1
|
Tondo G, De Marchi F, Bonardi F, Menegon F, Verrini G, Aprile D, Anselmi M, Mazzini L, Comi C. Novel Therapeutic Strategies in Alzheimer's Disease: Pitfalls and Challenges of Anti-Amyloid Therapies and Beyond. J Clin Med 2024; 13:3098. [PMID: 38892809 PMCID: PMC11172489 DOI: 10.3390/jcm13113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) causes a significant challenge to global healthcare systems, with limited effective treatments available. This review examines the landscape of novel therapeutic strategies for AD, focusing on the shortcomings of traditional therapies against amyloid-beta (Aβ) and exploring emerging alternatives. Despite decades of research emphasizing the role of Aβ accumulation in AD pathogenesis, clinical trials targeting Aβ have obtained disappointing results, highlighting the complexity of AD pathophysiology and the need for investigating other therapeutic approaches. In this manuscript, we first discuss the challenges associated with anti-Aβ therapies, including limited efficacy and potential adverse effects, underscoring the necessity of exploring alternative mechanisms and targets. Thereafter, we review promising non-Aβ-based strategies, such as tau-targeted therapies, neuroinflammation modulation, and gene and stem cell therapy. These approaches offer new avenues for AD treatment by addressing additional pathological hallmarks and downstream effects beyond Aβ deposition.
Collapse
Affiliation(s)
- Giacomo Tondo
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Fabiola De Marchi
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Francesca Bonardi
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Federico Menegon
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Gaia Verrini
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Davide Aprile
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Matteo Anselmi
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Letizia Mazzini
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, Sant’Andrea Hospital, University of Piemonte Orientale, Corso Abbiate 21, 13100 Vercelli, Italy;
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
2
|
Boumali R, Urli L, Naim M, Soualmia F, Kinugawa K, Petropoulos I, El Amri C. Kallikrein-related peptidase's significance in Alzheimer's disease pathogenesis: A comprehensive survey. Biochimie 2024:S0300-9084(24)00076-2. [PMID: 38608749 DOI: 10.1016/j.biochi.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Alzheimer's disease (AD) and related dementias constitute an important global health challenge. Detailed understanding of the multiple molecular mechanisms underlying their pathogenesis constitutes a clue for the management of the disease. Kallikrein-related peptidases (KLKs), a lead family of serine proteases, have emerged as potential biomarkers and therapeutic targets in the context of AD and associated cognitive decline. Hence, KLKs were proposed to display multifaceted impacts influencing various aspects of neurodegeneration, including amyloid-beta aggregation, tau pathology, neuroinflammation, and synaptic dysfunction. We propose here a comprehensive survey to summarize recent findings, providing an overview of the main kallikreins implicated in AD pathophysiology namely KLK8, KLK6 and KLK7. We explore the interplay between KLKs and key AD molecular pathways, shedding light on their significance as potential biomarkers for early disease detection. We also discuss their pertinence as therapeutic targets for disease-modifying interventions to develop innovative therapeutic strategies aimed at halting or ameliorating the progression of AD and associated dementias.
Collapse
Affiliation(s)
- Rilès Boumali
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France
| | - Laureline Urli
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France
| | - Meriem Naim
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France
| | - Feryel Soualmia
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France
| | - Kiyoka Kinugawa
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France; AP-HP, Paris, France; Charles-Foix Hospital, Functional Exploration Unit for Older Patients, 94200 Ivry-sur-Seine, France
| | - Isabelle Petropoulos
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France.
| | - Chahrazade El Amri
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256, CNRS-SU, ERL INSERM U1164, Biological Adaptation and Ageing, F-75252, Paris, France. Paris, France.
| |
Collapse
|
3
|
Zhong H, Zhou X, Uhm H, Jiang Y, Cao H, Chen Y, Mak TTW, Lo RMN, Wong BWY, Cheng EYL, Mok KY, Chan ALT, Kwok TCY, Mok VCT, Ip FCF, Hardy J, Fu AKY, Ip NY. Using blood transcriptome analysis for Alzheimer's disease diagnosis and patient stratification. Alzheimers Dement 2024; 20:2469-2484. [PMID: 38323937 PMCID: PMC11032555 DOI: 10.1002/alz.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 02/08/2024]
Abstract
INTRODUCTION Blood protein biomarkers demonstrate potential for Alzheimer's disease (AD) diagnosis. Limited studies examine the molecular changes in AD blood cells. METHODS Bulk RNA-sequencing of blood cells was performed on AD patients of Chinese descent (n = 214 and 26 in the discovery and validation cohorts, respectively) with normal controls (n = 208 and 38 in the discovery and validation cohorts, respectively). Weighted gene co-expression network analysis (WGCNA) and deconvolution analysis identified AD-associated gene modules and blood cell types. Regression and unsupervised clustering analysis identified AD-associated genes, gene modules, cell types, and established AD classification models. RESULTS WGCNA on differentially expressed genes revealed 15 gene modules, with 6 accurately classifying AD (areas under the receiver operating characteristics curve [auROCs] > 0.90). These modules stratified AD patients into subgroups with distinct disease states. Cell-type deconvolution analysis identified specific blood cell types potentially associated with AD pathogenesis. DISCUSSION This study highlights the potential of blood transcriptome for AD diagnosis, patient stratification, and mechanistic studies. HIGHLIGHTS We comprehensively analyze the blood transcriptomes of a well-characterized Alzheimer's disease cohort to identify genes, gene modules, pathways, and specific blood cells associated with the disease. Blood transcriptome analysis accurately classifies and stratifies patients with Alzheimer's disease, with some gene modules achieving classification accuracy comparable to that of the plasma ATN biomarkers. Immune-associated pathways and immune cells, such as neutrophils, have potential roles in the pathogenesis and progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Huan Zhong
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
| | - Xiaopu Zhou
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
| | - Hyebin Uhm
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
| | - Yuanbing Jiang
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
| | - Han Cao
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
| | - Yu Chen
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
- The Brain Cognition and Brain Disease InstituteShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen–Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenGuangdongChina
| | - Tiffany T. W. Mak
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
| | - Ronnie Ming Nok Lo
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
| | - Bonnie Wing Yan Wong
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
| | - Elaine Yee Ling Cheng
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
| | - Kin Y. Mok
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | | | - Timothy C. Y. Kwok
- Therese Pei Fong Chow Research Centre for Prevention of DementiaDivision of GeriatricsDepartment of Medicine and TherapeuticsThe Chinese University of Hong KongHKSARChina
| | - Vincent C. T. Mok
- Lau Tat‐chuen Research Centre of Brain Degenerative Diseases in ChineseTherese Pei Fong Chow Research Centre for Prevention of DementiaGerald Choa Neuroscience InstituteLi Ka Shing Institute of Health SciencesDivision of NeurologyDepartment of Medicine and TherapeuticsThe Chinese University of Hong KongHKSARChina
| | - Fanny C. F. Ip
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
| | - John Hardy
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- Institute for Advanced StudyThe Hong Kong University of Science and TechnologyHKSARChina
| | - Amy K. Y. Fu
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
| | - Nancy Y. Ip
- Division of Life ScienceState Key Laboratory of Molecular Neuroscience and Molecular Neuroscience CenterThe Hong Kong University of Science and TechnologyHKSARChina
- Hong Kong Center for Neurodegenerative DiseasesInnoHKHKSARChina
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhenGuangdongChina
| |
Collapse
|
4
|
Nasb M, Tao W, Chen N. Alzheimer's Disease Puzzle: Delving into Pathogenesis Hypotheses. Aging Dis 2024; 15:43-73. [PMID: 37450931 PMCID: PMC10796101 DOI: 10.14336/ad.2023.0608] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disease characterized by both amnestic and non-amnestic clinical manifestations. It accounts for approximately 60-70% of all dementia cases worldwide. With the increasing number of AD patients, elucidating underlying mechanisms and developing corresponding interventional strategies are necessary. Hypotheses about AD such as amyloid cascade, Tau hyper-phosphorylation, neuroinflammation, oxidative stress, mitochondrial dysfunction, cholinergic, and vascular hypotheses are not mutually exclusive, and all of them play a certain role in the development of AD. The amyloid cascade hypothesis is currently the most widely studied; however, other hypotheses are also gaining support. This article summarizes the recent evidence regarding major pathological hypotheses of AD and their potential interplay, as well as the strengths and weaknesses of each hypothesis and their implications for the development of effective treatments. This could stimulate further studies and promote the development of more effective therapeutic strategies for AD.
Collapse
Affiliation(s)
| | | | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| |
Collapse
|
5
|
Balestri W, Sharma R, da Silva VA, Bobotis BC, Curle AJ, Kothakota V, Kalantarnia F, Hangad MV, Hoorfar M, Jones JL, Tremblay MÈ, El-Jawhari JJ, Willerth SM, Reinwald Y. Modeling the neuroimmune system in Alzheimer's and Parkinson's diseases. J Neuroinflammation 2024; 21:32. [PMID: 38263227 PMCID: PMC10807115 DOI: 10.1186/s12974-024-03024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are neurodegenerative disorders caused by the interaction of genetic, environmental, and familial factors. These diseases have distinct pathologies and symptoms that are linked to specific cell populations in the brain. Notably, the immune system has been implicated in both diseases, with a particular focus on the dysfunction of microglia, the brain's resident immune cells, contributing to neuronal loss and exacerbating symptoms. Researchers use models of the neuroimmune system to gain a deeper understanding of the physiological and biological aspects of these neurodegenerative diseases and how they progress. Several in vitro and in vivo models, including 2D cultures and animal models, have been utilized. Recently, advancements have been made in optimizing these existing models and developing 3D models and organ-on-a-chip systems, holding tremendous promise in accurately mimicking the intricate intracellular environment. As a result, these models represent a crucial breakthrough in the transformation of current treatments for PD and AD by offering potential for conducting long-term disease-based modeling for therapeutic testing, reducing reliance on animal models, and significantly improving cell viability compared to conventional 2D models. The application of 3D and organ-on-a-chip models in neurodegenerative disease research marks a prosperous step forward, providing a more realistic representation of the complex interactions within the neuroimmune system. Ultimately, these refined models of the neuroimmune system aim to aid in the quest to combat and mitigate the impact of debilitating neuroimmune diseases on patients and their families.
Collapse
Affiliation(s)
- Wendy Balestri
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK
| | - Ruchi Sharma
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Victor A da Silva
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Bianca C Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Annabel J Curle
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Vandana Kothakota
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Maria V Hangad
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Mina Hoorfar
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Institute On Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| | - Yvonne Reinwald
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK.
| |
Collapse
|
6
|
Patwekar M, Patwekar F, Khan S, Sharma R, Kumar D. Navigating the Alzheimer's Treatment Landscape: Unraveling Amyloid-beta Complexities and Pioneering Precision Medicine Approaches. Curr Top Med Chem 2024; 24:1665-1682. [PMID: 38644708 DOI: 10.2174/0115680266295495240415114919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 04/23/2024]
Abstract
A variety of cutting-edge methods and good knowledge of the illness's complex causes are causing a sea change in the field of Alzheimer's Disease (A.D.) research and treatment. Precision medicine is at the vanguard of this change, where individualized treatment plans based on genetic and biomarker profiles give a ray of hope for customized therapeutics. Combination therapies are becoming increasingly popular as a way to address the multifaceted pathology of Alzheimer's by simultaneously attacking Aβ plaques, tau tangles, neuroinflammation, and other factors. The article covers several therapeutic design efforts, including BACE inhibitors, gamma- secretase modulators, monoclonal antibodies (e.g., Aducanumab and Lecanemab), and anti- Aβ vaccinations. While these techniques appear promising, clinical development faces safety concerns and uneven efficacy. To address the complicated Aβ pathology in Alzheimer's disease, a multimodal approach is necessary. The statement emphasizes the continued importance of clinical trials in addressing safety and efficacy concerns. Looking ahead, it suggests that future treatments may take into account genetic and biomarker traits in order to provide more personalized care. Therapies targeting Aβ, tau tangles, neuroinflammation, and novel drug delivery modalities are planned. Nanoparticles and gene therapies are only two examples of novel drug delivery methods that have the potential to deliver treatments more effectively, with fewer side effects, and with better therapeutic results. In addition, medicines that target tau proteins in addition to Aβ are in the works. Early intervention, based on precise biomarkers, is a linchpin of Alzheimer's care, emphasizing the critical need for detecting the disease at its earliest stages. Lifestyle interventions, encompassing diet, exercise, cognitive training, and social engagement, are emerging as key components in the fight against cognitive decline. Data analytics and art are gaining prominence as strategies to mitigate the brain's inflammatory responses. To pool knowledge and resources in the fight against Alzheimer's, international cooperation between scientists, doctors, and pharmaceutical companies is still essential. In essence, a complex, individualized, and collaborative strategy will characterize Alzheimer's research and therapy in the future. Despite obstacles, these encouraging possibilities show the ongoing commitment of the scientific and medical communities to combat A.D. head-on, providing a glimmer of hope to the countless people and families touched by this savage sickness.
Collapse
Affiliation(s)
- Mohsina Patwekar
- Department of Pharmacology, Luqman College of Pharmacy, P.B. 86, old Jewargi road, Gulbarga, Karnataka, 585102, India
| | - Faheem Patwekar
- Department of Pharmacognosy, Luqman College of Pharmacy, P.B. 86, old Jewargi Road, Gulbarga, Karnataka, 585102, India
| | - Shahzad Khan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al Ahsa City, Saudi Arabia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
- UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
7
|
Zhou R, Wang L, Chen L, Feng X, Zhou R, Xiang P, Wen J, Huang Y, Zhou H. Bone Marrow-Derived GCA + Immune Cells Drive Alzheimer's Disease Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303402. [PMID: 37949676 PMCID: PMC10754099 DOI: 10.1002/advs.202303402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Alzheimer's disease (AD) is an age-related degenerative disease of the central nervous system (CNS), whereas the role of bone marrow immune cells in the pathogenesis of AD remains unclear. Here, the study reveals that compared to matched healthy individuals, AD patients have higher circulating grancalcin (GCA) levels, which negatively correlate with cognitive function. Bone marrow-derived GCA+ immune cells, which secret abundant GCA and increase during aging, preferentially invaded the hippocampus and cortex of AD mouse model in a C-C Motif Chemokine Receptor 10 (CCR10)-dependent manner. Transplanting GCA+ immune cells or direct stereotaxic injection of recombinant GCA protein intensified amyloid plaque load and aggravated cognitive and memory impairments. In contrast, genetic ablation of GCA in the hematopoietic compartment improves cognitive and memory function. Mechanistically, GCA competitively binds to the low-density lipoprotein receptor-related protein 1 (LRP1) in microglia, thus inhibiting phagocytosis and clearance of Aβ and potentiating neuropathological changes. Importantly, GCA-neutralizing antibody treatment rejuvenated cognitive and memory function and constrained AD progression. Together, the study demonstrates a pathological role of GCA+ immune cells instigating cognitive and memory decline, suggesting that GCA+ immune cells can be a potential target for innovative therapeutic strategies in AD.
Collapse
Affiliation(s)
- Rui Zhou
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
| | - Liwen Wang
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
| | - Linyun Chen
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
| | - Xu Feng
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
| | - Ruoyu Zhou
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
| | - Peng Xiang
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
| | - Jie Wen
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
| | - Yan Huang
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Haiyan Zhou
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| |
Collapse
|
8
|
Gostaviceanu A, Gavrilaş S, Copolovici L, Copolovici DM. Membrane-Active Peptides and Their Potential Biomedical Application. Pharmaceutics 2023; 15:2091. [PMID: 37631305 PMCID: PMC10459175 DOI: 10.3390/pharmaceutics15082091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Membrane-active peptides (MAPs) possess unique properties that make them valuable tools for studying membrane structure and function and promising candidates for therapeutic applications. This review paper provides an overview of the fundamental aspects of MAPs, focusing on their membrane interaction mechanisms and potential applications. MAPs exhibit various structural features, including amphipathic structures and specific amino acid residues, enabling selective interaction with multiple membranes. Their mechanisms of action involve disrupting lipid bilayers through different pathways, depending on peptide properties and membrane composition. The therapeutic potential of MAPs is significant. They have demonstrated antimicrobial activity against bacteria and fungi, making them promising alternatives to conventional antibiotics. MAPs can selectively target cancer cells and induce apoptosis, opening new avenues in cancer therapeutics. Additionally, MAPs serve as drug delivery vectors, facilitating the transport of therapeutic cargoes across cell membranes. They represent a fascinating class of biomolecules with significant potential in basic research and clinical applications. Understanding their mechanisms of action and designing peptides with enhanced selectivity and efficacy will further expand their utility in diverse fields. Exploring MAPs holds promise for developing novel therapeutic strategies against infections, cancer, and drug delivery challenges.
Collapse
Affiliation(s)
- Andreea Gostaviceanu
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Biomedical Sciences Doctoral School, University of Oradea, University St., No. 1, 410087 Oradea, Romania
| | - Simona Gavrilaş
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
| | - Lucian Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
| | - Dana Maria Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
| |
Collapse
|
9
|
Misiura MB, Butts B, Hammerschlag B, Munkombwe C, Bird A, Fyffe M, Hemphill A, Dotson VM, Wharton W. Intersectionality in Alzheimer's Disease: The Role of Female Sex and Black American Race in the Development and Prevalence of Alzheimer's Disease. Neurotherapeutics 2023; 20:1019-1036. [PMID: 37490246 PMCID: PMC10457280 DOI: 10.1007/s13311-023-01408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
It is well known that vascular factors and specific social determinants of health contribute to dementia risk and that the prevalence of these risk factors differs according to race and sex. In this review, we discuss the intersection of sex and race, particularly female sex and Black American race. Women, particularly Black women, have been underrepresented in Alzheimer's disease clinical trials and research. However, in recent years, the number of women participating in clinical research has steadily increased. A greater prevalence of vascular risk factors such as hypertension and type 2 diabetes, coupled with unique social and environmental pressures, puts Black American women particularly at risk for the development of Alzheimer's disease and related dementias. Female sex hormones and the use of hormonal birth control may offer some protective benefits, but results are mixed, and studies do not consistently report the demographics of their samples. We argue that as a research community, greater efforts should be made to not only recruit this vulnerable population, but also report the demographic makeup of samples in research to better target those at greatest risk for the disease.
Collapse
Affiliation(s)
- Maria B Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, USA.
- Center for Translational Research in Neuroimaging & Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
| | - Brittany Butts
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Bruno Hammerschlag
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Chinkuli Munkombwe
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Center for Translational Research in Neuroimaging & Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Arianna Bird
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Mercedes Fyffe
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Asia Hemphill
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Center for Translational Research in Neuroimaging & Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Vonetta M Dotson
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Gerontology Institute, Georgia State University, Atlanta, GA, USA
| | - Whitney Wharton
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
10
|
Li X, Liu Q, Xie X, Peng C, Pang Q, Liu B, Han B. Application of Novel Degraders Employing Autophagy for Expediting Medicinal Research. J Med Chem 2023; 66:1700-1711. [PMID: 36716420 DOI: 10.1021/acs.jmedchem.2c01712] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Targeted protein degradation (TPD) technology is based on a unique pharmacological mechanism that has profoundly revolutionized medicinal research by overcoming limitations associated with traditional small-molecule drugs. Autophagy, a mechanism for intracellular waste disposal and recovery, is an important biological process in medicinal research. Recently, studies have demonstrated that several emerging autophagic degraders can treat human diseases. Herein we summarize the progress in medicinal research on autophagic degraders, including autophagosome-tethering compounds (ATTEC), autophagy-targeting chimeras (AUTAC), and AUTOphagy-TArgeting chimeras (AUTOTAC), for treating human diseases. These autophagic degraders exhibit excellent potential for treating neurodegenerative diseases. Our research on autophagic degraders provides a new avenue for medicinal research on TPD via autophagy.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|