1
|
Radzki D, Negri A, Kusiak A, Obuchowski M. Matrix Metalloproteinases in the Periodontium-Vital in Tissue Turnover and Unfortunate in Periodontitis. Int J Mol Sci 2024; 25:2763. [PMID: 38474009 DOI: 10.3390/ijms25052763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The extracellular matrix (ECM) is a complex non-cellular three-dimensional macromolecular network present within all tissues and organs, forming the foundation on which cells sit, and composed of proteins (such as collagen), glycosaminoglycans, proteoglycans, minerals, and water. The ECM provides a fundamental framework for the cellular constituents of tissue and biochemical support to surrounding cells. The ECM is a highly dynamic structure that is constantly being remodeled. Matrix metalloproteinases (MMPs) are among the most important proteolytic enzymes of the ECM and are capable of degrading all ECM molecules. MMPs play a relevant role in physiological as well as pathological processes; MMPs participate in embryogenesis, morphogenesis, wound healing, and tissue remodeling, and therefore, their impaired activity may result in several problems. MMP activity is also associated with chronic inflammation, tissue breakdown, fibrosis, and cancer invasion and metastasis. The periodontium is a unique anatomical site, composed of a variety of connective tissues, created by the ECM. During periodontitis, a chronic inflammation affecting the periodontium, increased presence and activity of MMPs is observed, resulting in irreversible losses of periodontal tissues. MMP expression and activity may be controlled in various ways, one of which is the inhibition of their activity by an endogenous group of tissue inhibitors of metalloproteinases (TIMPs), as well as reversion-inducing cysteine-rich protein with Kazal motifs (RECK).
Collapse
Affiliation(s)
- Dominik Radzki
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Alessandro Negri
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Aida Kusiak
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland
| | - Michał Obuchowski
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| |
Collapse
|
2
|
Maisenbacher TC, Ehnert S, Histing T, Nüssler AK, Menger MM. Advantages and Limitations of Diabetic Bone Healing in Mouse Models: A Narrative Review. Biomedicines 2023; 11:3302. [PMID: 38137522 PMCID: PMC10741210 DOI: 10.3390/biomedicines11123302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes represents a major risk factor for impaired fracture healing. Type 2 diabetes mellitus is a growing epidemic worldwide, hence an increase in diabetes-related complications in fracture healing can be expected. However, the underlying mechanisms are not yet completely understood. Different mouse models are used in preclinical trauma research for fracture healing under diabetic conditions. The present review elucidates and evaluates the characteristics of state-of-the-art murine diabetic fracture healing models. Three major categories of murine models were identified: Streptozotocin-induced diabetes models, diet-induced diabetes models, and transgenic diabetes models. They all have specific advantages and limitations and affect bone physiology and fracture healing differently. The studies differed widely in their diabetic and fracture healing models and the chosen models were evaluated and discussed, raising concerns in the comparability of the current literature. Researchers should be aware of the presented advantages and limitations when choosing a murine diabetes model. Given the rapid increase in type II diabetics worldwide, our review found that there are a lack of models that sufficiently mimic the development of type II diabetes in adult patients over the years. We suggest that a model with a high-fat diet that accounts for 60% of the daily calorie intake over a period of at least 12 weeks provides the most accurate representation.
Collapse
Affiliation(s)
- Tanja C. Maisenbacher
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Sabrina Ehnert
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
| | - Andreas K. Nüssler
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Maximilian M. Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
| |
Collapse
|
3
|
Moradi L, Witek L, Vivekanand Nayak V, Cabrera Pereira A, Kim E, Good J, Liu CJ. Injectable hydrogel for sustained delivery of progranulin derivative Atsttrin in treating diabetic fracture healing. Biomaterials 2023; 301:122289. [PMID: 37639975 PMCID: PMC11232488 DOI: 10.1016/j.biomaterials.2023.122289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/22/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Hydrogels with long-term storage stability, controllable sustained-release properties, and biocompatibility have been garnering attention as carriers for drug/growth factor delivery in tissue engineering applications. Chitosan (CS)/Graphene Oxide (GO)/Hydroxyethyl cellulose (HEC)/β-glycerol phosphate (β-GP) hydrogel is capable of forming a 3D gel network at physiological temperature (37 °C), rendering it an excellent candidate for use as an injectable biomaterial. This work focused on an injectable thermo-responsive CS/GO/HEC/β-GP hydrogel, which was designed to deliver Atsttrin, an engineered derivative of a known chondrogenic and anti-inflammatory growth factor-like molecule progranulin. The combination of the CS/GO/HEC/β-GP hydrogel and Atsttrin provides a unique biochemical and biomechanical environment to enhance fracture healing. CS/GO/HEC/β-GP hydrogels with increased amounts of GO exhibited rapid sol-gel transition, higher viscosity, and sustained release of Atsttrin. In addition, these hydrogels exhibited a porous interconnected structure. The combination of Atsttrin and hydrogel successfully promoted chondrogenesis and osteogenesis of bone marrow mesenchymal stem cells (bmMSCs) in vitro. Furthermore, the work also presented in vivo evidence that injection of Atsttrin-loaded CS/GO/HEC/β-GP hydrogel stimulated diabetic fracture healing by simultaneously inhibiting inflammatory and stimulating cartilage regeneration and endochondral bone formation signaling pathways. Collectively, the developed injectable thermo-responsive CS/GO/HEC/βG-P hydrogel yielded to be minimally invasive, as well as capable of prolonged and sustained delivery of Atsttrin, for therapeutic application in impaired fracture healing, particularly diabetic fracture healing.
Collapse
Affiliation(s)
- Lida Moradi
- Department of Orthopaedics Surgery, New York University Grossman School of Medicine, New York, NY, 10003, USA; Department of Orthopaedics & Rehabilitation, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Lukasz Witek
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, 11201, USA
| | - Vasudev Vivekanand Nayak
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Angel Cabrera Pereira
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Ellen Kim
- Department of Orthopaedics Surgery, New York University Grossman School of Medicine, New York, NY, 10003, USA
| | - Julia Good
- Department of Orthopaedics Surgery, New York University Grossman School of Medicine, New York, NY, 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics Surgery, New York University Grossman School of Medicine, New York, NY, 10003, USA; Department of Orthopaedics & Rehabilitation, Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
4
|
Khoswanto C. Role of matrix metalloproteinases in bone regeneration: Narrative review. J Oral Biol Craniofac Res 2023; 13:539-543. [PMID: 37351418 PMCID: PMC10282173 DOI: 10.1016/j.jobcr.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) not only work as enzymes but also as degrading enzymes that have been shown to play an important function in extracellular matrix (ECM) regeneration, including bone regeneration. To generate new bone tissue, bone regeneration or repair relies on a series of regulated processes in which MMPs play an important role. Bone cells express the MMPs in an active state, and these MMPs are assumed to have a crucial role, not only for the viability and functionality of osteoclasts, osteoblasts, and osteocytes but also for the formation and development of chondrocytes. Objective This study aimed to review and present the roles of matrix metalloproteinases in bone regeneration. Methods An analysis of the scientific literature on the topics of matrix metalloproteinases in bone regeneration was done on PubMed and Google Scholar. Search results were screened for articles that described or investigated the impacts matrix metalloproteinases have on bones in relation to dentistry. The journals' cited papers were also assessed for relevance and included if they complied with the criteria for inclusion. Accessibility to the full document was one of the prerequisites for admission. Result Bone regeneration are intricate ongoing processes involving numerous MMPs, especially MMP 2, 9 and 13. MMP-2 appears to alter bone growth through influencing osteoclast and osteoblast activity and proliferation, MMP-9-deficient animals have abnormal bone formation exclusively during endochondral ossification, MMP 13 is responsible for osteoclast receptor activation, has been linked to the breakdown bone resorption. Conclusions MMP 2, 9, and 13 play a major protective role in osteogenesis and bone regeneration.
Collapse
Affiliation(s)
- Christian Khoswanto
- Department of Oral Biology Faculty of Dentistry, Airlangga University. Jln. Mayjend. Prof. Dr. Moestopo No. 47, Surabaya, 60132, Indonesia
| |
Collapse
|
5
|
Swanson WB, Durdan M, Eberle M, Woodbury S, Mauser A, Gregory J, Zhang B, Niemann D, Herremans J, Ma PX, Lahann J, Weivoda M, Mishina Y, Greineder CF. A library of Rhodamine6G-based pH-sensitive fluorescent probes with versatile in vivo and in vitro applications. RSC Chem Biol 2022; 3:748-764. [PMID: 35755193 PMCID: PMC9175114 DOI: 10.1039/d2cb00030j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/24/2022] [Indexed: 01/11/2023] Open
Abstract
Acidic pH is critical to the function of the gastrointestinal system, bone-resorbing osteoclasts, and the endolysosomal compartment of nearly every cell in the body. Non-invasive, real-time fluorescence imaging of acidic microenvironments represents a powerful tool for understanding normal cellular biology, defining mechanisms of disease, and monitoring for therapeutic response. While commercially available pH-sensitive fluorescent probes exist, several limitations hinder their widespread use and potential for biologic application. To address this need, we developed a novel library of pH-sensitive probes based on the highly photostable and water-soluble fluorescent molecule, Rhodamine 6G. We demonstrate versatility in terms of both pH sensitivity (i.e., pK a) and chemical functionality, allowing conjugation to small molecules, proteins, nanoparticles, and regenerative biomaterial scaffold matrices. Furthermore, we show preserved pH-sensitive fluorescence following a variety of forms of covalent functionalization and demonstrate three potential applications, both in vitro and in vivo, for intracellular and extracellular pH sensing. Finally, we develop a computation approach for predicting the pH sensitivity of R6G derivatives, which could be used to expand our library and generate probes with novel properties.
Collapse
Affiliation(s)
- W Benton Swanson
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
| | - Margaret Durdan
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Cell and Molecular Biology Program, Medical School, University of Michigan Ann Arbor MI USA
| | - Miranda Eberle
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan Ann Arbor MI USA
| | - Seth Woodbury
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan Ann Arbor MI USA
| | - Ava Mauser
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Biomedical Engineering, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
| | - Jason Gregory
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Chemical Engineering, College of Engineering, University of Michigan Ann Arbor MI USA
| | - Boya Zhang
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Pharmacology, Medical School, University of Michigan Ann Arbor MI USA
| | - David Niemann
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan Ann Arbor MI USA
- Department of Chemical Engineering, College of Engineering, University of Michigan Ann Arbor MI USA
| | - Jacob Herremans
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan Ann Arbor MI USA
| | - Peter X Ma
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
- Department of Biomedical Engineering, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Materials Science and Engineering, College of Engineering, University of Michigan Ann Arbor MI USA
- Macromolecular Science and Engineering Center, College of Engineering, University of Michigan Ann Arbor MI USA
| | - Joerg Lahann
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Biomedical Engineering, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Chemical Engineering, College of Engineering, University of Michigan Ann Arbor MI USA
- Department of Materials Science and Engineering, College of Engineering, University of Michigan Ann Arbor MI USA
- Macromolecular Science and Engineering Center, College of Engineering, University of Michigan Ann Arbor MI USA
| | - Megan Weivoda
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Pharmacology, Medical School, University of Michigan Ann Arbor MI USA
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan Ann Arbor MI USA
| | - Yuji Mishina
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
| | - Colin F Greineder
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Pharmacology, Medical School, University of Michigan Ann Arbor MI USA
- Department of Emergency Medicine, Medical School, University of Michigan NCRC 2800 Plymouth Road, Bldg #26 Ann Arbor MI 48109 USA
| |
Collapse
|
6
|
Neunaber C, Fini M, Cinelli P. Healing after Trauma—New Knowledge and Procedures for the Benefit of Our Patients. Life (Basel) 2022; 12:life12050611. [PMID: 35629279 PMCID: PMC9144455 DOI: 10.3390/life12050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Claudia Neunaber
- Trauma Surgery Department, Experimental Trauma Surgery—Laboratory for Musculoskeletal Trauma and Regenerative Therapies, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625 Hannover, Germany
- Correspondence:
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure Surgical and Technological Sciences, Via di Barbiano, 1/10, 40136 Bologna, Italy;
| | - Paolo Cinelli
- Department of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland;
| |
Collapse
|