1
|
Szydlowski LM, Bulbul AA, Simpson AC, Kaya DE, Singh NK, Sezerman UO, Łabaj PP, Kosciolek T, Venkateswaran K. Adaptation to space conditions of novel bacterial species isolated from the International Space Station revealed by functional gene annotations and comparative genome analysis. MICROBIOME 2024; 12:190. [PMID: 39363369 PMCID: PMC11451251 DOI: 10.1186/s40168-024-01916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/21/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND The extreme environment of the International Space Station (ISS) puts selective pressure on microorganisms unintentionally introduced during its 20+ years of service as a low-orbit science platform and human habitat. Such pressure leads to the development of new features not found in the Earth-bound relatives, which enable them to adapt to unfavorable conditions. RESULTS In this study, we generated the functional annotation of the genomes of five newly identified species of Gram-positive bacteria, four of which are non-spore-forming and one spore-forming, all isolated from the ISS. Using a deep-learning based tool-deepFRI-we were able to functionally annotate close to 100% of protein-coding genes in all studied species, overcoming other annotation tools. Our comparative genomic analysis highlights common characteristics across all five species and specific genetic traits that appear unique to these ISS microorganisms. Proteome analysis mirrored these genomic patterns, revealing similar traits. The collective annotations suggest adaptations to life in space, including the management of hypoosmotic stress related to microgravity via mechanosensitive channel proteins, increased DNA repair activity to counteract heightened radiation exposure, and the presence of mobile genetic elements enhancing metabolism. In addition, our findings suggest the evolution of certain genetic traits indicative of potential pathogenic capabilities, such as small molecule and peptide synthesis and ATP-dependent transporters. These traits, exclusive to the ISS microorganisms, further substantiate previous reports explaining why microbes exposed to space conditions demonstrate enhanced antibiotic resistance and pathogenicity. CONCLUSION Our findings indicate that the microorganisms isolated from ISS we studied have adapted to life in space. Evidence such as mechanosensitive channel proteins, increased DNA repair activity, as well as metallopeptidases and novel S-layer oxidoreductases suggest a convergent adaptation among these diverse microorganisms, potentially complementing one another within the context of the microbiome. The common genes that facilitate adaptation to the ISS environment may enable bioproduction of essential biomolecules need during future space missions, or serve as potential drug targets, if these microorganisms pose health risks. Video Abstract.
Collapse
Affiliation(s)
- Lukasz M Szydlowski
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Malopolska, Poland
- Sano Centre for Computational Personalized Medicine, Czarnowiejska 36, Krakow, 30-054, Malopolskie, Poland
| | - Alper A Bulbul
- Biostatistics and Medical Informatics Department, M. A. A. Acibadem University, İçerenköy, Kayıcdağı Cd.32, Istanbul, 34752, Turkey
| | - Anna C Simpson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, CA, USA
| | - Deniz E Kaya
- Biostatistics and Medical Informatics Department, M. A. A. Acibadem University, İçerenköy, Kayıcdağı Cd.32, Istanbul, 34752, Turkey
| | - Nitin K Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, CA, USA
| | - Ugur O Sezerman
- Biostatistics and Medical Informatics Department, M. A. A. Acibadem University, İçerenköy, Kayıcdağı Cd.32, Istanbul, 34752, Turkey
| | - Paweł P Łabaj
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Malopolska, Poland
| | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Malopolska, Poland.
- Department of Data Science and Engineering, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Slaskie, Poland.
- Sano Centre for Computational Personalized Medicine, Czarnowiejska 36, Krakow, 30-054, Malopolskie, Poland.
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, CA, USA.
| |
Collapse
|
2
|
Caro-Astorga J, Meyerowitz JT, Stork DA, Nattermann U, Piszkiewicz S, Vimercati L, Schwendner P, Hocher A, Cockell C, DeBenedictis E. Polyextremophile engineering: a review of organisms that push the limits of life. Front Microbiol 2024; 15:1341701. [PMID: 38903795 PMCID: PMC11188471 DOI: 10.3389/fmicb.2024.1341701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Nature exhibits an enormous diversity of organisms that thrive in extreme environments. From snow algae that reproduce at sub-zero temperatures to radiotrophic fungi that thrive in nuclear radiation at Chernobyl, extreme organisms raise many questions about the limits of life. Is there any environment where life could not "find a way"? Although many individual extremophilic organisms have been identified and studied, there remain outstanding questions about the limits of life and the extent to which extreme properties can be enhanced, combined or transferred to new organisms. In this review, we compile the current knowledge on the bioengineering of extremophile microbes. We summarize what is known about the basic mechanisms of extreme adaptations, compile synthetic biology's efforts to engineer extremophile organisms beyond what is found in nature, and highlight which adaptations can be combined. The basic science of extremophiles can be applied to engineered organisms tailored to specific biomanufacturing needs, such as growth in high temperatures or in the presence of unusual solvents.
Collapse
Affiliation(s)
| | | | - Devon A. Stork
- Pioneer Research Laboratories, San Francisco, CA, United States
| | - Una Nattermann
- Pioneer Research Laboratories, San Francisco, CA, United States
| | | | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | | | - Antoine Hocher
- London Institute of Medical Sciences, London, United Kingdom
| | - Charles Cockell
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Erika DeBenedictis
- The Francis Crick Institute, London, United Kingdom
- Pioneer Research Laboratories, San Francisco, CA, United States
| |
Collapse
|
3
|
Kaur J, Kaur J, Nigam A. Extremophiles in Space Exploration. Indian J Microbiol 2024; 64:418-428. [PMID: 39010991 PMCID: PMC11246395 DOI: 10.1007/s12088-024-01297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/28/2024] [Indexed: 07/17/2024] Open
Abstract
In the era of deep space exploration, extremophile research represents a key area of research w.r.t space survival. This review thus delves into the intriguing realm of 'Space and Astro Microbiology', providing insights into microbial survival, resilience, and behavioral adaptations in space-like environments. This discussion encompasses the modified behavior of extremophilic microorganisms, influencing virulence, stress resistance, and gene expression. It then shifts to recent studies on the International Space Station and simulated microgravity, revealing microbial responses that impact drug susceptibility, antibiotic resistance, and its commercial implications. The review then transitions into Astro microbiology, exploring the possibilities of interplanetary transit, lithopanspermia, and terraforming. Debates on life's origin and recent Martian meteorite discoveries are noted. We also discuss Proactive Inoculation Protocols for selecting adaptable microorganisms as terraforming pioneers. The discussion concludes with a note on microbes' role as bioengineers in bioregenerative life support systems, in recycling organic waste for sustainable space travel; and in promoting optimal plant growth to prepare Martian and lunar basalt. This piece emphasizes the transformative impact of microbes on the future of space exploration.
Collapse
Affiliation(s)
- Jasvinder Kaur
- Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110 049 India
| | - Jaspreet Kaur
- Maitreyi College, University of Delhi, New Delhi, 110 021 India
| | - Aeshna Nigam
- Shivaji College, University of Delhi, New Delhi, 110 027 India
| |
Collapse
|
4
|
Willis CRG, Calvaruso M, Angeloni D, Baatout S, Benchoua A, Bereiter-Hahn J, Bottai D, Buchheim JI, Carnero-Diaz E, Castiglioni S, Cavalieri D, Ceccarelli G, Chouker A, Cialdai F, Ciofani G, Coppola G, Cusella G, Degl'Innocenti A, Desaphy JF, Frippiat JP, Gelinsky M, Genchi G, Grano M, Grimm D, Guignandon A, Herranz R, Hellweg C, Iorio CS, Karapantsios T, van Loon J, Lulli M, Maier J, Malda J, Mamaca E, Morbidelli L, Osterman A, Ovsianikov A, Pampaloni F, Pavezlorie E, Pereda-Campos V, Przybyla C, Rettberg P, Rizzo AM, Robson-Brown K, Rossi L, Russo G, Salvetti A, Risaliti C, Santucci D, Sperl M, Tabury K, Tavella S, Thielemann C, Willaert R, Monici M, Szewczyk NJ. How to obtain an integrated picture of the molecular networks involved in adaptation to microgravity in different biological systems? NPJ Microgravity 2024; 10:50. [PMID: 38693246 PMCID: PMC11063135 DOI: 10.1038/s41526-024-00395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/08/2024] [Indexed: 05/03/2024] Open
Abstract
Periodically, the European Space Agency (ESA) updates scientific roadmaps in consultation with the scientific community. The ESA SciSpacE Science Community White Paper (SSCWP) 9, "Biology in Space and Analogue Environments", focusses in 5 main topic areas, aiming to address key community-identified knowledge gaps in Space Biology. Here we present one of the identified topic areas, which is also an unanswered question of life science research in Space: "How to Obtain an Integrated Picture of the Molecular Networks Involved in Adaptation to Microgravity in Different Biological Systems?" The manuscript reports the main gaps of knowledge which have been identified by the community in the above topic area as well as the approach the community indicates to address the gaps not yet bridged. Moreover, the relevance that these research activities might have for the space exploration programs and also for application in industrial and technological fields on Earth is briefly discussed.
Collapse
Affiliation(s)
- Craig R G Willis
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Marco Calvaruso
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy
| | - Debora Angeloni
- Institute of Biorobotics, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Sarah Baatout
- Laboratory of Radiobiology, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | | | - Juergen Bereiter-Hahn
- Institute for Cell and Neurobiol. Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Daniele Bottai
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Judith-Irina Buchheim
- Laboratory "Translational Research, Stress & Immunity", LMU University Hospital Munich, Munich, Germany
| | - Eugénie Carnero-Diaz
- Institute Systematic, Evolution, Biodiversity, Sorbonne University, NMNH, CNRS, EPHE, UA, Paris, France
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Gabriele Ceccarelli
- Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy
| | - Alexander Chouker
- Laboratory "Translational Research, Stress & Immunity", LMU University Hospital Munich, Munich, Germany
| | - Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Res. Div., DSBSC-University of Florence, Florence, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025, Pontedera, PI, Italy
| | - Giuseppe Coppola
- Institue of Applied Science and Intelligent Sistems - CNR, Naples, Italy
| | - Gabriella Cusella
- Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy
| | - Andrea Degl'Innocenti
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025, Pontedera, PI, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Jean-Francois Desaphy
- Department of Precision and Regenerative Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Jean-Pol Frippiat
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, Nancy, France
| | - Michael Gelinsky
- Centre for Translational Bone, Joint & Soft Tissue Research, TU Dresden, Dresden, Germany
| | - Giada Genchi
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025, Pontedera, PI, Italy
| | - Maria Grano
- Department of Precision and Regenerative Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Alain Guignandon
- SAINBIOSE, INSERM U1059, Université Jean Monnet, F-42000, Saint-Etienne, France
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Christine Hellweg
- Radiation Biology Dept., Inst. of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | | | | | - Jack van Loon
- Amsterdam University Medical Center, ACTA/VU, Amsterdam, Netherlands
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Jeanette Maier
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Jos Malda
- Department of Orthopaedics, Univ. Med. Center Utrecht & Dept. Clinical Sciences, Utrecht Univ, Utrecht, The Netherlands
| | - Emina Mamaca
- European and International Affairs Dept, Ifremer centre Bretagne, Plouzané, France
| | | | - Andreas Osterman
- Max von Pettenkofer Institute, Virology, LMU Munich & DZIF, Partner Site Munich, Munich, Germany
| | - Aleksandr Ovsianikov
- 3D Printing and Biofabrication, Inst. Materials Science and Technology, TU Wien, Vienna, Austria
| | - Francesco Pampaloni
- Buchmann Inst. for Molecular Life Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Elizabeth Pavezlorie
- Ludwig Boltzmann Inst. for Traumatology, Res. Center in Cooperation with AUVA, Vienna, Austria
| | - Veronica Pereda-Campos
- GSBMS/URU EVOLSAN - Medecine Evolutive, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Cyrille Przybyla
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas les Flots, France
| | - Petra Rettberg
- DLR, Institute of Aerospace Medicine, Research Group Astrobiology, Köln, Germany
| | - Angela Maria Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Kate Robson-Brown
- Department of Engineering Mathematics, and Dept of Anthropology and Archaeology, University of Bristol, Bristol, UK
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Risaliti
- ASAcampus Joint Laboratory, ASA Res. Div., DSBSC-University of Florence, Florence, Italy
| | - Daniela Santucci
- Center for Behavioural Sciences and Mental Health, Ist. Superiore Sanità, Rome, Italy
| | | | - Kevin Tabury
- Laboratory of Radiobiology, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Sara Tavella
- IRCCS Ospedale Policlinico San Martino and University of Genoa, DIMES, Genoa, Italy
| | | | - Ronnie Willaert
- Research Group NAMI and NANO, Vrije Universiteit Brussels, Brussels, Belgium
| | - Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div., DSBSC-University of Florence, Florence, Italy
| | | |
Collapse
|
5
|
Golaz D, Papenfuhs CK, Bellés-Sancho P, Eberl L, Egli M, Pessi G. RNA-seq analysis in simulated microgravity unveils down-regulation of the beta-rhizobial siderophore phymabactin. NPJ Microgravity 2024; 10:44. [PMID: 38570513 PMCID: PMC10991261 DOI: 10.1038/s41526-024-00391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
Exploiting the symbiotic interaction between crops and nitrogen-fixing bacteria is a simple and ecological method to promote plant growth in prospective extraterrestrial human outposts. In this study, we performed an RNA-seq analysis to investigate the adaptation of the legume symbiont Paraburkholderia phymatum STM815T to simulated microgravity (s0-g) at the transcriptome level. The results revealed a drastic effect on gene expression, with roughly 23% of P. phymatum genes being differentially regulated in s0-g. Among those, 951 genes were upregulated and 858 downregulated in the cells grown in s0-g compared to terrestrial gravity (1 g). Several genes involved in posttranslational modification, protein turnover or chaperones encoding were upregulated in s0-g, while those involved in translation, ribosomal structure and biosynthesis, motility or inorganic ions transport were downregulated. Specifically, the whole phm gene cluster, previously bioinformatically predicted to be involved in the production of a hypothetical malleobactin-like siderophore, phymabactin, was 20-fold downregulated in microgravity. By constructing a mutant strain (ΔphmJK) we confirmed that the phm gene cluster codes for the only siderophore secreted by P. phymatum as assessed by the complete lack of iron chelating activity of the P. phymatum ΔphmJK mutant on chrome azurol S (CAS) agar plates. These results not only provide a deeper understanding of the physiology of symbiotic organisms exposed to space-like conditions, but also increase our knowledge of iron acquisition mechanisms in rhizobia.
Collapse
Affiliation(s)
- Daphné Golaz
- Department of Plant and Microbial biology, University of Zurich, Zurich, Switzerland
| | - Chad K Papenfuhs
- Department of Plant and Microbial biology, University of Zurich, Zurich, Switzerland
| | - Paula Bellés-Sancho
- Department of Plant and Microbial biology, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial biology, University of Zurich, Zurich, Switzerland
| | - Marcel Egli
- School of Engineering and Architecture, Institute of Medical Engineering, Space Biology Group, Lucerne University of Applied Sciences and Arts, Hergiswil, Switzerland
- National Center for Biomedical Research in Space, Innovation Cluster Space and Aviation, University of Zurich, Zurich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Noirungsee N, Changkhong S, Phinyo K, Suwannajak C, Tanakul N, Inwongwan S. Genome-scale metabolic modelling of extremophiles and its applications in astrobiological environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13231. [PMID: 38192220 PMCID: PMC10866088 DOI: 10.1111/1758-2229.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Metabolic modelling approaches have become the powerful tools in modern biology. These mathematical models are widely used to predict metabolic phenotypes of the organisms or communities of interest, and to identify metabolic targets in metabolic engineering. Apart from a broad range of industrial applications, the possibility of using metabolic modelling in the contexts of astrobiology are poorly explored. In this mini-review, we consolidated the concepts and related applications of applying metabolic modelling in studying organisms in space-related environments, specifically the extremophilic microbes. We recapitulated the current state of the art in metabolic modelling approaches and their advantages in the astrobiological context. Our review encompassed the applications of metabolic modelling in the theoretical investigation of the origin of life within prebiotic environments, as well as the compilation of existing uses of genome-scale metabolic models of extremophiles. Furthermore, we emphasize the current challenges associated with applying this technique in extreme environments, and conclude this review by discussing the potential implementation of metabolic models to explore theoretically optimal metabolic networks under various space conditions. Through this mini-review, our aim is to highlight the potential of metabolic modelling in advancing the study of astrobiology.
Collapse
Affiliation(s)
- Nuttapol Noirungsee
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research Center of Microbial Diversity and Sustainable Utilizations, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
| | - Sakunthip Changkhong
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Department of Thoracic SurgeryUniversity Hospital ZurichZurichSwitzerland
| | - Kittiya Phinyo
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research group on Earth—Space Ecology (ESE), Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Office of Research AdministrationChiang Mai UniversityChiang MaiThailand
| | | | - Nahathai Tanakul
- National Astronomical Research Institute of ThailandChiang MaiThailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research Center of Microbial Diversity and Sustainable Utilizations, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
| |
Collapse
|
7
|
Nardi L, Davis NM, Sansolini S, Baratto de Albuquerque T, Laarraj M, Caputo D, de Cesare G, Shariati Pour SR, Zangheri M, Calabria D, Guardigli M, Balsamo M, Carrubba E, Carubia F, Ceccarelli M, Ghiozzi M, Popova L, Tenaglia A, Crisconio M, Donati A, Nascetti A, Mirasoli M. APHRODITE: A Compact Lab-on-Chip Biosensor for the Real-Time Analysis of Salivary Biomarkers in Space Missions. BIOSENSORS 2024; 14:72. [PMID: 38391991 PMCID: PMC10887022 DOI: 10.3390/bios14020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
One of the main challenges to be faced in deep space missions is to protect the health and ensure the maximum efficiency of the crew by preparing methods of prevention and in situ diagnosis. Indeed, the hostile environment causes important health problems, ranging from muscle atrophy, osteopenia, and immunological and metabolic alterations due to microgravity, to an increased risk of cancer caused by exposure to radiation. It is, therefore, necessary to provide new methods for the real-time measurement of biomarkers suitable for deepening our knowledge of the effects of space flight on the balance of the immune system and for allowing the monitoring of the astronaut's health during long-term missions. APHRODITE will enable human space exploration because it fills this void that affects both missions in LEO and future missions to the Moon and Mars. Its scientific objectives are the design, production, testing, and in-orbit demonstration of a compact, reusable, and reconfigurable system for performing the real-time analysis of oral fluid samples in manned space missions. In the frame of this project, a crew member onboard the ISS will employ APHRODITE to measure the selected target analytes, cortisol, and dehydroepiandrosterone sulfate (DHEA-S), in oral fluid, in four (plus one additional desired session) separate experiment sessions. The paper addresses the design of the main subsystems of the analytical device and the preliminary results obtained during the first implementations of the device subsystems and testing measurements on Earth. In particular, the system design and the experiment data output of the lab-on-chip photosensors and of the front-end readout electronics are reported in detail along with preliminary chemical tests for the duplex competitive CL-immunoassay for the simultaneous detection of cortisol and DHEA-S. Different applications also on Earth are envisaged for the APHRODITE device, as it will be suitable for point-of-care testing applications (e.g., emergency medicine, bioterrorism, diagnostics in developing countries, etc.).
Collapse
Affiliation(s)
- Lorenzo Nardi
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Nithin Maipan Davis
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Serena Sansolini
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Thiago Baratto de Albuquerque
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Mohcine Laarraj
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Domenico Caputo
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, I-00184 Rome, Italy; (D.C.); (G.d.C.)
| | - Giampiero de Cesare
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, I-00184 Rome, Italy; (D.C.); (G.d.C.)
| | - Seyedeh Rojin Shariati Pour
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (M.Z.); (M.M.)
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (M.Z.); (M.M.)
| | - Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Via Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Via Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Michele Balsamo
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Elisa Carrubba
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Fabrizio Carubia
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Marco Ceccarelli
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Michele Ghiozzi
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Liyana Popova
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Andrea Tenaglia
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Marino Crisconio
- Agenzia Spaziale Italiana (ASI), Italian Space Agency, Via del Politecnico, I-00133 Rome, Italy;
| | - Alessandro Donati
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Augusto Nascetti
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (M.Z.); (M.M.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| |
Collapse
|
8
|
Verbeelen T, Fernandez CA, Nguyen TH, Gupta S, Aarts R, Tabury K, Leroy B, Wattiez R, Vlaeminck SE, Leys N, Ganigué R, Mastroleo F. Whole transcriptome analysis highlights nutrient limitation of nitrogen cycle bacteria in simulated microgravity. NPJ Microgravity 2024; 10:3. [PMID: 38200027 PMCID: PMC10781756 DOI: 10.1038/s41526-024-00345-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Regenerative life support systems (RLSS) will play a vital role in achieving self-sufficiency during long-distance space travel. Urine conversion into a liquid nitrate-based fertilizer is a key process in most RLSS. This study describes the effects of simulated microgravity (SMG) on Comamonas testosteroni, Nitrosomonas europaea, Nitrobacter winogradskyi and a tripartite culture of the three, in the context of nitrogen recovery for the Micro-Ecological Life Support System Alternative (MELiSSA). Rotary cell culture systems (RCCS) and random positioning machines (RPM) were used as SMG analogues. The transcriptional responses of the cultures were elucidated. For CO2-producing C. testosteroni and the tripartite culture, a PermaLifeTM PL-70 cell culture bag mounted on an in-house 3D-printed holder was applied to eliminate air bubble formation during SMG cultivation. Gene expression changes indicated that the fluid dynamics in SMG caused nutrient and O2 limitation. Genes involved in urea hydrolysis and nitrification were minimally affected, while denitrification-related gene expression was increased. The findings highlight potential challenges for nitrogen recovery in space.
Collapse
Affiliation(s)
- Tom Verbeelen
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Celia Alvarez Fernandez
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Thanh Huy Nguyen
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000, Mons, Belgium
| | - Surya Gupta
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
| | - Raf Aarts
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
| | - Kevin Tabury
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
| | - Baptiste Leroy
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000, Mons, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000, Mons, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium
| | - Natalie Leys
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium
| | - Felice Mastroleo
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium.
| |
Collapse
|
9
|
Sharma G, Zee PC, Zea L, Curtis PD. Whole genome-scale assessment of gene fitness of Novosphingobium aromaticavorans during spaceflight. BMC Genomics 2023; 24:782. [PMID: 38102595 PMCID: PMC10725011 DOI: 10.1186/s12864-023-09799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
In microgravity, bacteria undergo intriguing physiological adaptations. There have been few attempts to assess global bacterial physiological responses to microgravity, with most studies only focusing on a handful of individual systems. This study assessed the fitness of each gene in the genome of the aromatic compound-degrading Alphaproteobacterium Novosphingobium aromaticavorans during growth in spaceflight. This was accomplished using Comparative TnSeq, which involves culturing the same saturating transposon mutagenized library under two different conditions. To assess gene fitness, a novel comparative TnSeq analytical tool was developed, named TnDivA, that is particularly useful in leveraging biological replicates. In this approach, transposon diversity is represented numerically using a modified Shannon diversity index, which was then converted into effective transposon density. This transformation accounts for variability in read distribution between samples, such as cases where reads were dominated by only a few transposon inserts. Effective density values were analyzed using multiple statistical methods, including log2-fold change, least-squares regression analysis, and Welch's t-test. The results obtained across applied statistical methods show a difference in the number of significant genes identified. However, the functional categories of genes important to growth in microgravity showed similar patterns. Lipid metabolism and transport, energy production, transcription, translation, and secondary metabolite biosynthesis and transport were shown to have high fitness during spaceflight. This suggests that core metabolic processes, including lipid and secondary metabolism, play an important role adapting to stress and promoting growth in microgravity.
Collapse
Affiliation(s)
- Gayatri Sharma
- Department of Biology, University of Mississippi, 402 Shoemaker Hall, University, MS, 38677, USA
| | - Peter C Zee
- Department of Biology, University of Mississippi, 402 Shoemaker Hall, University, MS, 38677, USA
| | - Luis Zea
- Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Patrick D Curtis
- Department of Biology, University of Mississippi, 402 Shoemaker Hall, University, MS, 38677, USA.
| |
Collapse
|
10
|
Diaz A, Dixit AR, Khodadad CL, Hummerick ME, Justiano-Velez YA, Li W, O'Rourke A. Biofilm formation is correlated with low nutrient and simulated microgravity conditions in a Burkholderia isolate from the ISS water processor assembly. Biofilm 2023; 5:100110. [PMID: 36922940 PMCID: PMC10009688 DOI: 10.1016/j.bioflm.2023.100110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 02/18/2023] [Indexed: 03/05/2023] Open
Abstract
The International Space Station (ISS) Water Processor Assembly (WPA) experiences intermittent dormancy in the WPA wastewater tank during water recycling events which promotes biofilm formation within the system. In this work we aimed to gain a deeper understanding of the impact of nutrient limitation on bacterial growth and biofilm formation under microgravity in support of biofilm mitigation efforts in exploration water recovery systems. A representative species of bacteria that is commonly cultured from the ISS WPA was cultured in an WPA influent water ersatz formulation tailored for microbiological studies. An isolate of Burkholderia contaminans was cultured under a simulated microgravity (SμG) treatment in a vertically rotating high-aspect rotating vessel (HARV) to create the low shear modeled microgravity (LSMMG) environment on a rotating wall vessel (RWV), with a rotating control (R) in the horizontal plane at the predetermined optimal rotation per minute (rpm) speed of 20. Over the course of the growth curve, the bacterial culture in ersatz media was harvested for bacterial counts, and transcriptomic and nutrient content analyses. The cultures under SμG treatment showed a transcriptomic signature indicative of nutrient stress and biofilm formation as compared to the R control treatment. Further analysis of the WPA ersatz over the course of the growth curve suggests that the essential nutrients of the media were consumed faster in the early stages of growth for the SμG treatment and thus approached a nutrient limited growth condition earlier than in the R control culture. The observed limited nutrient response may serve as one element to explain a moderate enhancement of adherent biofilm formation in the SμG treatment after 24 h. While nutrients levels can be modulated, one implication of this investigation is that biofilm mitigation in the ISS environment could benefit from methods such as mixing or the maintenance of minimum flow within a dormant water system in order to force convection and offset the response of microbes to the secondary effects of microgravity.
Collapse
Affiliation(s)
- Angie Diaz
- Amentum Services, Inc, LASSO, NASA Kennedy Space Center, Merritt Island, FL, USA
| | - Anirudha R Dixit
- Amentum Services, Inc, LASSO, NASA Kennedy Space Center, Merritt Island, FL, USA
| | | | - Mary E Hummerick
- Amentum Services, Inc, LASSO, NASA Kennedy Space Center, Merritt Island, FL, USA
| | | | - Wenyan Li
- Amentum Services, Inc, LASSO, NASA Kennedy Space Center, Merritt Island, FL, USA
| | - Aubrie O'Rourke
- Exploration Research and Technology, NASA Kennedy Space Center, Merritt Island, FL, USA
| |
Collapse
|
11
|
Green MJ, Murray EJ, Williams P, Ghaemmaghami AM, Aylott JW, Williams PM. Modelled-Microgravity Reduces Virulence Factor Production in Staphylococcus aureus through Downregulation of agr-Dependent Quorum Sensing. Int J Mol Sci 2023; 24:15997. [PMID: 37958979 PMCID: PMC10648752 DOI: 10.3390/ijms242115997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Bacterial contamination during space missions is problematic for human health and damages filters and other vital support systems. Staphylococcus aureus is both a human commensal and an opportunistic pathogen that colonizes human tissues and causes acute and chronic infections. Virulence and colonization factors are positively and negatively regulated, respectively, by bacterial cell-to-cell communication (quorum sensing) via the agr (accessory gene regulator) system. When cultured under low-shear modelled microgravity conditions (LSMMG), S. aureus has been reported to maintain a colonization rather than a pathogenic phenotype. Here, we show that the modulation of agr expression via reduced production of autoinducing peptide (AIP) signal molecules was responsible for this behavior. In an LSMMG environment, the S. aureus strains JE2 (methicillin-resistant) and SH1000 (methicillin-sensitive) both exhibited reduced cytotoxicity towards the human leukemia monocytic cell line (THP-1) and increased fibronectin binding. Using S. aureus agrP3::lux reporter gene fusions and mass spectrometry to quantify the AIP concentrations, the activation of agr, which depends on the binding of AIP to the transcriptional regulator AgrC, was delayed in the strains with an intact autoinducible agr system. This was because AIP production was reduced under these growth conditions compared with the ground controls. Under LSMMG, S. aureus agrP3::lux reporter strains that cannot produce endogenous AIPs still responded to exogenous AIPs. Provision of exogenous AIPs to S. aureus USA300 during microgravity culture restored the cytotoxicity of culture supernatants for the THP-1 cells. These data suggest that microgravity does not affect AgrC-AIP interactions but more likely the generation of AIPs.
Collapse
Affiliation(s)
- Macauley J. Green
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (M.J.G.)
| | - Ewan J. Murray
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK (P.W.)
| | - Paul Williams
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK (P.W.)
| | - Amir M. Ghaemmaghami
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Jonathan W. Aylott
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (M.J.G.)
| | - Philip M. Williams
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (M.J.G.)
| |
Collapse
|
12
|
Trubl G, Stedman KM, Bywaters KF, Matula EE, Sommers P, Roux S, Merino N, Yin J, Kaelber JT, Avila-Herrera A, Johnson PA, Johnson JC, Borges S, Weber PK, Pett-Ridge J, Boston PJ. Astrovirology: how viruses enhance our understanding of life in the Universe. INTERNATIONAL JOURNAL OF ASTROBIOLOGY 2023; 22:247-271. [PMID: 38046673 PMCID: PMC10691837 DOI: 10.1017/s1473550423000058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Viruses are the most numerically abundant biological entities on Earth. As ubiquitous replicators of molecular information and agents of community change, viruses have potent effects on the life on Earth, and may play a critical role in human spaceflight, for life-detection missions to other planetary bodies and planetary protection. However, major knowledge gaps constrain our understanding of the Earth's virosphere: (1) the role viruses play in biogeochemical cycles, (2) the origin(s) of viruses and (3) the involvement of viruses in the evolution, distribution and persistence of life. As viruses are the only replicators that span all known types of nucleic acids, an expanded experimental and theoretical toolbox built for Earth's viruses will be pivotal for detecting and understanding life on Earth and beyond. Only by filling in these knowledge and technical gaps we will obtain an inclusive assessment of how to distinguish and detect life on other planetary surfaces. Meanwhile, space exploration requires life-support systems for the needs of humans, plants and their microbial inhabitants. Viral effects on microbes and plants are essential for Earth's biosphere and human health, but virus-host interactions in spaceflight are poorly understood. Viral relationships with their hosts respond to environmental changes in complex ways which are difficult to predict by extrapolating from Earth-based proxies. These relationships should be studied in space to fully understand how spaceflight will modulate viral impacts on human health and life-support systems, including microbiomes. In this review, we address key questions that must be examined to incorporate viruses into Earth system models, life-support systems and life detection. Tackling these questions will benefit our efforts to develop planetary protection protocols and further our understanding of viruses in astrobiology.
Collapse
Affiliation(s)
- Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kenneth M. Stedman
- Center for Life in Extreme Environments, Department of Biology, Portland State University, Portland, OR, USA
| | | | | | | | - Simon Roux
- DOE Joint Genome Institute, Berkeley, CA, USA
| | - Nancy Merino
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - John Yin
- Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason T. Kaelber
- Institute for Quantitative Biomedicine, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Aram Avila-Herrera
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Peter Anto Johnson
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | | | - Peter K. Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA, USA
| | | |
Collapse
|
13
|
Krüger M. Remove, Refine, Reduce: Cell Death in Biological Systems. Int J Mol Sci 2023; 24:ijms24087028. [PMID: 37108191 PMCID: PMC10138335 DOI: 10.3390/ijms24087028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Cell death is an important biological phenomenon [...].
Collapse
Affiliation(s)
- Marcus Krüger
- Environmental Cell Biology Group, Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
14
|
Corydon TJ, Schulz H, Richter P, Strauch SM, Böhmer M, Ricciardi DA, Wehland M, Krüger M, Erzinger GS, Lebert M, Infanger M, Wise PM, Grimm D. Current Knowledge about the Impact of Microgravity on Gene Regulation. Cells 2023; 12:cells12071043. [PMID: 37048115 PMCID: PMC10093652 DOI: 10.3390/cells12071043] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Microgravity (µg) has a massive impact on the health of space explorers. Microgravity changes the proliferation, differentiation, and growth of cells. As crewed spaceflights into deep space are being planned along with the commercialization of space travelling, researchers have focused on gene regulation in cells and organisms exposed to real (r-) and simulated (s-) µg. In particular, cancer and metastasis research benefits from the findings obtained under µg conditions. Gene regulation is a key factor in a cell or an organism’s ability to sustain life and respond to environmental changes. It is a universal process to control the amount, location, and timing in which genes are expressed. In this review, we provide an overview of µg-induced changes in the numerous mechanisms involved in gene regulation, including regulatory proteins, microRNAs, and the chemical modification of DNA. In particular, we discuss the current knowledge about the impact of microgravity on gene regulation in different types of bacteria, protists, fungi, animals, humans, and cells with a focus on the brain, eye, endothelium, immune system, cartilage, muscle, bone, and various cancers as well as recent findings in plants. Importantly, the obtained data clearly imply that µg experiments can support translational medicine on Earth.
Collapse
Affiliation(s)
- Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Hoegh Guldbergs Gade 10, 8000 Aarhus, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus, Denmark
- Correspondence: ; Tel.: +45-28-992-179
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Peter Richter
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Sebastian M. Strauch
- Postgraduate Program in Health and Environment, University of Joinville Region, Joinville 89219-710, SC, Brazil
| | - Maik Böhmer
- Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438 Frankfurt am Main, Germany
| | - Dario A. Ricciardi
- Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438 Frankfurt am Main, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Gilmar S. Erzinger
- Postgraduate Program in Health and Environment, University of Joinville Region, Joinville 89219-710, SC, Brazil
| | - Michael Lebert
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Petra M. Wise
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Hoegh Guldbergs Gade 10, 8000 Aarhus, Denmark
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
15
|
Ermolaeva SA, Parfenov VA, Karalkin PA, Khesuani YD, Domnin PA. Experimentally Created Magnetic Force in Microbiological Space and On-Earth Studies: Perspectives and Restrictions. Cells 2023; 12:cells12020338. [PMID: 36672273 PMCID: PMC9856290 DOI: 10.3390/cells12020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/07/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Magnetic force and gravity are two fundamental forces affecting all living organisms, including bacteria. On Earth, experimentally created magnetic force can be used to counterbalance gravity and place living organisms in conditions of magnetic levitation. Under conditions of microgravity, magnetic force becomes the only force that moves bacteria, providing an acceleration towards areas of the lowest magnetic field and locking cells in this area. In this review, we consider basic principles and experimental systems used to create a magnetic force strong enough to balance gravity. Further, we describe how magnetic levitation is applied in on-Earth microbiological studies. Next, we consider bacterial behavior under combined conditions of microgravity and magnetic force onboard a spacecraft. At last, we discuss restrictions on applications of magnetic force in microbiological studies and the impact of these restrictions on biotechnological applications under space and on-Earth conditions.
Collapse
Affiliation(s)
- Svetlana A. Ermolaeva
- Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
- Correspondence: ; Tel.: +7-499-193-4375
| | - Vladislav A. Parfenov
- Institute of Metallurgy and Material Science, Russian Academy of Sciences, 119334 Moscow, Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Pavel A. Karalkin
- Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 127473 Moscow, Russia
| | | | - Pavel A. Domnin
- Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| |
Collapse
|
16
|
Sun H, Zhou Q, Qiao P, Zhu D, Xin B, Wu B, Tang C. Short-term head-down bed rest microgravity simulation alters salivary microbiome in young healthy men. Front Microbiol 2022; 13:1056637. [PMID: 36439790 PMCID: PMC9684331 DOI: 10.3389/fmicb.2022.1056637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/27/2022] [Indexed: 01/03/2024] Open
Abstract
Microgravity influences are prevalent during orbital flight and can adversely affect astronaut physiology. Notably, it may affect the physicochemical properties of saliva and the salivary microbial community. Therefore, this study simulates microgravity in space using a ground-based -6° head-down bed rest (HDBR) test to observe the effects of microgravity on oral salivary secretion function and the salivary microbiome. Sixteen healthy young male volunteers were recruited for the 15-day -6° HDBR test. Non-stimulated whole saliva was collected on day 1 (pre-HDBR), on days 5, 10, and 15 of HDBR, and day 6 of recovery. Salivary pH and salivary flow rate were measured, and the V3-V4 region of the 16S rRNA gene was sequenced and analyzed in 80 saliva samples. The results showed that there were no significant differences in salivary pH, salivary flow rate, and alpha diversity between any two time points. However, beta diversity analysis revealed significant differences between pre-HDBR and the other four time points. After HDBR, the relative abundances of Actinomyces, Parvimonas, Peptostreptococcus, Porphyromonas, Oribacterium, and Capnocytophaga increased significantly, whereas the relative abundances of Neisseria and Haemophilus decreased significantly. However, the relative abundances of Oribacterium and Capnocytophaga did not recover to the pre-HDBR level on day 6 of recovery. Network analysis revealed that the number of relationships between genera decreased, and the positive and negative correlations between genera changed in a complex manner after HDBR and did not reach their original levels on day 6 of recovery. PICRUSt analysis demonstrated that some gene functions of the salivary microbiome also changed after HDBR and remained significantly different from those before HDBR on day 6 of recovery. Collectively, 15 days of -6° HDBR had minimal effect on salivary secretion function but resulted in significant changes in the salivary microbiome, mainly manifested as an increase in oral disease-related bacteria and a decrease in oral health-related commensal bacteria. Further research is required to confirm these oral microbial changes and explore the underlying pathological mechanisms to determine the long-term effects on astronauts embarking on long-duration voyages to outer space.
Collapse
Affiliation(s)
- Hui Sun
- 306th Clinical College of PLA, The Fifth Clinical College, Anhui Medical University, Beijing, China
- Department of Stomatology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Qian Zhou
- 306th Clinical College of PLA, The Fifth Clinical College, Anhui Medical University, Beijing, China
- Department of Stomatology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Pengyan Qiao
- Department of Stomatology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Di Zhu
- 306th Clinical College of PLA, The Fifth Clinical College, Anhui Medical University, Beijing, China
- Department of Stomatology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Bingmu Xin
- Engineering Research Center of Human Circadian Rhythm and Sleep (Shenzhen), Space Science and Technology Institute (Shenzhen), Shenzhen, China
| | - Bin Wu
- China Astronaut Research and Training Center, Beijing, China
| | - Chuhua Tang
- 306th Clinical College of PLA, The Fifth Clinical College, Anhui Medical University, Beijing, China
- Department of Stomatology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
17
|
Abstract
Viruses are the most abundant biological entities on Earth, and yet, they have not received enough consideration in astrobiology. Viruses are also extraordinarily diverse, which is evident in the types of relationships they establish with their host, their strategies to store and replicate their genetic information and the enormous diversity of genes they contain. A viral population, especially if it corresponds to a virus with an RNA genome, can contain an array of sequence variants that greatly exceeds what is present in most cell populations. The fact that viruses always need cellular resources to multiply means that they establish very close interactions with cells. Although in the short term these relationships may appear to be negative for life, it is evident that they can be beneficial in the long term. Viruses are one of the most powerful selective pressures that exist, accelerating the evolution of defense mechanisms in the cellular world. They can also exchange genetic material with the host during the infection process, providing organisms with capacities that favor the colonization of new ecological niches or confer an advantage over competitors, just to cite a few examples. In addition, viruses have a relevant participation in the biogeochemical cycles of our planet, contributing to the recycling of the matter necessary for the maintenance of life. Therefore, although viruses have traditionally been excluded from the tree of life, the structure of this tree is largely the result of the interactions that have been established throughout the intertwined history of the cellular and the viral worlds. We do not know how other possible biospheres outside our planet could be, but it is clear that viruses play an essential role in the terrestrial one. Therefore, they must be taken into account both to improve our understanding of life that we know, and to understand other possible lives that might exist in the cosmos.
Collapse
Affiliation(s)
- Ignacio de la Higuera
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, OR, United States
| | - Ester Lázaro
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, Spain
| |
Collapse
|
18
|
Spaceflight Changes the Production and Bioactivity of Secondary Metabolites in Beauveria bassiana. Toxins (Basel) 2022; 14:toxins14080555. [PMID: 36006216 PMCID: PMC9416017 DOI: 10.3390/toxins14080555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Studies on microorganism response spaceflight date back to 1960. However, nothing conclusive is known concerning the effects of spaceflight on virulence and environmental tolerance of entomopathogenic fungi; thus, this area of research remains open to further exploration. In this study, the entomopathogenic fungus Beauveria bassiana (strain SB010) was exposed to spaceflight (ChangZheng 5 space shuttle during 5 May 2020 to 8 May 2020) as a part of the Key Research and Development Program of Guangdong Province, China, in collaboration with the China Space Program. The study revealed significant differences between the secondary metabolite profiles of the wild isolate (SB010) and the spaceflight-exposed isolate (BHT021, BH030, BHT098) of B. bassiana. Some of the secondary metabolites/toxins, including enniatin A2, brevianamide F, macrosporin, aphidicolin, and diacetoxyscirpenol, were only produced by the spaceflight-exposed isolate (BHT021, BHT030). The study revealed increased insecticidal activities for of crude protein extracts of B. bassiana spaceflight mutants (BHT021 and BH030, respectively) against Megalurothrips usitatus 5 days post application when compared crude protein extracts of the wild isolate (SB010). The data obtained support the idea of using space mutation as a tool for development/screening of fungal strains producing higher quantities of secondary metabolites, ultimately leading to increased toxicity/virulence against the target insect host.
Collapse
|