IP patients was examined. Analyses of the IKBKG gene and the X-chromosome inactivation pattern were performed, as well as MRI and whole exome sequencing (WES) with the focus on the genes relevant for neurodegeneration. WES analysis showed IKBKG mutation in all examined patients. A patient who had a mutation of a gene other than IKBKG was excluded from further study. Four of the seven patients had clinically diagnosed CNS anomalies; two out of four had MRI-diagnosed CC anomalies. The simultaneous presence of IKBKG mutation and CC abnormalities and the absence of other mutations indicate that IKBKG may be the cause of CC abnormalities and should be included in the list of genes responsible for CC abnormalities.
Collapse
|
8
|
Monteiro AR, Barbosa DJ, Remião F, Silva R. Alzheimer’s disease: insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs. Biochem Pharmacol 2023; 211:115522. [PMID: 36996971 DOI: 10.1016/j.bcp.2023.115522] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases that affect millions of people worldwide, with both prevalence and incidence increasing with age. It is characterized by cognitive decline associated, specifically, with degeneration of cholinergic neurons. The problem of this disease is even more fundamental as the available therapies remain fairly limited and mainly focused on symptoms' relief. Although the aetiology of the disease remains elusive, two main pathological hallmarks are described: i) presence of neurofibrillary tangles formed by unfolded protein aggregates (hyperphosphorylated Tau protein) and ii) presence of extracellular aggregates of amyloid-beta peptide. Given the complexity surrounding the pathogenesis of the disease, several potential targets have been highlighted and interrelated upon its progression, such as oxidative stress and the accumulation of metal ions. Thus, advances have been made on the development of innovative multitarget therapeutical compounds to delay the disease progression and restore cell function. This review focuses the ongoing research on new insights and emerging disease-modifying drugs for AD treatment. Furthermore, classical and novel potential biomarkers for early diagnosis of the disease, and their role in assisting on the improvement of targeted therapies will also be approached.
Collapse
Affiliation(s)
- Ana R Monteiro
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniel J Barbosa
- TOXRUN - Toxicology Research Unit, Department of Sciences, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Fernando Remião
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
9
|
Advanced Glycation End-Products and Diabetic Neuropathy of the Retina. Int J Mol Sci 2023; 24:ijms24032927. [PMID: 36769249 PMCID: PMC9917392 DOI: 10.3390/ijms24032927] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Diabetic retinopathy is a tissue-specific neurovascular impairment of the retina in patients with both type 1 and type 2 diabetes. Several pathological factors are involved in the progressive impairment of the interdependence between cells that consist of the neurovascular units (NVUs). The advanced glycation end-products (AGEs) are one of the major pathological factors that cause the impairments of neurovascular coupling in diabetic retinopathy. Although the exact mechanisms for the toxicities of the AGEs in diabetic retinopathy have not been definitively determined, the AGE-receptor of the AGE (RAGE) axis, production of reactive oxygen species, inflammatory reactions, and the activation of the cell death pathways are associated with the impairment of the NVUs in diabetic retinopathy. More specifically, neuronal cell death is an irreversible change that is directly associated with vision reduction in diabetic patients. Thus, neuroprotective therapies must be established for diabetic retinopathy. The AGEs are one of the therapeutic targets to examine to ameliorate the pathological changes in the NVUs in diabetic retinopathy. This review focuses on the basic and pathological findings of AGE-induced neurovascular abnormalities and the potential therapeutic approaches, including the use of anti-glycated drugs to protect the AGE-induced impairments of the NVUs in diabetic retinopathy.
Collapse
|
10
|
The impact of modifier genes on cone-rod dystrophy heterogeneity: An explorative familial pilot study and a hypothesis on neurotransmission impairment. PLoS One 2022; 17:e0278857. [PMID: 36490268 PMCID: PMC9733859 DOI: 10.1371/journal.pone.0278857] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Cone-rod dystrophies (CORDs) are a heterogeneous group of inherited retinopathies (IRDs) with more than 30 already known disease-causing genes. Uncertain phenotypes and extended range of intra- and interfamilial heterogenicity make still difficult to determine a precise genotype-phenotype correlation. Here, we used a next-generation sequencing approach to study a Sicilian family with a suspected form of CORD. Affected family members underwent ophthalmological examinations and a proband, blind from 50 years, underwent whole genome and exome sequencing. Variant analysis was enriched by pathway analysis and relevant variants were, then, investigated in other family members and in 100 healthy controls from Messina. CORD diagnosis with an intricate pattern of symptoms was confirmed by ophthalmological examinations. A total of about 50,000 variants were identified in both proband's genome and exome. All affected family members presented specific genotypes mainly determined by mutated GUCY2D gene, and different phenotypical traits, mainly related to focus and color perception. Thus, we looked for possible modifier genes. According to relationship with GUCY2D, predicted functional effects, eye localization, and ocular disease affinity, only 9 variants, carried by 6 genes (CACNG8, PAX2, RXRG, CCDC175, PDE4DIP and LTF), survived the filtering. These genes encode key proteins involved in cone development and survival, and retina neurotransmission. Among analyzed variants, CACNG8c.*6819A>T and the new CCDC175 c.76C>T showed extremely low frequency in the control group, suggesting a key role on disease phenotypes. Such discovery could enforce the role of modifier genes into CORD onset/progression, contributing to improve diagnostic test towards a better personalized medicine.
Collapse
|
11
|
Correia AC, Monteiro AR, Silva R, Moreira JN, Sousa Lobo JM, Silva AC. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood-brain barrier (BBB) to manage neurological disorders. Adv Drug Deliv Rev 2022; 189:114485. [PMID: 35970274 DOI: 10.1016/j.addr.2022.114485] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
The main limitation to the success of central nervous system (CNS) therapies lies in the difficulty for drugs to cross the blood-brain barrier (BBB) and reach the brain. Regarding its structure and enzymatic complexity, crossing the BBB is a challenge, although several alternatives have been identified. For instance, the use of drugs encapsulated in lipid nanoparticles has been described as one of the most efficient approaches to bypass the BBB, as they allow the passage of drugs through this barrier, improving brain bioavailability. In particular, solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been a focus of research related to drug delivery to the brain. These systems provide protection of lipophilic drugs, improved delivery and bioavailability, having a major impact on treatments outcomes. In addition, the use of lipid nanoparticles administered via routes that transport drugs directly into the brain seems a promising solution to avoid the difficulties in crossing the BBB. For instance, the nose-to-brain route has gained considerable interest, as it has shown efficacy in 3D human nasal models and in animal models. This review addresses the state of the art on the use of lipid nanoparticles to modify the pharmacokinetics of drugs employed in the management of neurological disorders. A description of the structural components of the BBB, the role of the neurovascular unit and limitations for drugs to entry into the CNS is first addressed, along with the developments to increase drug delivery to the brain, with a special focus on lipid nanoparticles. In addition, the obstacle of BBB complexity in the creation of new effective drugs for the treatment of the most prevalent neurological disorders is also addressed. Finally, the proposed strategies for lipid nanoparticles to reach the CNS, crossing or circumventing the BBB, are described. Although promising results have been reported, especially with the nose-to-brain route, they are still ongoing to assess its real efficacy in vivo in the management of neurological disorders.
Collapse
Affiliation(s)
- A C Correia
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - A R Monteiro
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - R Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal.
| | - J N Moreira
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Pólo I), Coimbra, Portugal; Univ Coimbra - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - J M Sousa Lobo
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - A C Silva
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal; FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, 4249 004 Porto, Portugal.
| |
Collapse
|
12
|
Mori A, Seki H, Mizukoshi S, Uezono T, Sakamoto K. Role of Prostaglandins in Nitric Oxide-Induced Glial Cell-Mediated Vasodilation in Rat Retina. Biomolecules 2022; 12:biom12101403. [PMID: 36291611 PMCID: PMC9599243 DOI: 10.3390/biom12101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
We previously identified that NO derived from neuronal cells acts on glial cells and causes vasodilation in the healthy rat retina via the release of epoxyeicosatrienoic acids (EETs) and prostaglandins (PGs) by activation of the arachidonic acid cascade. However, it is not clear which PG types are involved in these responses. The aim of the present study was to identify prostanoid receptors involved in glial cell-derived vasodilation induced by NO in rat retina. Male Wistar rats were used to examine the effects of intravitreal pretreatment with indomethacin, a cyclooxygenase inhibitor; PF-04418948, a prostanoid EP2 receptor antagonist; and CAY10441, a prostanoid IP receptor antagonist, on the changes in the retinal arteriolar diameter induced by intravitreal administration of NOR3, an NO donor. Retinal arteriolar diameters were measured using ocular fundus images captured with a high-resolution digital camera in vivo. The increase in the retinal arteriolar diameter induced by intravitreal injection of NOR3 was significantly suppressed by intravitreal pretreatment with indomethacin and PF-04418948, but not by CAY10441. The dose of PF-04418948 and CAY10441 injected intravitreally in the present study significantly reduced the increase in the retinal arteriolar diameter induced by prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2), respectively. These results suggest that activation of the arachidonic acid cascade and subsequent stimulation of prostanoid EP2 receptors are involved in rat retinal vasodilatory responses evoked by NO-induced glial cell stimulation. Therefore, glial cell-derived PGE2, similar to EETs, may play an important role in retinal vasodilatory mechanisms.
Collapse
|
13
|
Donato L, Scimone C, Alibrandi S, Scalinci SZ, Rinaldi C, D’Angelo R, Sidoti A. Epitranscriptome Analysis of Oxidative Stressed Retinal Epithelial Cells Depicted a Possible RNA Editing Landscape of Retinal Degeneration. Antioxidants (Basel) 2022; 11:antiox11101967. [PMID: 36290689 PMCID: PMC9598096 DOI: 10.3390/antiox11101967] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress represents one of the principal causes of inherited retinal dystrophies, with many related molecular mechanisms still unknown. We investigated the posttranscriptional RNA editing landscape of human retinal pigment epithelium cells (RPE) exposed to the oxidant agent N-retinylidene-N-retinyl ethanolamine (A2E) for 1 h, 2 h, 3 h and 6 h. Using a transcriptomic approach, refined with a specific multialgorithm pipeline, 62,880 already annotated and de novo RNA editing sites within about 3000 genes were identified among all samples. Approximately 19% of these RNA editing sites were found within 3' UTR, including sites common to all time points that were predicted to change the binding capacity of 359 miRNAs towards 9654 target genes. A2E exposure also determined significant gene expression differences in deaminase family ADAR, APOBEC and ADAT members, involved in canonical and tRNA editing events. On GO and KEGG enrichment analyses, genes that showed different RNA editing levels are mainly involved in pathways strongly linked to a possible neovascularization of retinal tissue, with induced apoptosis mediated by the ECM and surface protein altered signaling. Collectively, this work demonstrated dynamic RNA editome profiles in RPE cells for the first time and shed more light on new mechanisms at the basis of retinal degeneration.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-090-221-3136
| | - Sergio Zaccaria Scalinci
- DIMEC (Department of Medical and Surgical Sciences), University of Bologna, 40121 Bologna, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
14
|
Construction of a ferroptosis-associated circRNA-miRNA-mRNA network in age-related macular degeneration. Exp Eye Res 2022; 224:109234. [PMID: 36044964 DOI: 10.1016/j.exer.2022.109234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
Abstract
Age-related macular degeneration (AMD) is a leading cause of severe vision impairment in the aging population. However, the underlying molecular mechanism remains unclear. Ferroptosis is a novel non-apoptotic programmed cell death pathway, that contributes to AMD. In addition, non-coding RNA-led epigenetic profile was identified in the regulation of AMD progression. Considering that non-coding RNAs are vital regulators of ferroptosis-related genes in various pathological events, we explored and constructed a ferroptosis-associated circRNA-miRNA-mRNA network in AMD. Differential expression of fourteen ferroptosis-associated genes were identified based on our microarray analysis and the FerrDb tool at the threshold of P < 0.05 and log2|fold change| ≥ 1, which were subsequently validated by the public datasets. We further screened eight miRNAs via public datasets and the miRNet database. Based on these eight miRNAs, 23 circRNAs were mined using the Starbase tool. Taking all these together, we obtained a ferroptosis-related network with 414 pairs of circRNA-miRNA-mRNA, which are potential targets in future AMD treatments.
Collapse
|
15
|
Tang S, Meng J, Tan J, Liu X, Zhou H, Li N, Hou S. N6-methyladenosine demethylase FTO regulates inflammatory cytokine secretion and tight junctions in retinal pigment epithelium cells. Clin Immunol 2022; 241:109080. [PMID: 35878734 DOI: 10.1016/j.clim.2022.109080] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Uveitis is an intraocular inflammatory disease. Epigenetics has been associated with its pathogenesis. However, the role of N6-methyladenosine (m6A) in uveitis has not been reported. We aimed to examine the role of m6A and its regulatory mechanism in experimental autoimmune uveitis (EAU). METHODS The mRNA expression of m6A-related methylase and demethylase of retinal pigment epithelium (RPE) between mice with EAU and control mice was detected by RT-qPCR. The overall m6A level of ARPE-19 cells was detected by an m6A quantitative detection kit. Cell proliferation was observed by CCK-8 assays, and ELISA was used to test the secretion of inflammatory factors. The expression of tight junction proteins and the target genes of FTO were examined by western blotting and MeRIP-PCR. RESULTS A decreased expression of FTO in RPE cells was found in mice with EAU. Increased overall m6A%, proliferation of cells and secretion of IL-6, IL-8 and MCP-1 were found after FTO knockdown in ARPE-19 cells. However, ZO-1 and occludin protein expression was decreased. ATF4 protein expression was decreased in the FTO knockdown (shFTO) group as compared with the control (shNC) group. In contrast, the m6A level of ATF4 was elevated, as shown by MeRIP-PCR. Functional analysis showed that p-STAT3 expression was increased in the shFTO group, and the change in occludin expression was reversed in ATF4 rescue experiment. CONCLUSION FTO may affect the translation of ATF4 by regulating its m6A level, resulting in the increased expression of p-STAT3 and inflammatory factors, and leading to uveitis.
Collapse
Affiliation(s)
- Shiyun Tang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jiayu Meng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jun Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xianyang Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Hongxiu Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Na Li
- College of Basic Medicine, Chongqing Medical University, Chongqing, China.
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China.
| |
Collapse
|
16
|
Research Progress and Potential Applications of Spermidine in Ocular Diseases. Pharmaceutics 2022; 14:pharmaceutics14071500. [PMID: 35890394 PMCID: PMC9323341 DOI: 10.3390/pharmaceutics14071500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Spermidine, a natural polyamine, exists in almost all human tissues, exhibiting broad properties like anti-aging, autophagy induction, anti-inflammation, anti-oxidation, cell proliferation activation, and ion channel regulation. Considering that spermidine is already present in human nutrition, recent studies targeting supplementing exogenous sources of this polyamine appear feasible. The protective role of spermidine in various systems has been illuminated in the literature, while recent progress of spermidine administration in ocular diseases remains to be clarified. This study shows the current landscape of studies on spermidine and its potential to become a promising therapeutic agent to treat ocular diseases: glaucoma, optic nerve injury, age-related macular degeneration (AMD), cataracts, dry eye syndrome, and bacterial keratitis. It also has the potential to become a potent biomarker to predict keratoconus (KC), cataracts, uveitis, glaucoma, proliferative diabetic retinopathy (PDR), proliferative vitreoretinopathy (PVR), and retinopathy of prematurity (ROP). We also summarize the routes of administration and the effects of spermidine at different doses.
Collapse
|
17
|
Diabetic Retinopathy Detection from Fundus Images of the Eye Using Hybrid Deep Learning Features. Diagnostics (Basel) 2022; 12:diagnostics12071607. [PMID: 35885512 PMCID: PMC9324358 DOI: 10.3390/diagnostics12071607] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic Retinopathy (DR) is a medical condition present in patients suffering from long-term diabetes. If a diagnosis is not carried out at an early stage, it can lead to vision impairment. High blood sugar in diabetic patients is the main source of DR. This affects the blood vessels within the retina. Manual detection of DR is a difficult task since it can affect the retina, causing structural changes such as Microaneurysms (MAs), Exudates (EXs), Hemorrhages (HMs), and extra blood vessel growth. In this work, a hybrid technique for the detection and classification of Diabetic Retinopathy in fundus images of the eye is proposed. Transfer learning (TL) is used on pre-trained Convolutional Neural Network (CNN) models to extract features that are combined to generate a hybrid feature vector. This feature vector is passed on to various classifiers for binary and multiclass classification of fundus images. System performance is measured using various metrics and results are compared with recent approaches for DR detection. The proposed method provides significant performance improvement in DR detection for fundus images. For binary classification, the proposed modified method achieved the highest accuracy of 97.8% and 89.29% for multiclass classification.
Collapse
|
18
|
Nassisi M, De Bartolo G, Mohand-Said S, Condroyer C, Antonio A, Lancelot ME, Bujakowska K, Smirnov V, Pugliese T, Neidhardt J, Sahel JA, Zeitz C, Audo I. Retrospective Natural History Study of RPGR-Related Cone- and Cone-Rod Dystrophies While Expanding the Mutation Spectrum of the Disease. Int J Mol Sci 2022; 23:7189. [PMID: 35806195 PMCID: PMC9266815 DOI: 10.3390/ijms23137189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/06/2023] Open
Abstract
Variants in the X-linked retinitis pigmentosa GTPase regulator gene (RPGR) and, specifically, in its retinal opening reading frame-15 isoform (RPGRORF15) may cause rod-cone (RCD), cone, and cone-rod dystrophies (CDs and CRDs). While RPGR-related RCDs have been frequently evaluated, the characteristics and progression of RPGR-related CD/CRDs are largely unknown. Therefore, the goal of our work was to perform genotype-phenotype correlations specifically in RPGRORF15-related CD/CRDs. This retrospective longitudinal study included 34 index patients and two affected relatives with a molecular diagnosis of RPGR-related CD/CRDs. Patients were recruited at the "Quinze-Vingts" Hospital, Paris, France and screened for mutations in RPGRORF15 at the Institut de la Vision, Paris, France. We identified 29 distinct variants, of which 27 were truncating. All were located in the 3' half of the RPGRORF15 transcript. Twenty of them were novel. Fifteen subjects were affected by CD, the remaining had CRD. When analyzing the longitudinal data, a progressive decline in visual acuity (VA) was noted, with more than 60% of the patients reaching VA ≥ 1 LogMar in the best eye after the fifth decade of life. To our knowledge, this is the largest described study of a cohort of CD/CRD patients affected by RPGRORF15 variants. Longitudinal data showed a rapidly progressive disease, possibly locating an optimal window of intervention for future therapies in younger ages.
Collapse
Affiliation(s)
- Marco Nassisi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Ophthalmology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
| | - Giuseppe De Bartolo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
| | - Saddek Mohand-Said
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
| | - Christel Condroyer
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
| | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
| | - Marie-Elise Lancelot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
| | - Kinga Bujakowska
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Vasily Smirnov
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Exploration de la Vision et Neuro-Ophthalmologie, Centre Hospitalier Universitaire de Lille, 59000 Lille, France
- Faculté de Médecine, Université de Lille, 59000 Lille, France
| | - Thomas Pugliese
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
| | - John Neidhardt
- Human Genetics, Faculty VI, School of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany;
- Research Center Neurosensory Science, University Oldenburg, 26129 Oldenburg, Germany
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
- Department of Ophthalmology, University of Pittsburgh Medical School, Pittsburgh, PA 15213, USA
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
| |
Collapse
|
19
|
Wang K, Chen Y, Zhu X, Zou W, Zhou F. Ginkgo biloba Extract Attenuates Light-Induced Photoreceptor Degeneration by Modulating CAV-1—Redoxosome Signaling. Antioxidants (Basel) 2022; 11:antiox11071268. [PMID: 35883759 PMCID: PMC9311990 DOI: 10.3390/antiox11071268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
The clinical potential of Ginkgo biloba extract (GBE) in the prevention and/or treatment of retinal degenerative diseases has been widely explored; however, the underlying molecular mechanism is poorly understood. Photoreceptor degeneration is the hallmark of retinal degenerative diseases and leads to vision impairment or loss. In this study, the effect of GBE against white light (WL) illumination-induced photoreceptor degeneration was investigated, as well as its underlying mechanism. To evaluate the in vitro activity of GBE, analysis of cell viability, cell apoptosis, oxidative stress, NOX (NADH oxidase) activity and mitochondrial membrane potential (MMP), as well as Western blotting and transcriptome sequencing and analysis, were conducted. To evaluate the in vivo activity of GBE, HE staining, electroretinography (ERG), Terminal-deoxynucleoitidyl transferase (TdT)-mediated nick end labeling (TUNEL) assay and immunofluorescence analysis were conducted. Our study showed that GBE treatment significantly attenuated WL illumination-induced oxidative damage in photoreceptor 661W cells—a finding that was also verified in C57BL/6J mice. Further molecular study revealed that WL illumination downregulated caveolin-1 (CAV-1) expression, interrupted CAV-1-NOX2 interaction, re-located NOX2 from the cell membrane to the cytoplasm and induced the formation of redoxosomes, which led to cell death. However, these cytotoxic events were significantly alleviated by GBE treatment. Interestingly, CAV-1 overexpression showed a consistent protective effect with GBE, while CAV-1 silencing impacted the protective effect of GBE against WL illumination-induced oxidative damage in in vitro and in vivo models. Thus, GBE was identified to prevent photoreceptor cell death due to CAV-1-dependent redoxosome activation, oxidative stress and mitochondrial dysfunction resulting from WL illumination. Overall, our study reveals the protective effect of GBE on photoreceptors against WL illumination-induced oxidative damage in in vitro and in vivo models, which effect is mediated through the modulation of CAV-1-redoxosome signaling. Our findings contribute to better understanding the therapeutic effect of GBE in preventing photoreceptor degeneration in retinal degenerative diseases, and GBE may become a novel therapeutic agent that is effective in reducing the morbidity of these diseases.
Collapse
Affiliation(s)
- Ke Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; (Y.C.); (X.Z.)
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (K.W.); (W.Z.); Tel.: +86-510-8551-4482 (K.W.)
| | - Yuan Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; (Y.C.); (X.Z.)
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xue Zhu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; (Y.C.); (X.Z.)
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Wenjun Zou
- Department of Ophthalmology, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China
- Correspondence: (K.W.); (W.Z.); Tel.: +86-510-8551-4482 (K.W.)
| | - Fanfan Zhou
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| |
Collapse
|
20
|
Avramovic D, Archaimbault SA, Kemble AM, Gruener S, Lazendic M, Westenskow PD. TGFβ1 Induces Senescence and Attenuated VEGF Production in Retinal Pericytes. Biomedicines 2022; 10:biomedicines10061404. [PMID: 35740425 PMCID: PMC9219633 DOI: 10.3390/biomedicines10061404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetic retinopathy (DR) is a microvascular disease of the retina and a serious complication of type I and type II diabetes mellitus. DR affects working-age populations and can cause permanent vision loss if left untreated. The standard of care for proliferative DR is inhibiting VEGF. However, the mechanisms that induce excessive VEGF production in the retina remain elusive, although some evidence links elevated VEGF in the diabetic retina with local and systemic TGFβ1 upexpression. Here, we present evidence from animal models of disease suggesting that excessive TGFβ1 production in the early DR is correlated with VEGF mRNA and protein production by senescent pericytes and other retinal cells. Collectively, these results confirm that TGFβ1 is strongly implicated in the vascular complications of DR.
Collapse
Affiliation(s)
- Dragana Avramovic
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.A.A.); (S.G.); (M.L.)
- Correspondence: (D.A.); (P.D.W.)
| | - Sébastien A. Archaimbault
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.A.A.); (S.G.); (M.L.)
| | - Alicia M. Kemble
- Neuroscience and Rare Disease, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Sabine Gruener
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.A.A.); (S.G.); (M.L.)
| | - Mirjana Lazendic
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.A.A.); (S.G.); (M.L.)
| | - Peter D. Westenskow
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.A.A.); (S.G.); (M.L.)
- Correspondence: (D.A.); (P.D.W.)
| |
Collapse
|
21
|
Kim J, Won JY. Effect of Photobiomodulation in Suppression of Oxidative Stress on Retinal Pigment Epithelium. Int J Mol Sci 2022; 23:ijms23126413. [PMID: 35742861 PMCID: PMC9224180 DOI: 10.3390/ijms23126413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
As the world undergoes aging, the number of age-related diseases has increased. One of them is disease related to retinal pigment epithelium (RPE) degeneration, such as age-related macular degeneration, causing vision loss without physical damage in the ocular system. It is the leading cause of blindness, with no cure. Although the exact pathogenesis is still unknown, the research shows that oxidative stress is one of the risk factors. Various molecules have been reported as anti-oxidative materials; however, the disease has not yet been conquered. Here, we would like to introduce photobiomodulation (PBM). PBM is a non-invasive treatment based on red and near-infrared light and has been used to cure various diseases by regulating cellular functions. Furthermore, recent studies showed its antioxidant effect, and due to this reason, PBM is arising as a new treatment for ocular disease. In this study, we confirm the antioxidant effect of PBM in retinal pigment epithelium via an RPE model with hypoxia. The function of RPE is protected by PBM against damage from hypoxia. Furthermore, we observed the protective mechanism of PBM by its suppression effect on reactive oxygen species generation. These results indicate that PBM shows great potential to cure RPE degeneration to help patients with blindness.
Collapse
Affiliation(s)
- Jongmin Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Jae Yon Won
- Department of Ophthalmology and Visual Science, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03312, Korea
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 14662, Korea
- Correspondence:
| |
Collapse
|
22
|
Impairment of the Retinal Endothelial Cell Barrier Induced by Long-Term Treatment with VEGF-A 165 No Longer Depends on the Growth Factor's Presence. Biomolecules 2022; 12:biom12050734. [PMID: 35625661 PMCID: PMC9138398 DOI: 10.3390/biom12050734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 12/18/2022] Open
Abstract
As responses of immortalized endothelial cells of the bovine retina (iBREC) to VEGF-A165 depend on exposure time to the growth factor, we investigated changes evident after long-term treatment for nine days. The cell index of iBREC cultivated on gold electrodes—determined as a measure of permeability—was persistently reduced by exposure to the growth factor. Late after addition of VEGF-A165 protein levels of claudin-1 and CD49e were significantly lower, those of CD29 significantly higher, and the plasmalemma vesicle associated protein was no longer detected. Nuclear levels of β-catenin were only elevated on day two. Extracellular levels of VEGF-A—measured by ELISA—were very low. Similar to the binding of the growth factor by brolucizumab, inhibition of VEGFR2 by tyrosine kinase inhibitors tivozanib or nintedanib led to complete, although transient, recovery of the low cell index when added early, though was inefficient when added three or six days later. Additional inhibition of other receptor tyrosine kinases by nintedanib was similarly unsuccessful, but additional blocking of c-kit by tivozanib led to sustained recovery of the low cell index, an effect observed only when the inhibitor was added early. From these data, we conclude that several days after the addition of VEGF-A165 to iBREC, barrier dysfunction is mainly sustained by increased paracellular flow and impaired adhesion. Even more important, these changes are most likely no longer VEGF-A-controlled.
Collapse
|
23
|
Stelmashook EV, Kapkaeva MR, Rozanova NA, Alexandrova OP, Genrikhs EE, Obmolov VV, Novikova SV, Isaev NK. The in vitro Effect of the Neuroinflammation Inducer on Brain Neurovascular Unit Components. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s002209302203019x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Liu W, Liu S, Li P, Yao K. Retinitis Pigmentosa: Progress in Molecular Pathology and Biotherapeutical Strategies. Int J Mol Sci 2022; 23:ijms23094883. [PMID: 35563274 PMCID: PMC9101511 DOI: 10.3390/ijms23094883] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is genetically heterogeneous retinopathy caused by photoreceptor cell death and retinal pigment epithelial atrophy that eventually results in blindness in bilateral eyes. Various photoreceptor cell death types and pathological phenotypic changes that have been disclosed in RP demand in-depth research of its pathogenic mechanism that may account for inter-patient heterogeneous responses to mainstream drug treatment. As the primary method for studying the genetic characteristics of RP, molecular biology has been widely used in disease diagnosis and clinical trials. Current technology iterations, such as gene therapy, stem cell therapy, and optogenetics, are advancing towards precise diagnosis and clinical applications. Specifically, technologies, such as effective delivery vectors, CRISPR/Cas9 technology, and iPSC-based cell transplantation, hasten the pace of personalized precision medicine in RP. The combination of conventional therapy and state-of-the-art medication is promising in revolutionizing RP treatment strategies. This article provides an overview of the latest research on the pathogenesis, diagnosis, and treatment of retinitis pigmentosa, aiming for a convenient reference of what has been achieved so far.
Collapse
|
25
|
González-Iglesias E, López-Vázquez A, Noval S, Nieves-Moreno M, Granados-Fernández M, Arruti N, Rosa-Pérez I, Pacio-Míguez M, Montaño VEF, Rodríguez-Solana P, del Pozo A, Santos-Simarro F, Vallespín E. Next-Generation Sequencing Screening of 43 Families with Non-Syndromic Early-Onset High Myopia: A Clinical and Genetic Study. Int J Mol Sci 2022; 23:4233. [PMID: 35457050 PMCID: PMC9031962 DOI: 10.3390/ijms23084233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Early-onset high myopia (EoHM) is a disease that causes a spherical refraction error of ≥-6 diopters before 10 years of age, with potential multiple ocular complications. In this article, we report a clinical and genetic study of 43 families with EoHM recruited in our center. A complete ophthalmological evaluation was performed, and a sample of peripheral blood was obtained from proband and family members. DNA was analyzed using a customized next-generation sequencing panel that included 419 genes related to ophthalmological disorders with a suspected genetic cause, and genes related to EoHM pathogenesis. We detected pathogenic and likely pathogenic variants in 23.9% of the families and detected variants of unknown significance in 76.1%. Of these, 5.7% were found in genes related to non-syndromic EoHM, 48.6% in genes associated with inherited retinal dystrophies that can include a syndromic phenotype, and 45.7% in genes that are not directly related to EoHM or retinal dystrophy. We found no candidate genes in 23% of the patients, which suggests that further studies are needed. We propose a systematic genetic analysis for patients with EoHM because it helps with follow-up, prognosis and genetic counseling.
Collapse
Affiliation(s)
- Eva González-Iglesias
- Section of Molecular Ophthalmology, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (E.G.-I.); (V.E.F.M.); (P.R.-S.)
| | - Ana López-Vázquez
- Department of Ophthalmology, La Paz University Hospital, 28046 Madrid, Spain; (A.L.-V.); (S.N.); (M.N.-M.); (M.G.-F.); (N.A.); (I.R.-P.)
| | - Susana Noval
- Department of Ophthalmology, La Paz University Hospital, 28046 Madrid, Spain; (A.L.-V.); (S.N.); (M.N.-M.); (M.G.-F.); (N.A.); (I.R.-P.)
| | - María Nieves-Moreno
- Department of Ophthalmology, La Paz University Hospital, 28046 Madrid, Spain; (A.L.-V.); (S.N.); (M.N.-M.); (M.G.-F.); (N.A.); (I.R.-P.)
| | - María Granados-Fernández
- Department of Ophthalmology, La Paz University Hospital, 28046 Madrid, Spain; (A.L.-V.); (S.N.); (M.N.-M.); (M.G.-F.); (N.A.); (I.R.-P.)
| | - Natalia Arruti
- Department of Ophthalmology, La Paz University Hospital, 28046 Madrid, Spain; (A.L.-V.); (S.N.); (M.N.-M.); (M.G.-F.); (N.A.); (I.R.-P.)
| | - Irene Rosa-Pérez
- Department of Ophthalmology, La Paz University Hospital, 28046 Madrid, Spain; (A.L.-V.); (S.N.); (M.N.-M.); (M.G.-F.); (N.A.); (I.R.-P.)
| | - Marta Pacio-Míguez
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (M.P.-M.); (A.d.P.); (F.S.-S.)
- Section of Neurodevelopmental Disorders, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, La Paz University Hospital, 28046 Madrid, Spain
| | - Victoria E. F. Montaño
- Section of Molecular Ophthalmology, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (E.G.-I.); (V.E.F.M.); (P.R.-S.)
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (M.P.-M.); (A.d.P.); (F.S.-S.)
| | - Patricia Rodríguez-Solana
- Section of Molecular Ophthalmology, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (E.G.-I.); (V.E.F.M.); (P.R.-S.)
| | - Angela del Pozo
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (M.P.-M.); (A.d.P.); (F.S.-S.)
- Section of Clinical Bioinformatics, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, La Paz University Hospital, 28046 Madrid, Spain
| | - Fernando Santos-Simarro
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (M.P.-M.); (A.d.P.); (F.S.-S.)
- Section of Clinical Genetics, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, La Paz University Hospital, 28046 Madrid, Spain
| | - Elena Vallespín
- Section of Molecular Ophthalmology, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (E.G.-I.); (V.E.F.M.); (P.R.-S.)
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (M.P.-M.); (A.d.P.); (F.S.-S.)
| |
Collapse
|
26
|
Han G, Song L, Ding Z, Wang Q, Yan Y, Huang J, Ma C. The Important Double-Edged Role of Astrocytes in Neurovascular Unit After Ischemic Stroke. Front Aging Neurosci 2022; 14:833431. [PMID: 35462697 PMCID: PMC9021601 DOI: 10.3389/fnagi.2022.833431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/16/2022] [Indexed: 12/25/2022] Open
Abstract
In recent years, neurovascular unit (NVU) which is composed of neurons, astrocytes (Ast), microglia (MG), vascular cells and extracellular matrix (ECM), has become an attractive field in ischemic stroke. As the important component of NVU, Ast closely interacts with other constituents, which has been playing double-edged sword roles, beneficial or detrimental after ischemic stroke. Based on the pathophysiological changes, we evaluated some strategies for targeting Ast in treating ischemic stroke. The present review is focused on the roles of Ast in NVU and its complex signaling molecular network after ischemic stroke, which may be a prospective approach to the treatment of ischemic diseases in central nervous system.
Collapse
Affiliation(s)
- Guangyuan Han
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Neurosurgery, Sinopharm Tongmei General Hospital, Datong, China
| | - Lijuan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Lijuan Song,
| | - Zhibin Ding
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yuqing Yan
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Shanxi Datong University, Datong, China
- Yuqing Yan,
| | - Jianjun Huang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Neurosurgery, Sinopharm Tongmei General Hospital, Datong, China
- Jianjun Huang,
| | - Cungen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Shanxi Datong University, Datong, China
- Cungen Ma,
| |
Collapse
|
27
|
Applying Protein–Protein Interactions and Complex Networks to Identify Novel Genes in Retinitis Pigmentosa Pathogenesis. Int J Mol Sci 2022; 23:ijms23073962. [PMID: 35409321 PMCID: PMC8999418 DOI: 10.3390/ijms23073962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Retinitis Pigmentosa (RP) is a hereditary retinal disorder that causes the atrophy of photoreceptor rod cells. Since individual defective genes converge on the same disease, we hypothesized that all causal genes of RP belong in a complex network. To explore this hypothesis, we conducted a gene connection analysis using 161 genes attributed to RP, compiled from the Retinal Information Network, RetNet. We then examined the protein interaction network (PIN) of these genes. In line with our hypothesis, using STRING, we directly connected 149 genes out of the recognized 159 genes. To uncover the association between the PIN and the ten unrecalled genes, we developed an algorithm to pinpoint the best candidate genes to connect the uncalled genes to the PIN and identified ten such genes. We propose that mutations within these ten genes may also cause RP; this notion is supported by analyzing and categorizing the known causal genes based on cellular locations and related functions. The successful establishment of the PIN among all documented genes and the discovery of novel genes for RP strongly suggest an interconnectedness that causes the disease on the molecular level. In addition, our computational gene search protocol can help identify the genes and loci responsible for genetic diseases, not limited to RP.
Collapse
|
28
|
Influence of carrier materials and coatings on retinal pigment epithelium cultivation and functions. Exp Eye Res 2022; 219:109063. [DOI: 10.1016/j.exer.2022.109063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022]
|
29
|
Experimental Comparison of Primary and hiPS-Based In Vitro Blood–Brain Barrier Models for Pharmacological Research. Pharmaceutics 2022; 14:pharmaceutics14040737. [PMID: 35456571 PMCID: PMC9031459 DOI: 10.3390/pharmaceutics14040737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
In vitro model systems of the blood–brain barrier (BBB) play an essential role in pharmacological research, specifically during the development and preclinical evaluation of new drug candidates. Within the past decade, the trend in research and further development has moved away from models based on primary cells of animal origin towards differentiated models derived from human induced pluripotent stem cells (hiPSs). However, this logical progression towards human model systems from renewable cell sources opens up questions about the transferability of results generated in the primary cell models. In this study, we have evaluated both models with identical experimental parameters and achieved a directly comparable characterisation showing no significant differences in protein expression or permeability even though the achieved transendothelial electrical resistance (TEER) values showed significant differences. In the course of this investigation, we also determined a significant deviation of both model systems from the in vivo BBB circumstances, specifically concerning the presence or absence of serum proteins in the culture media. Thus, we have further evaluated both systems when confronted with an in vivo-like distribution of serum and found a notable improvement in the differential permeability of hydrophilic and lipophilic compounds in the hiPS-derived BBB model. We then transferred this model into a microfluidic setup while maintaining the differential serum distribution and evaluated the permeability coefficients, which showed good comparability with values in the literature. Therefore, we have developed a microfluidic hiPS-based BBB model with characteristics comparable to the established primary cell-based model.
Collapse
|
30
|
Vascular Analysis of Type 1, 2, and 3 Macular Neovascularization in Age-Related Macular Degeneration Using Swept-Source Optical Coherence Tomography Angiography Shows New Insights into Differences of Pathologic Vasculature and May Lead to a More Personalized Understanding. Biomedicines 2022; 10:biomedicines10030694. [PMID: 35327496 PMCID: PMC8945474 DOI: 10.3390/biomedicines10030694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
Background: The clinical appearance of macular neovascularization (MNV) in age-related macular degeneration (nAMD) varies widely, but so far, this has had no relevance in terms of therapeutic approaches or prognosis. Therefore, our purpose was to investigate if and which differences exist in the vascular architecture of MNV and to quantify them. Methods: In 90 patients with newly diagnosed nAMD, MNV was identified by means of optical coherence tomography angiography (OCTA), and automated quantitative vascular analysis was carried out. The analyzed vascular parameters were area, flow, fractal dimension (FD), total vascular length (sumL), number of vascular nodes (numN), flow, and average vessel caliber (avgW). The current classification of MNVs divides them according to their localization into type 1 (grown from the choroid below the RPE), type 2 (grown from the choroid through RPE), and type 3 (grown from the retina toward the RPE). We compared the analyzed vascular parameters of each of the three MNV types. Kruskal−Wallis test was applied, Dunn test was performed for post hoc analysis, and for pairwise comparison, p-values were adjusted using Bonferroni comparison. Results: Regarding the MNV area, there was no significant difference between types 1 and 2, but type 3 was significantly smaller than types 1 and 2 (p < 0.00001). For FD, types 1 and 2 did not differ significantly, but again, type 3 was lower than type 1 and 2 (p < 0.00001). The numN were significantly higher in types 1 and 3 than in 2 (p < 0.005), but not between types 1 and 3. No significant differences were found between MNV types for flow. As for sumL, types 1 and 2 did not differ significantly, but type 3 was significantly lower than types 1 and 2 (p < 0.00001). For avgW, there was no significant difference between types 1 and 2 or between types 2 and 3, but type 3 was significantly larger than type 1 (p < 0.05). Conclusions OCTA yields detailed information on the vascular morphology of MNV in patients with nAMD and is able to show differences among types 1, 2, and 3. Especially comparing types 1 and 2 with type 3 reveals significant differences in area, FD, sumL, and numN. One explanation could be the similar pathogenesis of types 1 and 2 with their origin in the choroid and their growth towards the retinal pigment epithelium (RPE), whereas type 3 originates in the deep capillary plexus. Between types 1 and 2, however, only the numN differ significantly, which could be due to the fact that type 1 spreads horizontally below the RPE and, thus, display more vascular branching, while type 2 grows more vertically through the RPE and under the neurosensory retina. Detailed information about the pathologic vasculature is important for proper monitoring of the disease and to assess the efficacy of medication, especially with regard to new substances. This should be taken into consideration in future studies.
Collapse
|
31
|
Santos FM, Mesquita J, Castro-de-Sousa JP, Ciordia S, Paradela A, Tomaz CT. Vitreous Humor Proteome: Targeting Oxidative Stress, Inflammation, and Neurodegeneration in Vitreoretinal Diseases. Antioxidants (Basel) 2022; 11:505. [PMID: 35326156 PMCID: PMC8944522 DOI: 10.3390/antiox11030505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is defined as an unbalance between pro-oxidants and antioxidants, as evidenced by an increase in reactive oxygen and reactive nitrogen species production over time. It is important in the pathophysiology of retinal disorders such as diabetic retinopathy, age-related macular degeneration, retinal detachment, and proliferative vitreoretinopathy, which are the focus of this article. Although the human organism's defense mechanisms correct autoxidation caused by endogenous or exogenous factors, this may be insufficient, causing an imbalance in favor of excessive ROS production or a weakening of the endogenous antioxidant system, resulting in molecular and cellular damage. Furthermore, modern lifestyles and environmental factors contribute to increased chemical exposure and stress induction, resulting in oxidative stress. In this review, we discuss the current information about oxidative stress and the vitreous proteome with a special focus on vitreoretinal diseases. Additionally, we explore therapies using antioxidants in an attempt to rescue the body from oxidation, restore balance, and maximize healthy body function, as well as new investigational therapies that have shown significant therapeutic potential in preclinical studies and clinical trial outcomes, along with their goals and strategic approaches to combat oxidative stress.
Collapse
Affiliation(s)
- Fátima Milhano Santos
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501 Covilhã, Portugal
| | - Joana Mesquita
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
| | - João Paulo Castro-de-Sousa
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- Department of Ophthalmology, Centro Hospitalar de Leiria, 2410-197 Leiria, Portugal
| | - Sergio Ciordia
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
| | - Alberto Paradela
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
| | - Cândida Teixeira Tomaz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501 Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
32
|
Retinitis Pigmentosa (RP): The Role of Oxidative Stress in the Degenerative Process Progression. Biomedicines 2022; 10:biomedicines10030582. [PMID: 35327384 PMCID: PMC8945005 DOI: 10.3390/biomedicines10030582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
Purpose: Retinitis Pigmentosa is a term that includes a group of inherited bilateral and progressive retinal degenerations, with the involvement of rod photoreceptors, which frequently leads to blindness; oxidative stress may be involved in the degeneration progression as proposed by several recent studies. The goal of this study is to evaluate whether circulating free radicals taken from capillary blood are related to one of the most important features of Retinitis pigmentosa that can affect frequently patients: cystoid macular oedema (CME). Materials: A total of 186 patients with Retinitis Pigmentosa (range: 25−69 years) were enrolled; all patients completed an ophthalmologic examination and SD-OCT at baseline and were divided into three subgroups according to the SD-OCT features. ROS blood levels were determined using FORT with monitoring of free oxygen radicals. Results: Test levels of free oxygen radicals were significantly increased, almost twice, in RP patients showing cystoid macular oedema and significantly increased compared to the control group. (p < 0.001). Discussion: Our findings suggest that oxidative stress may speed cone photoreceptors’ morphological damage (CMT); because long lasting oxidative stress in the RP may cause oxidative damage, with animal models of RP suggesting this is a micromolecular mechanism of photoreceptors’ (cone) death, it can be similar to cone damage in human RP eyes. The limitations of this paper are the relatively small sample, the horizontal design of the study, and the lack of data about the levels of ROS in the vitreous body.
Collapse
|
33
|
Hu DN, Zhang R, Iacob CE, Yao S, Yang SF, Chan CC, Rosen RB. Toll-like receptor 2 and 6 agonist fibroblast-stimulating lipopeptide increases expression and secretion of CXCL1 and CXCL2 by uveal melanocytes. Exp Eye Res 2022; 216:108943. [DOI: 10.1016/j.exer.2022.108943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/06/2021] [Accepted: 01/09/2022] [Indexed: 11/24/2022]
|
34
|
Takahashi S. Metabolic Contribution and Cerebral Blood Flow Regulation by Astrocytes in the Neurovascular Unit. Cells 2022; 11:cells11050813. [PMID: 35269435 PMCID: PMC8909328 DOI: 10.3390/cells11050813] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
The neurovascular unit (NVU) is a conceptual framework that has been proposed to better explain the relationships between the neural cells and blood vessels in the human brain, focused mainly on the brain gray matter. The major components of the NVU are the neurons, astrocytes (astroglia), microvessels, pericytes, and microglia. In addition, we believe that oligodendrocytes should also be included as an indispensable component of the NVU in the white matter. Of all these components, astrocytes in particular have attracted the interest of researchers because of their unique anatomical location; these cells are interposed between the neurons and the microvessels of the brain. Their location suggests that astrocytes might regulate the cerebral blood flow (CBF) in response to neuronal activity, so as to ensure an adequate supply of glucose and oxygen to meet the metabolic demands of the neurons. In fact, the adult human brain, which accounts for only 2% of the entire body weight, consumes approximately 20–25% of the total amount of glucose and oxygen consumed by the whole body. The brain needs a continuous supply of these essential energy sources through the CBF, because there are practically no stores of glucose or oxygen in the brain; both acute and chronic cessation of CBF can adversely affect brain functions. In addition, another important putative function of the NVU is the elimination of heat and waste materials produced by neuronal activity. Recent evidence suggests that astrocytes play pivotal roles not only in supplying glucose, but also fatty acids and amino acids to neurons. Loss of astrocytic support can be expected to lead to malfunction of the NVU as a whole, which underlies numerous neurological disorders. In this review, we shall focus on historical and recent findings with regard to the metabolic contributions of astrocytes in the NVU.
Collapse
Affiliation(s)
- Shinichi Takahashi
- Department of Neurology and Stroke, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-shi 350-1298, Japan; ; Tel.: +81-42-984-4111 (ext. 7412) or +81-3-3353-1211 (ext. 62613); Fax: +81-42-984-0664 or +81-3-3357-5445
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
35
|
Antioxidant Role and Cardiolipin Remodeling by Redox-Activated Mitochondrial Ca 2+-Independent Phospholipase A 2γ in the Brain. Antioxidants (Basel) 2022; 11:antiox11020198. [PMID: 35204081 PMCID: PMC8868467 DOI: 10.3390/antiox11020198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial Ca2+-independent phospholipase A2γ (iPLA2γ/PNPLA8) was previously shown to be directly activated by H2O2 and release free fatty acids (FAs) for FA-dependent H+ transport mediated by the adenine nucleotide translocase (ANT) or uncoupling protein 2 (UCP2). The resulting mild mitochondrial uncoupling and consequent partial attenuation of mitochondrial superoxide production lead to an antioxidant effect. However, the antioxidant role of iPLA2γ in the brain is not completely understood. Here, using wild-type and iPLA2γ-KO mice, we demonstrate the ability of tert-butylhydroperoxide (TBHP) to activate iPLA2γ in isolated brain mitochondria, with consequent liberation of FAs and lysophospholipids. The liberated FA caused an increase in respiratory rate, which was fully inhibited by carboxyatractyloside (CATR), a specific inhibitor of ANT. Employing detailed lipidomic analysis, we also demonstrate a typical cleavage pattern for TBHP-activated iPLA2γ, reflecting cleavage of glycerophospholipids from both sn-1 and sn-2 positions releasing saturated FAs, monoenoic FAs, and predominant polyunsaturated FAs. The acute antioxidant role of iPLA2γ-released FAs is supported by monitoring both intramitochondrial superoxide and extramitochondrial H2O2 release. We also show that iPLA2γ-KO mice were more sensitive to stimulation by pro-inflammatory lipopolysaccharide, as reflected by the concomitant increase in protein carbonyls in the brain and pro-inflammatory IL-6 release in the serum. These data support the antioxidant and anti-inflammatory role of iPLA2γ in vivo. Our data also reveal a substantial decrease of several high molecular weight cardiolipin (CL) species and accumulation of low molecular weight CL species in brain mitochondria of iPLA2γ-KO mice. Collectively, our results support a key role of iPLA2γ in the remodeling of lower molecular weight immature cardiolipins with predominantly saturated acyl chains to high molecular weight mature cardiolipins with highly unsaturated PUFA acyl chains, typical for the brain.
Collapse
|
36
|
Inhibition of Neuronal Necroptosis Mediated by RIPK1 Provides Neuroprotective Effects on Hypoxia and Ischemia In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms23020735. [PMID: 35054920 PMCID: PMC8775468 DOI: 10.3390/ijms23020735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 11/24/2022] Open
Abstract
Ischemic brain injury is a widespread pathological condition, the main components of which are a deficiency of oxygen and energy substrates. In recent years, a number of new forms of cell death, including necroptosis, have been described. In necroptosis, a cascade of interactions between the kinases RIPK1 and RIPK3 and the MLKL protein leads to the formation of a specialized death complex called the necrosome, which triggers MLKL-mediated destruction of the cell membrane and necroptotic cell death. Necroptosis probably plays an important role in the development of ischemia/reperfusion injury and can be considered as a potential target for finding methods to correct the disruption of neural networks in ischemic damage. In the present study, we demonstrated that blockade of RIPK1 kinase by Necrostatin-1 preserved the viability of cells in primary hippocampal cultures in an in vitro model of glucose deprivation. The effect of RIPK1 blockade on the bioelectrical and metabolic calcium activity of neuron-glial networks in vitro using calcium imaging and multi-electrode arrays was assessed for the first time. RIPK1 blockade was shown to partially preserve both calcium and bioelectric activity of neuron-glial networks under ischemic factors. However, it should be noted that RIPK1 blockade does not preserve the network parameters of the collective calcium dynamics of neuron-glial networks, despite the maintenance of network bioelectrical activity (the number of bursts and the number of spikes in the bursts). To confirm the data obtained in vitro, we studied the effect of RIPK1 blockade on the resistance of small laboratory animals to in vivo modeling of hypoxia and cerebral ischemia. The use of Necrostatin-1 increases the survival rate of C57BL mice in modeling both acute hypobaric hypoxia and ischemic brain damage.
Collapse
|
37
|
Neurovascular Impairment and Therapeutic Strategies in Diabetic Retinopathy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010439. [PMID: 35010703 PMCID: PMC8744686 DOI: 10.3390/ijerph19010439] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy has recently been defined as a highly specific neurovascular complication of diabetes. The chronic progression of the impairment of the interdependence of neurovascular units (NVUs) is associated with the pathogenesis of diabetic retinopathy. The NVUs consist of neurons, glial cells, and vascular cells, and the interdependent relationships between these cells are disturbed under diabetic conditions. Clinicians should understand and update the current knowledge of the neurovascular impairments in diabetic retinopathy. Above all, neuronal cell death is an irreversible change, and it is directly related to vision loss in patients with diabetic retinopathy. Thus, neuroprotective and vasoprotective therapies for diabetic retinopathy must be established. Understanding the physiological and pathological interdependence of the NVUs is helpful in establishing neuroprotective and vasoprotective therapies for diabetic retinopathy. This review focuses on the pathogenesis of the neurovascular impairments and introduces possible neurovascular protective therapies for diabetic retinopathy.
Collapse
|
38
|
Non-Simultaneous Bilateral Ischemic Optic Neuropathy Related to High Altitude and Airplane Flight in a Patient with Cerebral Small Vessel Disease. Diagnostics (Basel) 2021; 11:diagnostics11122325. [PMID: 34943562 PMCID: PMC8700713 DOI: 10.3390/diagnostics11122325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Non-arteritic anterior ischemic optic neuropathy (NA-AION) is considered the most frequent type of acute optic neuropathy. A 61-year-old woman presented with a NA-AION in her right eye within 24 h following an airplane flight. One year later, after driving for 10 days with a daily accumulated altitude of 1500 m, she developed a NA-AION in her left eye. Systemic disorders were investigated, and cerebral small vessel disease was observed via cranial computed tomography. An inadequate response to hypoxia, in a patient with individual susceptibility, could lead to reduced blood supply to the optic nerve head, which could represent an underlying cause of NA-AION.
Collapse
|
39
|
Yan J, Chen Y, Zhu Y, Paquet-Durand F. Programmed Non-Apoptotic Cell Death in Hereditary Retinal Degeneration: Crosstalk between cGMP-Dependent Pathways and PARthanatos? Int J Mol Sci 2021; 22:10567. [PMID: 34638907 PMCID: PMC8508647 DOI: 10.3390/ijms221910567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death (PCD) is a highly regulated process that results in the orderly destruction of a cell. Many different forms of PCD may be distinguished, including apoptosis, PARthanatos, and cGMP-dependent cell death. Misregulation of PCD mechanisms may be the underlying cause of neurodegenerative diseases of the retina, including hereditary retinal degeneration (RD). RD relates to a group of diseases that affect photoreceptors and that are triggered by gene mutations that are often well known nowadays. Nevertheless, the cellular mechanisms of PCD triggered by disease-causing mutations are still poorly understood, and RD is mostly still untreatable. While investigations into the neurodegenerative mechanisms of RD have focused on apoptosis in the past two decades, recent evidence suggests a predominance of non-apoptotic processes as causative mechanisms. Research into these mechanisms carries the hope that the knowledge created can eventually be used to design targeted treatments to prevent photoreceptor loss. Hence, in this review, we summarize studies on PCD in RD, including on apoptosis, PARthanatos, and cGMP-dependent cell death. Then, we focus on a possible interplay between these mechanisms, covering cGMP-signaling targets, overactivation of poly(ADP-ribose)polymerase (PARP), energy depletion, Ca2+-permeable channels, and Ca2+-dependent proteases. Finally, an outlook is given into how specific features of cGMP-signaling and PARthanatos may be targeted by therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany; (J.Y.); (Y.C.); (Y.Z.)
| |
Collapse
|
40
|
The Pathogenesis and Therapeutic Approaches of Diabetic Neuropathy in the Retina. Int J Mol Sci 2021; 22:ijms22169050. [PMID: 34445756 PMCID: PMC8396448 DOI: 10.3390/ijms22169050] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy is a major retinal disease and a leading cause of blindness in the world. Diabetic retinopathy is a neurovascular disease that is associated with disturbances of the interdependent relationship of cells composed of the neurovascular units, i.e., neurons, glial cells, and vascular cells. An impairment of these neurovascular units causes both neuronal and vascular abnormalities in diabetic retinopathy. More specifically, neuronal abnormalities including neuronal cell death and axon degeneration are irreversible changes that are directly related to the vision reduction in diabetic patients. Thus, establishment of neuroprotective and regenerative therapies for diabetic neuropathy in the retina is an emergent task for preventing the blindness of patients with diabetic retinopathy. This review focuses on the pathogenesis of the neuronal abnormalities in diabetic retina including glial abnormalities, neuronal cell death, and axon degeneration. The possible molecular cell death pathways and intrinsic survival and regenerative pathways are also described. In addition, therapeutic approaches for diabetic neuropathy in the retina both in vitro and in vivo are presented. This review should be helpful for providing clues to overcome the barriers for establishing neuroprotection and regeneration of diabetic neuropathy in the retina.
Collapse
|