1
|
Ebrahimi A, Ghorbanpoor H, Apaydın E, Demir Cevizlidere B, Özel C, Tüfekçioğlu E, Koç Y, Topal AE, Tomsuk Ö, Güleç K, Abdullayeva N, Kaya M, Ghorbani A, Şengel T, Benzait Z, Uysal O, Eker Sarıboyacı A, Doğan Güzel F, Singh H, Hassan S, Ankara H, Pat S, Atalay E, Avci H. Convenient rapid prototyping microphysiological niche for mimicking liver native basement membrane: Liver sinusoid on a chip. Colloids Surf B Biointerfaces 2024; 245:114292. [PMID: 39383580 DOI: 10.1016/j.colsurfb.2024.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Liver is responsible for the metabolization processes of up to 90 % of compounds and toxins in the body. Therefore liver-on-a-chip systems, as an in vitro promising cell culture platform, have great importance for fundamental science and drug development. In most of the liver-on-a-chip studies, seeding cells on both sides of a porous membrane, which represents the basement membrane, fail to resemble the native characteristics of biochemical, biophysical, and mechanical properties. In this study, polycarbonate (PC) and polyethylene terephthalate (PET) membranes were coated with gelatin to address this issue by accurately mimicking the native basement membrane present in the space of Disse. Various coating methods were used, including doctor blade, gel micro-injection, electrospinning, and spin coating. Spin coating was demonstrated to be the most effective technique owing to the ability to produce thin gel thickness with desirable surface roughness for cell interactions on both sides of the membrane. HepG2 and EA.HY926 cells were seeded on the upper and bottom sides of the gelatin-coated PET membrane and cultured on-chip for 7 days. Cell viability increased from 90 % to 95 %, while apoptotic index decreased. Albumin secretion notably rose between days 1-7 and 4-7, while GST-α secretion decreased from day 1 to day 7. In conclusion, the optimized spin coating process reported here can effectively modify the membranes to better mimic the native basement membrane niche characteristics.
Collapse
Affiliation(s)
- Aliakbar Ebrahimi
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Hamed Ghorbanpoor
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Biomedical Engineering, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Elif Apaydın
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Biochemistry, Institute of Health Sciences, Anadolu University, Eskisehir, Türkiye
| | - Bahar Demir Cevizlidere
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Ceren Özel
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Emre Tüfekçioğlu
- Department of Industrial Design/Department of Industrial Design, Faculty of Architecture and Design, Eskisehir Technical University, Eskisehir, Türkiye
| | - Yücel Koç
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Ahmet Emin Topal
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Biochemistry, School of Pharmacy, Bahçeşehir University, Istanbul, Türkiye
| | - Özlem Tomsuk
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Mechanical Engineering, Middle East Technical University, Ankara 06800, Türkiye
| | - Kadri Güleç
- Department of Analytical Chemistry, Institute of Health Sciences, Anadolu University, Eskisehir, Türkiye
| | - Nuran Abdullayeva
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Murat Kaya
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Aynaz Ghorbani
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Tayfun Şengel
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye; Central Research Laboratory Research and Application Center (ARUM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Zineb Benzait
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Onur Uysal
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Ayla Eker Sarıboyacı
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Fatma Doğan Güzel
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Türkiye
| | - Hemant Singh
- Department of Biological Sciences, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates; Functional Biomaterials Group, Khalifa University, San Campus, Abu Dhabi, United Arab Emirates
| | - Shabir Hassan
- Department of Biological Sciences, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates; Functional Biomaterials Group, Khalifa University, San Campus, Abu Dhabi, United Arab Emirates
| | - Hüseyin Ankara
- Mining Engineering Department, Engineering-Architecture Faculty, Eskisehir Osmangazi University, Meşelik Campus, Eskisehir 26480, Türkiye
| | - Suat Pat
- Eskisehir Osmangazi University, Faculty of Science, Department of Physics, Eskisehir TR-26040, Türkiye
| | - Eray Atalay
- Department of Ophthalmology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Türkiye
| | - Huseyin Avci
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, Eskisehir, Türkiye; Translational Medicine Research and Clinical Center (TATUM), Eskisehir Osmangazi University, Eskisehir, Türkiye.
| |
Collapse
|
2
|
Siregar KAAK, Syaifie PH, Jauhar MM, Arda AG, Rochman NT, Kustiawan PM, Mardliyati E. Revealing curcumin therapeutic targets on SRC, PPARG, MAPK8 and HSP90 as liver cirrhosis therapy based on comprehensive bioinformatic study. J Biomol Struct Dyn 2024:1-18. [PMID: 38217310 DOI: 10.1080/07391102.2023.2301534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/09/2023] [Indexed: 01/15/2024]
Abstract
Cirrhosis naturally progresses through three stages: compensated, decompensated, and late decompensated, which carry an elevated risk of death. Although curcumin's anti-cirrhosis effects have been studied, underlying mechanism in preventing cirrhosis progression and the correlation between curcumin's action with upregulated genes remains insufficiently explored. In this study, we employed network pharmacology approach to construct a drug-target-disease network through bioinformatics and validate the findings with molecular docking and dynamic simulation. The curcumin-targeted liver cirrhosis network encompassed 54 nodes with 282 edges in protein-protein interactions (PPI) network. By utilizing network centrality analysis, we identified eight crucial genes. KEGG enrichment pathway revealed that these crucial genes are involved in pathway of cancer, endocrine resistance, estrogen signaling, chemical carcinogenesis-receptor activation, lipid metabolism, and atherosclerosis. Notably, these eight genes predominantly participate in cancer-related pathways. Further investigation revealed upregulation of four genes and downregulation of four others in hepatocellular carcinoma patients. These upregulated genes-MAPK8, SRC, PPARG, and HSP90AA1-strongly correlated with reduced survival probability in liver hepatocellular carcinoma patients with survival times approximately under 4000 days (∼11 years). Molecular docking and molecular dynamic results exhibited curcumin's superior binding affinities and stability compared to native ligands of MAPK8, SRC, PPARG, and HSP90AA1 within 50 ns simulations. Moreover, MM-GBSA analysis showed stronger binding energy of curcumin to MAPK8, SRC, and HSP90AA1 than native ligand. In conclusion, this study provides valuable insights into curcumin's potential mechanisms in preventing liver cirrhosis progression, specifically in HCC. These findings offer a theoretical basis for further pharmacological research into anti-HCC effect of curcumin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Khalish Arsy Al Khairy Siregar
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Indonesia
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | - Putri Hawa Syaifie
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | | | - Adzani Gaisani Arda
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | - Nurul Taufiqu Rochman
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
- Research Center for Advanced Material, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia
| | | | - Etik Mardliyati
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| |
Collapse
|
3
|
Yasuda K, Maeda H, Kinoshita R, Minayoshi Y, Mizuta Y, Nakamura Y, Imoto S, Nishi K, Yamasaki K, Sakuragi M, Nakamura T, Ikeda-Imafuku M, Iwao Y, Ishima Y, Ishida T, Iwakiri Y, Otagiri M, Watanabe H, Maruyama T. Encapsulation of an Antioxidant in Redox-Sensitive Self-Assembled Albumin Nanoparticles for the Treatment of Hepatitis. ACS NANO 2023; 17:16668-16681. [PMID: 37579503 DOI: 10.1021/acsnano.3c02877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Hepatitis is an inflammation of the liver caused by the inadequate elimination of reactive oxygen species (ROS) derived from Kupffer cells. Edaravone is clinically used as an antioxidant but shows poor liver distribution. Herein, we report on the design of a Kupffer cell-oriented nanoantioxidant based on a disulfide cross-linked albumin nanoparticle containing encapsulated edaravone (EeNA) as a therapeutic for the treatment of hepatitis. Since the edaravone is bound to albumin, this results in a soluble and stable form of edaravone in water. Exchanging the intramolecular disulfide bonds to intermolecular disulfide bridges of albumin molecules allowed the preparation of a redox responsive albumin nanoparticle that is stable in the blood circulation but can release drugs into cells. Consequently, EeNA was fabricated by the nanoscale self-assembly of edaravone and albumin nanoparticles without the additives that are contained in commercially available edaravone preparations. EeNA retained its nanostructure under serum conditions, but the encapsulated edaravone was released efficiently under intracellular reducing conditions in macrophages. The EeNA was largely distributed in the liver and subsequently internalized into Kupffer cells within 60 min after injection in a concanavalin-A-induced hepatitis mouse. The survival rate of the hepatitis mice was significantly improved by EeNA due to the suppression of liver necrosis and oxidative stress by scavenging excessive ROS. Moreover, even through the postadministration, EeNA showed an excellent hepatoprotective action as well. In conclusion, EeNA has the potential for use as a nanotherapeutic against various types of hepatitis because of its Kupffer cell targeting ability and redox characteristics.
Collapse
Affiliation(s)
- Kengo Yasuda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hitoshi Maeda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryo Kinoshita
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Minayoshi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Mizuta
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuka Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shuhei Imoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Koji Nishi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Mina Sakuragi
- Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Teruya Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mayumi Ikeda-Imafuku
- School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-Cho, Wakayama 640-8156, Japan
| | - Yasunori Iwao
- School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-Cho, Wakayama 640-8156, Japan
| | - Yu Ishima
- Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Hiroshi Watanabe
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Maruyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
4
|
Affiliation(s)
- Ahmet Ozen
- From the Department of Pediatrics, Division of Allergy and Immunology, Marmara University, School of Medicine, the Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, and the Isil Berat Barlan Center for Translational Medicine - all in Istanbul, Turkey (A.O.); and the Molecular Development of the Immune System Section, Laboratory of Immune System Biology, Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (M.J.L.)
| | - Michael J Lenardo
- From the Department of Pediatrics, Division of Allergy and Immunology, Marmara University, School of Medicine, the Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, and the Isil Berat Barlan Center for Translational Medicine - all in Istanbul, Turkey (A.O.); and the Molecular Development of the Immune System Section, Laboratory of Immune System Biology, Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (M.J.L.)
| |
Collapse
|
5
|
Trucas M, Burattini S, Porcu S, Simbula M, Ristaldi MS, Kowalik MA, Serra MP, Gobbi P, Battistelli M, Perra A, Quartu M. Multi-Organ Morphological Findings in a Humanized Murine Model of Sickle Cell Trait. Int J Mol Sci 2023; 24:10452. [PMID: 37445630 DOI: 10.3390/ijms241310452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Sickle cell disease (SCD) is caused by the homozygous beta-globin gene mutation that can lead to ischemic multi-organ damage and consequently reduce life expectancy. On the other hand, sickle cell trait (SCT), the heterozygous beta-globin gene mutation, is still considered a benign condition. Although the mechanisms are not well understood, clinical evidence has recently shown that specific pathological symptoms can also be recognized in SCT carriers. So far, there are still scant data regarding the morphological modifications referable to possible multi-organ damage in the SCT condition. Therefore, after genotypic and hematological characterization, by conventional light microscopy and transmission electron microscopy (TEM), we investigated the presence of tissue alterations in 13 heterozygous Townes mice, one of the best-known animal models that, up to now, was used only for the study of the homozygous condition. We found that endothelial alterations, as among which the thickening of vessel basal lamina, are ubiquitous in the lung, liver, kidney, and spleen of SCT carrier mice. The lung shows the most significant alterations, with a distortion of the general tissue architecture, while the heart is the least affected. Collectively, our findings contribute novel data to the histopathological modifications at microscopic and ultrastructural levels, underlying the heterozygous beta-globin gene mutation, and indicate the translational suitability of the Townes model to characterize the features of multiple organ involvement in the SCT carriers.
Collapse
Affiliation(s)
- Marcello Trucas
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences, Campus Scientifico "Enrico Mattei", University of Urbino Carlo Bo, Via Ca' le Suore 2-Località Crocicchia, 61029 Urbino, Italy
| | - Susanna Porcu
- Italian National Research Council (CNR)-IRGB, Cittadella Universitaria Monserrato, 09042 Monserrato, Italy
| | - Michela Simbula
- Italian National Research Council (CNR)-IRGB, Cittadella Universitaria Monserrato, 09042 Monserrato, Italy
| | - Maria Serafina Ristaldi
- Italian National Research Council (CNR)-IRGB, Cittadella Universitaria Monserrato, 09042 Monserrato, Italy
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Maria Pina Serra
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Pietro Gobbi
- Department of Biomolecular Sciences, Campus Scientifico "Enrico Mattei", University of Urbino Carlo Bo, Via Ca' le Suore 2-Località Crocicchia, 61029 Urbino, Italy
| | - Michela Battistelli
- Department of Biomolecular Sciences, Campus Scientifico "Enrico Mattei", University of Urbino Carlo Bo, Via Ca' le Suore 2-Località Crocicchia, 61029 Urbino, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Marina Quartu
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| |
Collapse
|
6
|
Fanizza F, Boeri L, Donnaloja F, Perottoni S, Forloni G, Giordano C, Albani D. Development of an Induced Pluripotent Stem Cell-Based Liver-on-a-Chip Assessed with an Alzheimer's Disease Drug. ACS Biomater Sci Eng 2023. [PMID: 37318190 DOI: 10.1021/acsbiomaterials.3c00346] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Liver-related drug metabolism is a key aspect of pharmacokinetics and possible toxicity. From this perspective, the availability of advanced in vitro models for drug testing is still an open need, also to the end of reducing the burden of in vivo experiments. In this scenario, organ-on-a-chip is gaining attention as it couples a state-of-the art in vitro approach to the recapitulation of key in vivo physiological features such as fluidodynamics and a tri-dimensional cytoarchitecture. We implemented a novel liver-on-a-chip (LoC) device based on an innovative dynamic device (MINERVA 2.0) where functional hepatocytes (iHep) have been encapsulated into a 3D hydrogel matrix interfaced through a porous membrane with endothelial cells (iEndo)]. Both lines were derived from human-induced pluripotent stem cells (iPSCs), and the LoC was functionally assessed with donepezil, a drug approved for Alzheimer's disease therapy. The presence of iEndo and a 3D microenvironment enhanced the expression of liver-specific physiologic functions as in iHep, after 7 day perfusion, we noticed an increase of albumin, urea production, and cytochrome CYP3A4 expression compared to the iHep static culture. In particular, for donepezil kinetics, a computational fluid dynamic study conducted to assess the amount of donepezil diffused into the LoC indicated that the molecule should be able to pass through the iEndo and reach the target iHep construct. Then, we performed experiments of donepezil kinetics that confirmed the numerical simulations. Overall, our iPSC-based LoC reproduced the in vivo physiological microenvironment of the liver and was suitable for potential hepatotoxic screening studies.
Collapse
Affiliation(s)
- Francesca Fanizza
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan 20133, Italy
| | - Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan 20133, Italy
| | - Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan 20133, Italy
| | - Simone Perottoni
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan 20133, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan 20133, Italy
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| |
Collapse
|
7
|
Alabdulaali B, Al-rashed F, Al-Onaizi M, Kandari A, Razafiarison J, Tonui D, Williams MR, Blériot C, Ahmad R, Alzaid F. Macrophages and the development and progression of non-alcoholic fatty liver disease. Front Immunol 2023; 14:1195699. [PMID: 37377968 PMCID: PMC10291618 DOI: 10.3389/fimmu.2023.1195699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The liver is the site of first pass metabolism, detoxifying and metabolizing blood arriving from the hepatic portal vein and hepatic artery. It is made up of multiple cell types, including macrophages. These are either bona fide tissue-resident Kupffer cells (KC) of embryonic origin, or differentiated from circulating monocytes. KCs are the primary immune cells populating the liver under steady state. Liver macrophages interact with hepatocytes, hepatic stellate cells, and liver sinusoidal endothelial cells to maintain homeostasis, however they are also key contributors to disease progression. Generally tolerogenic, they physiologically phagocytose foreign particles and debris from portal circulation and participate in red blood cell clearance. However as immune cells, they retain the capacity to raise an alarm to recruit other immune cells. Their aberrant function leads to the development of non-alcoholic fatty liver disease (NAFLD). NAFLD refers to a spectrum of conditions ranging from benign steatosis of the liver to steatohepatitis and cirrhosis. In NAFLD, the multiple hit hypothesis proposes that simultaneous influences from the gut and adipose tissue (AT) generate hepatic fat deposition and that inflammation plays a key role in disease progression. KCs initiate the inflammatory response as resident immune effectors, they signal to neighbouring cells and recruit monocytes that differentiated into recruited macrophages in situ. Recruited macrophages are central to amplifying the inflammatory response and causing progression of NAFLD to its fibro-inflammatory stages. Given their phagocytic capacity and their being instrumental in maintaining tissue homeostasis, KCs and recruited macrophages are fast-becoming target cell types for therapeutic intervention. We review the literature in the field on the roles of these cells in the development and progression of NAFLD, the characteristics of patients with NAFLD, animal models used in research, as well as the emerging questions. These include the gut-liver-brain axis, which when disrupted can contribute to decline in function, and a discussion on therapeutic strategies that act on the macrophage-inflammatory axis.
Collapse
Affiliation(s)
- Bader Alabdulaali
- Dasman Diabetes Institute, Kuwait City, Kuwait
- Ministry of Health, Kuwait City, Kuwait
| | | | - Mohammed Al-Onaizi
- Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Anwar Kandari
- Dasman Diabetes Institute, Kuwait City, Kuwait
- Ministry of Health, Kuwait City, Kuwait
| | - Joanna Razafiarison
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| | - Dorothy Tonui
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| | | | - Camille Blériot
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
- Inserm U1015, Gustave Roussy, Villejuif, France
| | | | - Fawaz Alzaid
- Dasman Diabetes Institute, Kuwait City, Kuwait
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| |
Collapse
|
8
|
Ezhilarasan D, Najimi M. Intercellular communication among liver cells in the perisinusoidal space of the injured liver: Pathophysiology and therapeutic directions. J Cell Physiol 2023; 238:70-81. [PMID: 36409708 DOI: 10.1002/jcp.30915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022]
Abstract
Hepatic stellate cells (HSCs) in the perisinusoidal space are surrounded by hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, and other resident immune cells. In the normal liver, HSCs communicate with these cells to maintain normal liver functions. However, after chronic liver injury, injured hepatocytes release several proinflammatory mediators, reactive oxygen species, and damage-associated molecular patterns into the perisinusoidal space. Consequently, such alteration activates quiescent HSCs to acquire a myofibroblast-like phenotype and express high amounts of transforming growth factor-β1, angiopoietins, vascular endothelial growth factors, interleukins 6 and 8, fibril forming collagens, laminin, and E-cadherin. These phenotypic and functional transdifferentiation lead to hepatic fibrosis with a typical abnormal extracellular matrix synthesis and disorganization of the perisinusoidal space of the injured liver. Those changes provide a favorable environment that regulates tumor cell proliferation, migration, adhesion, and survival in the perisinusoidal space. Such tumor cells by releasing transforming growth factor-β1 and other cytokines, will, in turn, activate and deeply interact with HSCs via a bidirectional loop. Furthermore, hepatocellular carcinoma-derived mediators convert HSCs and macrophages into protumorigenic cell populations. Thus, the perisinusoidal space serves as a critical hub for activating HSCs and their interactions with other cell types, which cause a variety of liver diseases such as hepatic inflammation, fibrosis, cirrhosis, and their complications, such as portal hypertension and hepatocellular carcinoma. Therefore, targeting the crosstalk between activated HSCs and tumor cells/immune cells in the tumor microenvironment may also support a promising therapeutic strategy.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
9
|
Schmidt S, Messner CJ, Gaiser C, Hämmerli C, Suter-Dick L. Methotrexate-Induced Liver Injury Is Associated with Oxidative Stress, Impaired Mitochondrial Respiration, and Endoplasmic Reticulum Stress In Vitro. Int J Mol Sci 2022; 23:ijms232315116. [PMID: 36499436 PMCID: PMC9735468 DOI: 10.3390/ijms232315116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Low-dose methotrexate (MTX) is a standard therapy for rheumatoid arthritis due to its low cost and efficacy. Despite these benefits, MTX has been reported to cause chronic drug-induced liver injury, namely liver fibrosis. The hallmark of liver fibrosis is excessive scarring of liver tissue, triggered by hepatocellular injury and subsequent activation of hepatic stellate cells (HSCs). However, little is known about the precise mechanisms through which MTX causes hepatocellular damage and activates HSCs. Here, we investigated the mechanisms leading to hepatocyte injury in HepaRG and used immortalized stellate cells (hTERT-HSC) to elucidate the mechanisms leading to HSC activation by exposing mono- and co-cultures of HepaRG and hTERT-HSC to MTX. The results showed that at least two mechanisms are involved in MTX-induced toxicity in HepaRG: (i) oxidative stress through depletion of glutathione (GSH) and (ii) impairment of cellular respiration in a GSH-independent manner. Furthermore, we measured increased levels of endoplasmic reticulum (ER) stress in activated HSC following MTX treatment. In conclusion, we established a human-relevant in vitro model to gain mechanistical insights into MTX-induced hepatotoxicity, linked oxidative stress in HepaRG to a GSH-dependent and -independent pathway, and hypothesize that not only oxidative stress in hepatocytes but also ER stress in HSCs contribute to MTX-induced activation of HSCs.
Collapse
Affiliation(s)
- Saskia Schmidt
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Catherine Jane Messner
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
| | - Carine Gaiser
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Carina Hämmerli
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Laura Suter-Dick
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
- Correspondence:
| |
Collapse
|
10
|
Soares GA, Pereira GM, Romualdo GR, Biasotti GGA, Stoppa EG, Bakuzis AF, Baffa O, Barbisan LF, Miranda JRA. Biodistribution Profile of Magnetic Nanoparticles in Cirrhosis-Associated Hepatocarcinogenesis in Rats by AC Biosusceptometry. Pharmaceutics 2022; 14:pharmaceutics14091907. [PMID: 36145654 PMCID: PMC9504370 DOI: 10.3390/pharmaceutics14091907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Since magnetic nanoparticles (MNPs) have been used as multifunctional probes to diagnose and treat liver diseases in recent years, this study aimed to assess how the condition of cirrhosis-associated hepatocarcinogenesis alters the biodistribution of hepatic MNPs. Using a real-time image acquisition approach, the distribution profile of MNPs after intravenous administration was monitored using an AC biosusceptometry (ACB) assay. We assessed the biodistribution profile based on the ACB images obtained through selected regions of interest (ROIs) in the heart and liver position according to the anatomical references previously selected. The signals obtained allowed for the quantification of pharmacokinetic parameters, indicating that the uptake of hepatic MNPs is compromised during liver cirrhosis, since scar tissue reduces blood flow through the liver and slows its processing function. Since liver monocytes/macrophages remained constant during the cirrhotic stage, the increased intrahepatic vascular resistance associated with impaired hepatic sinusoidal circulation was considered the potential reason for the change in the distribution of MNPs.
Collapse
Affiliation(s)
- Guilherme A. Soares
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
- Correspondence:
| | - Gabriele M. Pereira
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Guilherme R. Romualdo
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
- Department of Strucutral and Functional Biology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Gabriel G. A. Biasotti
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Erick G. Stoppa
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Andris F. Bakuzis
- Institute of Physics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | - Oswaldo Baffa
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Luis F. Barbisan
- Department of Strucutral and Functional Biology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Jose R. A. Miranda
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| |
Collapse
|
11
|
Liu M, Xiang Y, Yang Y, Long X, Xiao Z, Nan Y, Jiang Y, Qiu Y, Huang Q, Ai K. State-of-the-art advancements in Liver-on-a-chip (LOC): Integrated biosensors for LOC. Biosens Bioelectron 2022; 218:114758. [DOI: 10.1016/j.bios.2022.114758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 12/12/2022]
|
12
|
Van Campenhout R, Leroy K, Cooreman A, Tabernilla A, Cogliati B, Kadam P, Vinken M. Connexin-Based Channels in the Liver. Compr Physiol 2022; 12:4147-4163. [PMID: 35950654 DOI: 10.1002/cphy.c220007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Connexin proteins oligomerize in hexameric structures called connexin hemichannels, which then dock to form gap junctions. Gap junctions direct cell-cell communication by allowing the exchange of small molecules and ions between neighboring cells. In this way, hepatic gap junctions support liver homeostasis. Besides serving as building blocks for gap junctions, connexin hemichannels provide a pathway between the intracellular and the extracellular environment. The activation of connexin hemichannels is associated with acute and chronic liver pathologies. This article discusses the role of gap junctions and connexin hemichannels in the liver. © 2022 American Physiological Society. Compr Physiol 12:1-17, 2022.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kaat Leroy
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Axelle Cooreman
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrés Tabernilla
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Cogliati
- School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Prashant Kadam
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
13
|
Francisco AB, Li J, Farghli AR, Kanke M, Shui B, Munn PR, Grenier JK, Soloway PD, Wang Z, Reid LM, Liu J, Sethupathy P. Chemical, Molecular, and Single-nucleus Analysis Reveal Chondroitin Sulfate Proteoglycan Aberrancy in Fibrolamellar Carcinoma. CANCER RESEARCH COMMUNICATIONS 2022; 2:663-678. [PMID: 36923282 PMCID: PMC10010304 DOI: 10.1158/2767-9764.crc-21-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/21/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Fibrolamellar carcinoma (FLC) is an aggressive liver cancer with no effective therapeutic options. The extracellular environment of FLC tumors is poorly characterized and may contribute to cancer growth and/or metastasis. To bridge this knowledge gap, we assessed pathways relevant to proteoglycans, a major component of the extracellular matrix. We first analyzed gene expression data from FLC and nonmalignant liver tissue (n = 27) to identify changes in glycosaminoglycan (GAG) biosynthesis pathways and found that genes associated with production of chondroitin sulfate, but not other GAGs, are significantly increased by 8-fold. We then implemented a novel LC/MS-MS based method to quantify the abundance of different types of GAGs in patient tumors (n = 16) and found that chondroitin sulfate is significantly more abundant in FLC tumors by 6-fold. Upon further analysis of GAG-associated proteins, we found that versican (VCAN) expression is significantly upregulated at the mRNA and protein levels, the latter of which was validated by IHC. Finally, we performed single-cell assay for transposase-accessible chromatin sequencing on FLC tumors (n = 3), which revealed for the first time the different cell types in FLC tumors and also showed that VCAN is likely produced not only from FLC tumor epithelial cells but also activated stellate cells. Our results reveal a pathologic aberrancy in chondroitin (but not heparan) sulfate proteoglycans in FLC and highlight a potential role for activated stellate cells. Significance This study leverages a multi-disciplinary approach, including state-of-the-art chemical analyses and cutting-edge single-cell genomic technologies, to identify for the first time a marked chondroitin sulfate aberrancy in FLC that could open novel therapeutic avenues in the future.
Collapse
Affiliation(s)
- Adam B Francisco
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Jine Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Alaa R Farghli
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Bo Shui
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Paul R Munn
- Genomics Innovation Hub, Biotechnology Resource Center, Cornell University, Ithaca, New York
| | - Jennifer K Grenier
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York.,Genomics Innovation Hub, Biotechnology Resource Center, Cornell University, Ithaca, New York
| | - Paul D Soloway
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Zhangjie Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Lola M Reid
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
14
|
Sanz-Garcia C, Nevzorova YA, Martínez-Naves E, Cubero FJ. Nuevas dianas terapéuticas para el estudio de la enfermedad hepática crónica: La creación del Consorcio Iberoamericano para el estudio de la cirrosis hepática. GASTROENTEROLOGIA Y HEPATOLOGIA 2022; 46:322-328. [PMID: 35688395 DOI: 10.1016/j.gastrohep.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023]
Abstract
Unfortunately, there is a gap of understanding in the pathophysiology of chronic liver disease due to the lack of experimental models that exactly mimic the human disease. Additionally, the diagnosis of patients is very poor due to the lack of biomarkers than can detect the disease in early stages. Thus, it is of utmost interest the generation of a multidisciplinary consortium from different countries with a direct translation. The present reports the meeting of the 2021 Iberoamerican Consortium for the study of liver Cirrhosis, held online, in October 2021. The meeting, was focused on the recent advancements in the field of chronic liver disease and cirrhosis with a specific focus on cell pathobiology and liver regeneration, molecular and cellular targets involved in non-alcoholic hepatic steatohepatitis, alcoholic liver disease (ALD), both ALD and western diet, and end-stage liver cirrhosis and hepatocellular carcinoma. In addition, the meeting highlighted recent advances in targeted novel technology (-omics) and opening therapeutic avenues in this field of research.
Collapse
|
15
|
Recent Advancements in Antifibrotic Therapies for Regression of Liver Fibrosis. Cells 2022; 11:cells11091500. [PMID: 35563807 PMCID: PMC9104939 DOI: 10.3390/cells11091500] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Cirrhosis is a severe form of liver fibrosis that results in the irreversible replacement of liver tissue with scar tissue in the liver. Environmental toxicity, infections, metabolic causes, or other genetic factors including autoimmune hepatitis can lead to chronic liver injury and can result in inflammation and fibrosis. This activates myofibroblasts to secrete ECM proteins, resulting in the formation of fibrous scars on the liver. Fibrosis regression is possible through the removal of pathophysiological causes as well as the elimination of activated myofibroblasts, resulting in the reabsorption of the scar tissue. To date, a wide range of antifibrotic therapies has been tried and tested, with varying degrees of success. These therapies include the use of growth factors, cytokines, miRNAs, monoclonal antibodies, stem-cell-based approaches, and other approaches that target the ECM. The positive results of preclinical and clinical studies raise the prospect of a viable alternative to liver transplantation in the near future. The present review provides a synopsis of recent antifibrotic treatment modalities for the treatment of liver cirrhosis, as well as a brief summary of clinical trials that have been conducted to date.
Collapse
|
16
|
Zahmatkesh E, Othman A, Braun B, Aspera R, Ruoß M, Piryaei A, Vosough M, Nüssler A. In vitro modeling of liver fibrosis in 3D microtissues using scalable micropatterning system. Arch Toxicol 2022; 96:1799-1813. [PMID: 35366062 DOI: 10.1007/s00204-022-03265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/23/2022] [Indexed: 11/02/2022]
Abstract
Liver fibrosis is the late consequence of chronic liver inflammation which could eventually lead to cirrhosis, and liver failure. Among various etiological factors, activated hepatic stellate cells (aHSCs) are the major players in liver fibrosis. To date, various in vitro liver fibrosis models have been introduced to address biological and medical questions. Availability of traditional in vitro models could not fully recapitulate complicated pathology of liver fibrosis. The purpose of this study was to develop a simple and robust model to investigate the role of aHSCs on the progression of epithelial to mesenchymal transition (EMT) in hepatocytes during liver fibrogenesis. Therefore, we applied a micropatterning approach to generate 3D co-culture microtissues consisted of HepaRG and human umbilical cord endothelial cells (HUVEC) which co-cultured with inactivated LX-2 cells or activated LX-2 cells, respectively, as normal or fibrotic liver models in vitro. The result indicated that the activated LX-2 cells could induce EMT in HepaRG cells through activation of TGF-β/SMAD signaling pathway. Besides, in the fibrotic microtissue, physiologic function of HepaRG cells attenuated compared to the control group, e.g., metabolic activity and albumin secretion. Moreover, our results showed that after treatment with Galunisertib, the fibrogenic properties decreased, in the term of gene and protein expression. In conclusion, it is proposed that aHSCs could lead to EMT in hepatocytes during liver fibrogenesis. Furthermore, the scalable micropatterning approach could provide enough required liver microtissues to prosper our understanding of the mechanisms involved in the progression of liver fibrosis as well as high throughput (HT) drug screening.
Collapse
Affiliation(s)
- Ensieh Zahmatkesh
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, BG Tübingen, 72076, Tübingen, Germany.,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Amnah Othman
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, BG Tübingen, 72076, Tübingen, Germany
| | - Bianca Braun
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, BG Tübingen, 72076, Tübingen, Germany
| | - Romina Aspera
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, BG Tübingen, 72076, Tübingen, Germany
| | - Marc Ruoß
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, BG Tübingen, 72076, Tübingen, Germany
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Andreas Nüssler
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, BG Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
17
|
Abd El-Hameed NM, Abd El-Aleem SA, Khattab MA, Ali AH, Mohammed HH. Curcumin activation of nuclear factor E2-related factor 2 gene (Nrf2): Prophylactic and therapeutic effect in nonalcoholic steatohepatitis (NASH). Life Sci 2021; 285:119983. [PMID: 34599938 DOI: 10.1016/j.lfs.2021.119983] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/11/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUNDS Modern dietary habits have been associated with Nonalcoholic Steatohepatitis (NASH). Curcumin is a natural herbal found to suppress cellular oxidative states and could be beneficial in NASH. This study investigates the effect of curcumin in an animal model of NASH. MATERIALS AND METHODS Fifty rats were allocated into five groups. Control, High Fat Diet (HFD), curcumin prophylactic (CP) and therapeutic (CT) groups. HFD regimen was given for 16 weeks. Curcumin was given along with HFD (prophylactic) or after establishment of the model for two weeks (therapeutic). Livers and blood samples were harvested for histological, biochemical, and molecular studies. KEY FINDINGS Livers from HFD groups showed vascular, inflammatory, cellular degenerative and fibrotic changes. The hepatic damage was reflected by the increased serum liver enzymes. HFD groups showed excessive fibrotic change. Interestingly, curcumin administration as prophylactic or therapeutic significantly preserved and/or restored liver structure. This was evidenced by the normalization of the liver enzymes, preservation and/or reversibility of cellular changes and the decrease of the stage of fibrosis. Nuclear factor E2-related factor 2 gene (Nrf2) expression showed no changes in the HFD groups, however it showed upregulation in curcumin treated groups. Thus, the protective and therapeutic effect of curcumin could be induced through upregulation of the Nrf2 gene. Curcumin has a beneficial prophylactic and therapeutic effect that could hinder the development and/or treat NASH in susceptible livers. SIGNIFICANCE Curcumin has a beneficial prophylactic and therapeutic effect that could hinder the development and/or treat NASH in susceptible livers.
Collapse
|