1
|
Sirangelo I, Sapio L, Ragone A, Naviglio S, Iannuzzi C, Barone D, Giordano A, Borriello M. Vanillin Prevents Doxorubicin-Induced Apoptosis and Oxidative Stress in Rat H9c2 Cardiomyocytes. Nutrients 2020; 12:2317. [PMID: 32752227 PMCID: PMC7468857 DOI: 10.3390/nu12082317] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (doxo) is an effective anticancer compound in several tumor types. However, as a consequence of oxidative stress induction and ROS overproduction, its high cardiotoxicity demands urgent attention. Vanillin possesses antioxidant, antiproliferative, antidepressant and anti-glycating properties. Therefore, we investigated the potential vanillin protective effects against doxo-induced cardiotoxicity in H9c2 cells. Using multiparametric approach, we demonstrated that vanillin restored both cell viability and damage in response to doxo exposure. Contextually, vanillin decreased sub-G1 appearance and caspase-3 and PARP1 activation, reducing the doxo-related apoptosis induction. From a mechanistic point of view, vanillin hindered doxo-induced ROS accumulation and impaired the ERK phosphorylation. Notably, besides the cardioprotective effects, vanillin did not counteract the doxo effectiveness in osteosarcoma cells. Taken together, our results suggest that vanillin ameliorates doxo-induced toxicity in H9c2 cells, opening new avenues for developing alternative therapeutic approaches to prevent the anthracycline-related cardiotoxicity and to improve the long-term outcome of antineoplastic treatment.
Collapse
Affiliation(s)
- Ivana Sirangelo
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| | - Luigi Sapio
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| | - Angela Ragone
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| | - Silvio Naviglio
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| | - Clara Iannuzzi
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| | - Daniela Barone
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Margherita Borriello
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| |
Collapse
|
2
|
Catauro M, Barrino F, Poggetto GD, Pacifico F, Piccolella S, Pacifico S. Chlorogenic acid/PEG-based organic-inorganic hybrids: A versatile sol-gel synthesis route for new bioactive materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:837-844. [DOI: 10.1016/j.msec.2019.03.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 01/05/2023]
|
3
|
Tranquillo E, Barrino F, Dal Poggetto G, Blanco I. Sol⁻Gel Synthesis of Silica-Based Materials with Different Percentages of PEG or PCL and High Chlorogenic Acid Content. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E155. [PMID: 30621329 PMCID: PMC6337738 DOI: 10.3390/ma12010155] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/23/2018] [Accepted: 12/29/2018] [Indexed: 12/20/2022]
Abstract
Implanted biomedical devices can induce adverse responses in the human body, which can cause failure of the implant-referred to as implant failure. Early implant failure is induced numerous factors, most importantly, infection and inflammation. Natural products are, today, one of the main sources of new drug molecules due to the development of pathogenic bacterial strains that possess resistance to more antibiotics used currently in various diseases. The aim of this work is the sol⁻gel synthesis of antibacterial biomedical implants. In the silica matrix, different percentages (6, 12, 24, 50 wt %) of polyethylene glycol (PEG) or poly(ε-caprolactone) (PCL) were embedded. Subsequently, the ethanol solutions with high amounts of chlorogenic acid (CGA 20 wt %) were slowly added to SiO₂/PEG and SiO₂/PCL sol. The interactions among different organic and inorganic phases in the hybrid materials was studied by Fourier transform infrared (FTIR) spectroscopy. Furthermore, the materials were soaked in simulated body fluid (SBF) for 21 days and the formation of a hydroxyapatite layer on their surface was evaluated by FTIR and XRD analysis. Finally, Escherichia coli and Pseudomonas aeruginosa were incubated with several hybrids, and the diameter of zone of inhibition was observed to assessment the potential antibacterial properties of the hybrids.
Collapse
Affiliation(s)
- Elisabetta Tranquillo
- Department of Engineering, University of Campania "Luigi Vanvitelli", via Roma 29, 81031 Aversa, Italy.
| | - Federico Barrino
- Department of Engineering, University of Campania "Luigi Vanvitelli", via Roma 29, 81031 Aversa, Italy.
| | | | - Ignazio Blanco
- Department of Civil Engineering and Architecture and UdR-Catania Consorzio INSTM, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|
4
|
Catauro M, Tranquillo E, Salzillo A, Capasso L, Illiano M, Sapio L, Naviglio S. Silica/Polyethylene Glycol Hybrid Materials Prepared by a Sol-Gel Method and Containing Chlorogenic Acid. Molecules 2018; 23:E2447. [PMID: 30257424 PMCID: PMC6222366 DOI: 10.3390/molecules23102447] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Chlorogenic acid (CGA) is a very common dietary polyphenolic compound. CGA is becoming very attractive due to its potential use as preventive and therapeutic agent in many diseases, including cancer. Inorganic/organic hybrid materials are gaining considerable attention in the biomedical field. The sol-gel process provides a useful way to obtain functional organic/inorganic hybrids. The aim of this study was to synthesize silica/polyethylene glycol (PEG) hybrids with different percentages of CGA by sol-gel technique and to investigate their impact on the cancer cell proliferation. Synthesized materials have been chemically characterized through the FTIR spectroscopy and their bioactivity evaluated looking by SEM at their ability to produce a hydroxyapatite layer on their surface upon incubation with simulated body fluid (SBF). Finally, their effects on cell proliferation were studied in cell lines by direct cell number counting, MTT, flow cytometry-based cell-cycle and cell death assays, and immunoblotting experiments. Notably, we found that SiO₂/PEG/CGA hybrids exhibit clear antiproliferative effects in different tumor, including breast cancer and osteosarcoma, cell lines in a CGA dependent manner, but not in normal cells. Overall, our results increase the evidence of CGA as a possible anticancer agent and illustrate the potential for clinical applications of sol-gel synthesized SiO₂/PEG/CGA materials.
Collapse
Affiliation(s)
- Michelina Catauro
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, I-81031 Aversa, Italy.
| | - Elisabetta Tranquillo
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, I-81031 Aversa, Italy.
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli" Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Alessia Salzillo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli" Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Lucia Capasso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli" Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Michela Illiano
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli" Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Luigi Sapio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli" Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Silvio Naviglio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli" Via L. De Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|
5
|
Maietta S, Russo T, Santis RD, Ronca D, Riccardi F, Catauro M, Martorelli M, Gloria A. Further Theoretical Insight into the Mechanical Properties of Polycaprolactone Loaded with Organic-Inorganic Hybrid Fillers. MATERIALS 2018; 11:ma11020312. [PMID: 29466299 PMCID: PMC5849009 DOI: 10.3390/ma11020312] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/14/2018] [Accepted: 02/17/2018] [Indexed: 01/14/2023]
Abstract
Experimental/theoretical analyses have already been performed on poly(ε-caprolactone) (PCL) loaded with organic-inorganic fillers (PCL/TiO₂ and PCL/ZrO₂) to find a correlation between the results from the small punch test and Young's modulus of the materials. PCL loaded with Ti2 (PCL = 12, TiO₂ = 88 wt %) and Zr2 (PCL = 12, ZrO₂ = 88 wt %) hybrid fillers showed better performances than those obtained for the other particle composition. In this context, the aim of current research is to provide further insight into the mechanical properties of PCL loaded with sol-gel-synthesized organic-inorganic hybrid fillers for bone tissue engineering. For this reason, theoretical analyses were performed by the finite element method. The results from the small punch test and Young's modulus of the materials were newly correlated. The obtained values of Young's modulus (193 MPa for PCL, 378 MPa for PCL/Ti2 and 415 MPa for PCL/Zr2) were higher than those obtained from a previous theoretical modelling (144 MPa for PCL, 282 MPa for PCL/Ti2 and 310 MPa for PCL/Zr2). This correlation will be an important step for the evaluation of Young's modulus, starting from the small punch test data.
Collapse
Affiliation(s)
- Saverio Maietta
- Department of Industrial Engineering, Fraunhofer JL IDEAS-University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy.
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d'Oltremare Pad. 20, 80125 Naples, Italy.
| | - Roberto De Santis
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d'Oltremare Pad. 20, 80125 Naples, Italy.
| | - Dante Ronca
- Institute of Orthopaedics and Traumathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 2-4, 80138 Naples, Italy.
| | - Filomena Riccardi
- Institute of Orthopaedics and Traumathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 2-4, 80138 Naples, Italy.
| | - Michelina Catauro
- Department of Industrial and Information Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy.
| | - Massimo Martorelli
- Department of Industrial Engineering, Fraunhofer JL IDEAS-University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy.
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d'Oltremare Pad. 20, 80125 Naples, Italy.
| |
Collapse
|