1
|
Renzelmann J, Heene S, Jonczyk R, Krüger J, Alnajjar S, Blume C. Sustainability of shear stress conditioning in endothelial colony-forming cells compared to human aortic endothelial cells to underline suitability for tissue-engineered vascular grafts. Microvasc Res 2025; 157:104746. [PMID: 39278537 DOI: 10.1016/j.mvr.2024.104746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The endothelialization of cardiovascular implants is supposed to improve the long-term patency of these implants. In addition, in previous studies, it has been shown, that the conditioning of endothelial cells by dynamic cultivation leads to the expression of an anti-thrombogenic phenotype. For the creation of a tissue-engineered vascular graft (TEVG), these two strategies were combined to achieve optimal hemocompatibility. In a clinical setup, this would require the transfer of the already endothelialized construct from the conditioning bioreactor to the patient. Therefore, the reversibility of the dynamic conditioning of the endothelial cells with arterial-like high shear stress (20 dyn/cm2) was investigated to define the timeframe (tested in a range of up to 24 h) for the perseverance of dynamically induced phenotypical changes. Two types of endothelial cells were compared: endothelial colony-forming cells (ECFCs) and human aortic endothelial cells (HAECs). The results showed that ECFCs respond far more sensitively and rapidly to flow than HAECs. The resulting cell alignment and increased protein expression of KLF-2, Notch-4, Thrombomodulin, Tie2 and eNOS monomer was paralleled by increased eNOS and unaltered KLF-2 mRNA levels even under stopped-flow conditions. VCAM-1 mRNA and protein expression was downregulated under flow and did not recover under stopped flow. From these time kinetic results, we concluded, that the maximum time gap between the TEVG cultivated with autologous ECFCs in future reactor cultivations and the transfer to the potential TEVG recipient should be limited to ∼6 h.
Collapse
Affiliation(s)
- Jannis Renzelmann
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
| | - Sebastian Heene
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
| | - Rebecca Jonczyk
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
| | - Jana Krüger
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
| | - Suhayla Alnajjar
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
| | - Cornelia Blume
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
| |
Collapse
|
2
|
Garza-Treviño EN, Santoyo-Suarez MG, Islas JF. Exploring the role of hydrogel scaffolds in cardiac regeneration: emphasis on natural extracellular matrix components. Nanomedicine (Lond) 2024:1-4. [PMID: 39686757 DOI: 10.1080/17435889.2024.2443384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024] Open
Affiliation(s)
- Elsa N Garza-Treviño
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Michelle G Santoyo-Suarez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | |
Collapse
|
3
|
Jha A, Hristov B, Wang X, Wang S, Greenleaf WJ, Kundaje A, Aiden EL, Bertero A, Noble WS. Prediction and functional interpretation of inter-chromosomal genome architecture from DNA sequence with TwinC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613355. [PMID: 39345598 PMCID: PMC11429679 DOI: 10.1101/2024.09.16.613355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Three-dimensional nuclear DNA architecture comprises well-studied intra-chromosomal (cis) folding and less characterized inter-chromosomal (trans) interfaces. Current predictive models of 3D genome folding can effectively infer pairwise cis-chromatin interactions from the primary DNA sequence but generally ignore trans contacts. There is an unmet need for robust models of trans-genome organization that provide insights into their underlying principles and functional relevance. We present TwinC, an interpretable convolutional neural network model that reliably predicts trans contacts measurable through genome-wide chromatin conformation capture (Hi-C). TwinC uses a paired sequence design from replicate Hi-C experiments to learn single base pair relevance in trans interactions across two stretches of DNA. The method achieves high predictive accuracy (AUROC=0.80) on a cross-chromosomal test set from Hi-C experiments in heart tissue. Mechanistically, the neural network learns the importance of compartments, chromatin accessibility, clustered transcription factor binding and G-quadruplexes in forming trans contacts. In summary, TwinC models and interprets trans genome architecture, shedding light on this poorly understood aspect of gene regulation.
Collapse
Affiliation(s)
- Anupama Jha
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Borislav Hristov
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Xiao Wang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen Center for Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Sheng Wang
- Paul G. Allen Center for Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University Stanford, CA, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computer Science, Rice University, Houston, TX, USA
- Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA
| | - Alessandro Bertero
- Molecular Biotechnology Center "Guido Tarone," Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen Center for Computer Science & Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Min L, Zhong F, Gu L, Lee K, He JC. Krüppel-like factor 2 is an endoprotective transcription factor in diabetic kidney disease. Am J Physiol Cell Physiol 2024; 327:C477-C486. [PMID: 38981608 DOI: 10.1152/ajpcell.00222.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Diabetic kidney disease (DKD) is a microvascular complication of diabetes, and glomerular endothelial cell (GEC) dysfunction is a key driver of DKD pathogenesis. Krüppel-like factor 2 (KLF2), a shear stress-induced transcription factor, is among the highly regulated genes in early DKD. In the kidney, KLF2 expression is mostly restricted to endothelial cells, but its expression is also found in immune cell subsets. KLF2 expression is upregulated in response to increased shear stress by the activation of mechanosensory receptors but suppressed by inflammatory cytokines, both of which characterize the early diabetic kidney milieu. KLF2 expression is reduced in progressive DKD and hypertensive nephropathy in humans and mice, likely due to high glucose and inflammatory cytokines such as TNF-α. However, KLF2 expression is increased in glomerular hyperfiltration-induced shear stress without metabolic dysregulation, such as in settings of unilateral nephrectomy. Lower KLF2 expression is associated with CKD progression in patients with unilateral nephrectomy, consistent with its endoprotective role. KLF2 confers endoprotection by inhibition of inflammation, thrombotic activation, and angiogenesis, and thus KLF2 is considered a protective factor for cardiovascular disease (CVD). Based on similar mechanisms, KLF2 also exhibits renoprotection, and its reduced expression in endothelial cells worsens glomerular injury and albuminuria in settings of diabetes or unilateral nephrectomy. Thus KLF2 confers endoprotective effects in both CVD and DKD, and its activators could potentially be developed as a novel class of drugs for cardiorenal protection in diabetic patients.
Collapse
Affiliation(s)
- Lulin Min
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Fang Zhong
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Leyi Gu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kyung Lee
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, New York, United States
| |
Collapse
|
5
|
García-Loredo JA, Santoyo-Suarez MG, Rodríguez-Nuñez O, Benitez Chao DF, Garza-Treviño EN, Zapata-Morin PA, Padilla-Rivas GR, Islas JF. Is the Cis-Element CACCC-Box a Master Regulatory Element during Cardiovascular Disease? A Bioinformatics Approach from the Perspective of the Krüppel-like Family of Transcription Factors. Life (Basel) 2024; 14:493. [PMID: 38672763 PMCID: PMC11051458 DOI: 10.3390/life14040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The CACCC-box motif emerges as a pivotal cis-regulatory element implicated in diverse developmental processes and diseases, particularly cardiovascular diseases (CVDs). This study centers on the intricate interplay between the CACCC-box and its binding proteins such as: the Krüppel-Like Family (KLF) of transcription factors as primary effectors in the context of CVDs. Our analysis was through a bioinformatics approach, which revealed significant transcriptional activity among KLF subgroup 2, exhibiting the highest number of interactions focusing on the established roles: pluripotency, cancer, and cardiovascular development and diseases. Our analysis reveals KLF's interactions with GATA4, MEF2C, NKX2.5 and other ~90 potential genes that participate in the regulation of the hypertrophic environment (or CVDs' Environment). Also, the GO analysis showed that genes containing the motif CACCC were enriched for multiple CVDs; in combination with STRING analysis, these results pointed to a link between KLFs and these diseases. The analysis further identifies other potential CACCC-box binding factors, such as SP family members, WT1, VEZF1, and -SALL4, which are implicated in cardiac contraction, remodeling, and inflammation processes.
Collapse
Affiliation(s)
- Juan Andrés García-Loredo
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (J.A.G.-L.); (M.G.S.-S.); (O.R.-N.); (D.F.B.C.); (E.N.G.-T.); (G.R.P.-R.)
- Laboratorio de Micología y Fitopatología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo León, Mexico;
| | - Michelle G. Santoyo-Suarez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (J.A.G.-L.); (M.G.S.-S.); (O.R.-N.); (D.F.B.C.); (E.N.G.-T.); (G.R.P.-R.)
| | - Oscar Rodríguez-Nuñez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (J.A.G.-L.); (M.G.S.-S.); (O.R.-N.); (D.F.B.C.); (E.N.G.-T.); (G.R.P.-R.)
| | - Diego Francisco Benitez Chao
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (J.A.G.-L.); (M.G.S.-S.); (O.R.-N.); (D.F.B.C.); (E.N.G.-T.); (G.R.P.-R.)
| | - Elsa N. Garza-Treviño
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (J.A.G.-L.); (M.G.S.-S.); (O.R.-N.); (D.F.B.C.); (E.N.G.-T.); (G.R.P.-R.)
| | - Patricio Adrián Zapata-Morin
- Laboratorio de Micología y Fitopatología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo León, Mexico;
| | - Gerardo R. Padilla-Rivas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (J.A.G.-L.); (M.G.S.-S.); (O.R.-N.); (D.F.B.C.); (E.N.G.-T.); (G.R.P.-R.)
| | - Jose Francisco Islas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (J.A.G.-L.); (M.G.S.-S.); (O.R.-N.); (D.F.B.C.); (E.N.G.-T.); (G.R.P.-R.)
| |
Collapse
|
6
|
Zhang Y, Cheng Y, Zhao W, Song F, Cao Y. Effects of Halloysite Nanotubes and Multi-walled Carbon Nanotubes on Kruppel-like Factor 15-Mediated Downstream Events in Mouse Hearts After Intravenous Injection. Cardiovasc Toxicol 2024; 24:408-421. [PMID: 38411850 DOI: 10.1007/s12012-024-09844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Halloysite nanotubes (HNTs) are nanomaterials (NMs) derived from natural clays and have been considered as biocompatible NMs for biomedical uses. However, the cardiovascular toxicity of HNTs has not been thoroughly investigated. In this study, we compared the cardiotoxicity of HNTs and multi-walled carbon nanotubes (MWCNTs), focusing on the changes in Kruppel-like factor (KLF)-mediated signaling pathways. Mice were intravenously injected with 50 µg NMs, once a day, for 5 days, and then mouse hearts were removed for experiments. While HNTs or MWCNTs did not induce obvious pathological changes, RNA-sequencing data suggested the alterations of KLF gene expression. We further confirmed an increase of Klf15 positive cells, accompanied by changes in Klf15-related gene ontology (GO) terms. We noticed that most of the changed GO terms are related with the regulation of gene expression, and we confirmed that the NMs increased myoneurin (Mynn) but decreased snail family transcriptional repressor 1 (Snai1), two transcription factors (TFs) related with Klf15. Besides, the changed GO terms also include metal ion binding and positive regulation of glucose import, and we verified an increase of phosphoenolpyruvate carboxykinase 1 (Pck1) and insulin receptor (Insr). However, HNTs and MWCNTs only showed minimal impact on cell death signaling pathways, and no increase in apoptotic sites was observed after NM treatment. We concluded that intravenous administration of HNTs and MWCNTs activated a protective TF, namely Klf15 in mouse aortas, to alter gene expression and signaling pathways related with metal ion binding and glucose import.
Collapse
Affiliation(s)
- Yimin Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yujia Cheng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
7
|
Gui LK, Liu HJ, Jin LJ, Peng XC. Krüpple-like factors in cardiomyopathy: emerging player and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1342173. [PMID: 38516000 PMCID: PMC10955087 DOI: 10.3389/fcvm.2024.1342173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiomyopathy, a heterogeneous pathological condition characterized by changes in cardiac structure or function, represents a significant risk factor for the prevalence and mortality of cardiovascular disease (CVD). Research conducted over the years has led to the modification of definition and classification of cardiomyopathy. Herein, we reviewed seven of the most common types of cardiomyopathies, including Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), diabetic cardiomyopathy, Dilated Cardiomyopathy (DCM), desmin-associated cardiomyopathy, Hypertrophic Cardiomyopathy (HCM), Ischemic Cardiomyopathy (ICM), and obesity cardiomyopathy, focusing on their definitions, epidemiology, and influencing factors. Cardiomyopathies manifest in various ways ranging from microscopic alterations in cardiomyocytes, to tissue hypoperfusion, cardiac failure, and arrhythmias caused by electrical conduction abnormalities. As pleiotropic Transcription Factors (TFs), the Krüppel-Like Factors (KLFs), a family of zinc finger proteins, are involved in regulating the setting and development of cardiomyopathies, and play critical roles in associated biological processes, including Oxidative Stress (OS), inflammatory reactions, myocardial hypertrophy and fibrosis, and cellular autophagy and apoptosis, particularly in diabetic cardiomyopathy. However, research into KLFs in cardiomyopathy is still in its early stages, and the pathophysiologic mechanisms of some KLF members in various types of cardiomyopathies remain unclear. This article reviews the roles and recent research advances in KLFs, specifically those targeting and regulating several cardiomyopathy-associated processes.
Collapse
Affiliation(s)
- Le-Kun Gui
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Huang-Jun Liu
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Li-Jun Jin
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
8
|
Rutledge CA. Molecular mechanisms underlying sarcopenia in heart failure. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:7. [PMID: 38455513 PMCID: PMC10919908 DOI: 10.20517/jca.2023.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The loss of skeletal muscle, also known as sarcopenia, is an aging-associated muscle disorder that is disproportionately present in heart failure (HF) patients. HF patients with sarcopenia have poor outcomes compared to the overall HF patient population. The prevalence of sarcopenia in HF is only expected to grow as the global population ages, and novel treatment strategies are needed to improve outcomes in this cohort. Multiple mechanistic pathways have emerged that may explain the increased prevalence of sarcopenia in the HF population, and a better understanding of these pathways may lead to the development of therapies to prevent muscle loss. This review article aims to explore the molecular mechanisms linking sarcopenia and HF, and to discuss treatment strategies aimed at addressing such molecular signals.
Collapse
Affiliation(s)
- Cody A. Rutledge
- Acute Medicine Section, Division of Medicine, Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|