1
|
Abouelkheir SS, Mourad MM. Anxiety of microbially synthesized Fe 3O 4-SPIONs on embryonic/larval ontogeny in red tilapia (Oreochromis sp.). Appl Microbiol Biotechnol 2025; 109:3. [PMID: 39777547 PMCID: PMC11706909 DOI: 10.1007/s00253-024-13386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Iron oxide nanoparticles, recognized for their superparamagnetic properties, are promising for future healthcare therapies. However, their extensive use in medicine and electronics contributes to their discharge into our environments, highlighting the need for further research on their cellular damage effects on aquatic organisms. While the detrimental properties of other compounds have been stated in the early-life stages of fish, the cytotoxic consequences of superparamagnetic iron oxide nanoparticles (SPIONs) in these stages are still unexplored. Therefore, using the red tilapia (Oreochromis sp.) as a model organism, this study is the first to talk about the subtle cellular alterations caused by biologically induced biomineralized Fe3O4-SPIONs by Bacillus sp. in the early-life stages. Once the red tilapia eggs were fertilized, they were challenged to different doses of SPIONs (0, 5, 10, 15, and 30 mg/l), and their tenfold increases (50, 100, 150, and 300 mg/l) for 72 h. The hatching rate, malformation rate, body length, and deformities of the larvae were all studied. Our research showed that iron oxide nanoparticles were harmful to the early stages of life in red tilapia embryos and larvae. They slowed hatching delay, a decrease in survival rate, an increase in heart rate, bleeding, arrested development, and membrane damage and changed the axis's physiological structure. Additionally, results indicated numerous deformities of red tilapia larvae, with lordosis, kyphosis, and scoliosis once subjected to 50 and 150 mg/l of SPIONs concentrations, respectively. This study could assist us in recognizing the risk and evaluating the disrupting potential of nanoparticles. The key objective of this inquiry is to describe the existing features of the produced magnetite SPIONs (29.44 g/l) including their morphological, chemical, and magnetic characteristics. Illustrate their current role in medicinal applications and aquatic organisms by studying in vivo cytotoxic effects to motivate the development of enhanced SPIONs systems. As a recommendation, more research is needed to completely understand how various exposure endpoints of SPIONs disturb the bodies of red tilapia in the early stages. KEY POINTS: • Biogenic SPIONs: a material of the future. • Characterization is essential to assess the functional properties of the produced SPIONs. • Fe3O4-SPIONs' impact on the red tilapia ontogeny.
Collapse
Affiliation(s)
| | - Mona M Mourad
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| |
Collapse
|
2
|
Uriostegui-Pena AG, Torres-Copado A, Ochoa-Sanchez A, Luna-Bárcenas G, Sahare P, Paul S. Nanoformulated phytochemicals in skin anti-aging research: an updated mini review. 3 Biotech 2025; 15:31. [PMID: 39760004 PMCID: PMC11699038 DOI: 10.1007/s13205-024-04197-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025] Open
Abstract
Skin aging is characterized by progressive loss of functionality and regenerative potential of the skin, resulting in the appearance of wrinkles, irregular pigmentation, a decrease of elasticity, dryness, and rough texture. Damage to the skin caused by oxidative stress could substantially be slowed down by the use of phytochemicals that function as natural antioxidants. Although phytochemicals have immense potential as anti-aging medicines, their effectiveness as therapeutic agents is restricted by their poor solubility, biodistribution, stability, and hydrophilicity. Given their improved stability, solubility, efficacy, and occlusive properties, nanoformulations have emerged as promising drug delivery platforms for phytochemicals to achieve anti-aging effects. The efficacy of these nanoformulated phytochemicals in suppressing enzymes that accelerate skin aging, such as collagenase, tyrosinase and hyaluronidase, as well as enhancing superoxide dismutase, catalase, and collagen levels to improve skin appearance during aging has been demonstrated.
Collapse
Affiliation(s)
- Andrea G. Uriostegui-Pena
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Querétaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| | - Andrea Torres-Copado
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Querétaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| | - Adriana Ochoa-Sanchez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Querétaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| | - Gabriel Luna-Bárcenas
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Campus Querétaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| | - Padmavati Sahare
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Campus Querétaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Querétaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico
| |
Collapse
|
3
|
K A, Kumar BS, Reddy SG, Prashanthi K, Kugabalasooriar S, Posa JK. A novel nature-inspired ligno-alginate hydrogel coated with Fe 3O 4/GO for the efficient-sustained release of levodopa. Heliyon 2024; 10:e40547. [PMID: 39654723 PMCID: PMC11625254 DOI: 10.1016/j.heliyon.2024.e40547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/26/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Levodopa (LD), a precursor to dopamine, is commonly used to treat Parkinson's disease. However, its oral formulations suffer from low bioavailability, toxicity, and untargeted delivery. This study aimed to develop a nature-based hydrogel for sustained LD release, addressing these limitations. The hydrogel was synthesized using sodium alginate (SAl) and lignosulfonic acid (LSA) as polymers, cross-linked with Ba2+ ions, and coated with iron oxide nanoparticles (Fe3O4) and graphene oxide nanoparticles (GO). The resulting ligno-alginate films were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA), and Field Emission Scanning Electron Microscopy (FESEM). In-vitro drug release was evaluated using UV-visible spectroscopy. The formulations LD 2 (SAl-LSA-GO-LD) and LD 3 (SAl-LSA-Fe3O4-GO-LD) demonstrated superior sustained release properties, attributed to the hydrophobic layer provided by GO, which controlled the swelling rate and slowed drug diffusion. LD 2 showed the highest drug loading efficiency at 69 % and a sustained release of 24 % over 48 h, which was better than previously reported work of 64 % in 30 h. Incorporating Fe3O4 endowed the delivery vehicle with magnetic properties for targeted drug delivery. This study presents a novel and efficient approach for the sustained release of LD using a ligno-alginate hydrogel coated with Fe3O4 and GO, offering promising potential for Parkinson's treatment.
Collapse
Affiliation(s)
- Athira K
- Department of Physical Sciences, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, 560035, India
| | - B Siva Kumar
- Department of Physical Sciences, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, 560035, India
| | - S Giridhar Reddy
- Department of Physical Sciences, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, 560035, India
| | - K. Prashanthi
- Department of Biotechnology, Ramaiah University of Applied Sciences, Bengaluru, 560054, India
| | | | - Jyothi Kumari Posa
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, Andhra Pradesh, 515001, India
| |
Collapse
|
4
|
Heydari S, Masoumi N, Esmaeeli E, Ayyoubzadeh SM, Ghorbani-Bidkorpeh F, Ahmadi M. Artificial intelligence in nanotechnology for treatment of diseases. J Drug Target 2024; 32:1247-1266. [PMID: 39155708 DOI: 10.1080/1061186x.2024.2393417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/06/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Nano-based drug delivery systems (DDSs) have demonstrated the ability to address challenges posed by therapeutic agents, enhancing drug efficiency and reducing side effects. Various nanoparticles (NPs) are utilised as DDSs with unique characteristics, leading to diverse applications across different diseases. However, the complexity, cost and time-consuming nature of laboratory processes, the large volume of data, and the challenges in data analysis have prompted the integration of artificial intelligence (AI) tools. AI has been employed in designing, characterising and manufacturing drug delivery nanosystems, as well as in predicting treatment efficiency. AI's potential to personalise drug delivery based on individual patient factors, optimise formulation design and predict drug properties has been highlighted. By leveraging AI and large datasets, developing safe and effective DDSs can be accelerated, ultimately improving patient outcomes and advancing pharmaceutical sciences. This review article investigates the role of AI in the development of nano-DDSs, with a focus on their therapeutic applications. The use of AI in DDSs has the potential to revolutionise treatment optimisation and improve patient care.
Collapse
Affiliation(s)
- Soroush Heydari
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Masoumi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Erfan Esmaeeli
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Health Information Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Ahmadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Taheri-Ledari R, Ghafori-Gorab M, Ramezanpour S, Mahdavi M, Safavi M, Akbarzadeh AR, Maleki A. MIL-101 magnetic nanocarrier for solid-phase delivery of doxorubicin to breast and lung cancer cells. Int J Biol Macromol 2024; 283:137615. [PMID: 39551314 DOI: 10.1016/j.ijbiomac.2024.137615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
An efficient strategy for passive delivery of doxorubicin (DOX) to the breast (MDA-MB-231) and lung (A-549) cancer cells is presented and compared with MCF-10A normal breast cells. Two versions of a peptide structure (linear and cyclic) have been designed and assessed. The molecular dynamic simulations in Material Studio2017 exhibited a higher adsorption capacity for L2 (cyclic version) compared with the adsorption capacity of L1 (linear version) on the PG surface by electrostatic interactions between guanidine of arginine and -OH of PG. The prepared final product based on iron oxide nanoparticles and MIL-101(Fe) (formulated as DOX@Fe3O4/MIL-101-(C,L)C[RW]3) is characterized and the drug content has been estimated. The release profiles revealed an ultra-fast stimulus-sensitive model in acidic media, which corroborates a pH-triggered release. The in vitro assessments disclosed that aggregation of nanocargo around the cancer cells and resulted toxicity are more than the neat DOX in the same dosage as DOX@Fe3O4/MIL-101-CC[RW]3. The obtained distinguished features lie in ability to utilize a biocompatible nanocargo structure to release an appropriate dose of DOX in a controlled manner in the cancer cell environment. Moreover, the functionalization of MIL-101 using cyclic and linear peptides and their comparison is one of the important features of this project.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mostafa Ghafori-Gorab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Sorour Ramezanpour
- Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran, Iran.
| | - Ali Reza Akbarzadeh
- Department of Chemistry, Iran University of Science and Technology, PO Box: 16846-13114, Tehran, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
6
|
Orita Y, Ikeda K, Muronosono A, Wijakmatee T, Kataoka T, Shimoyama Y. Rate-Controlled Washing of Surface-Modified Nanoparticles Using Rationally Designed Supercritical CO 2 Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24771-24780. [PMID: 39547799 DOI: 10.1021/acs.langmuir.4c02306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
In practical applications of surface-modified nanoparticles (NPs), the washing stage has a number of challenges, such as insufficient washing, long treatment time, and various waste liquors. Cosolvent-enhanced supercritical CO2 (scCO2) is an appealing solvent system for complete, rapid, and eco-friendly washing owing to its high diffusivity and recyclability. In this paper, we report a rapid washing guideline for surface-modified NPs using ethanol-enhanced scCO2. Kinetic analysis was performed on the washing behavior of oleic acid-modified NPs mixed with various modifiers (C10 to C18 fatty acids) at 40 °C and 20.0 MPa while designing scCO2 media based on rationally estimated modifier solubilities. Notably, the scCO2 medium showed superior washing rates to that of ethanol for various modifiers with a wide range of solubilities in scCO2. The washing rate was dependent on solubility and could be organized into two regions, with a threshold value of 0.016 mol kg-1: solubility/diffusivity-controlled and diffusivity-controlled washing. These findings provide valuable guidelines for designing cosolvent-enhanced scCO2 media for the rapid washing of surface-modified NPs.
Collapse
Affiliation(s)
- Yasuhiko Orita
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 S1-33, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kai Ikeda
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 S1-33, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Aoi Muronosono
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 S1-33, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Thossaporn Wijakmatee
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 S1-33, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Taishi Kataoka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 S1-33, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yusuke Shimoyama
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 S1-33, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
7
|
Song N, Chen S, Wang H, He X, Wei B, Li R, Zhang S, Xu L. The Optical Forces and Torques Exerted by Airy Light-Sheet on Magnetic Particles Utilized for Targeted Drug Delivery. MICROMACHINES 2024; 15:1369. [PMID: 39597181 PMCID: PMC11596985 DOI: 10.3390/mi15111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
The remarkable properties of magnetic nanostructures have sparked considerable interest within the biomedical domain, owing to their potential for diverse applications. In targeted drug delivery systems, therapeutic molecules can be loaded onto magnetic nanocarriers and precisely guided and released within the body with the assistance of an externally applied magnetic field. However, conventional external magnetic fields generated by permanent magnets or electromagnets are limited by finite magnetic field gradients, shallow penetration depths, and low precision. The novel structured light field known as the Airy light-sheet possesses unique characteristics such as non-diffraction, self-healing, and self-acceleration, which can potentially overcome the limitations of traditional magnetic fields to some extent. While existing studies have primarily focused on the manipulation of dielectric particles by Airy light-sheet, comprehensive analyses exploring the intricate interplay between Airy light-sheet and magnetic nanostructures are currently lacking in the literature, with only preliminary theoretical discussions available. This study systematically explores the mechanical response of magnetic spherical particles under the influence of Airy light-sheet, including radiation forces and spin torques. Furthermore, we provide an in-depth analysis of the effects of particle size, permittivity, permeability, and incident light-sheet parameters on the mechanical effects. Our research findings not only offer new theoretical guidance and practical references for the application of magnetic nanoparticles in biomedicine but also provide valuable insights for the manipulation of other types of micro/nanoparticles using structured light fields.
Collapse
Affiliation(s)
- Ningning Song
- School of Physics, Xidian University, Xi’an 710071, China; (N.S.); (X.H.); (R.L.); (S.Z.)
- Key Laboratory of Optoelectronic Information Perception in Complex Environment, Ministry of Education, Xidian University, Xi’an 710071, China
| | - Shiguo Chen
- School of Physics, Xidian University, Xi’an 710071, China; (N.S.); (X.H.); (R.L.); (S.Z.)
- Key Laboratory of Optoelectronic Information Perception in Complex Environment, Ministry of Education, Xidian University, Xi’an 710071, China
| | - Hao Wang
- School of Physics, Xidian University, Xi’an 710071, China; (N.S.); (X.H.); (R.L.); (S.Z.)
- Key Laboratory of Optoelectronic Information Perception in Complex Environment, Ministry of Education, Xidian University, Xi’an 710071, China
| | - Xinbo He
- School of Physics, Xidian University, Xi’an 710071, China; (N.S.); (X.H.); (R.L.); (S.Z.)
- Key Laboratory of Optoelectronic Information Perception in Complex Environment, Ministry of Education, Xidian University, Xi’an 710071, China
| | - Bing Wei
- School of Physics, Xidian University, Xi’an 710071, China; (N.S.); (X.H.); (R.L.); (S.Z.)
- Key Laboratory of Optoelectronic Information Perception in Complex Environment, Ministry of Education, Xidian University, Xi’an 710071, China
| | - Renxian Li
- School of Physics, Xidian University, Xi’an 710071, China; (N.S.); (X.H.); (R.L.); (S.Z.)
| | - Shu Zhang
- School of Physics, Xidian University, Xi’an 710071, China; (N.S.); (X.H.); (R.L.); (S.Z.)
- Key Laboratory of Optoelectronic Information Perception in Complex Environment, Ministry of Education, Xidian University, Xi’an 710071, China
| | - Lei Xu
- Xi’an Institute of Electromechanical Information Technology, Xi’an 710065, China
| |
Collapse
|
8
|
Jia R, Zhang Y, Li S, Wang J, Kang J, Xu Q, Ye H. Magnetic adsorbents for removal of bisphenol A: Design strategies of materials and adsorption mechanisms. CHEMOSPHERE 2024; 368:143790. [PMID: 39581439 DOI: 10.1016/j.chemosphere.2024.143790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Bisphenol A (BPA) is a representative endocrine-disrupting chemical widely utilized in the plastic industry, and its leakage into the environment poses various health risks. There is an urgent need for effective removal technologies, and magnetic adsorption shows promise due to its high efficiency and ease of recovering adsorbents. This review provides a comprehensive and critical summary of recent advances in magnetic adsorbents for the removal of BPA. It covers intrinsic magnetic materials and composite magnetic adsorbents which include magnetic organic adsorbents (covalent organic frameworks, β-cyclodextrin-based adsorbents, and molecularly imprinted polymers), magnetic carbonaceous adsorbents (graphene, activated carbon, biochar, and carbon nanotubes), magnetic inorganic adsorbents and magnetic metal-organic frameworks. After comparing and discussing the different magnetic adsorbents, the adsorption mechanisms are summarized, and the advantages and disadvantages are compared and discussed. Strategies for designing magnetic matrices with appropriate morphology and adsorption materials with optimal porous structures are proposed. The challenges associated with maintaining adsorption performance while integrating a magnetic matrix are also discussed. The research direction for future work is also prospected. This review aims to guide the development of magnetic adsorbents for the removal of BPA and other emerging pollutants.
Collapse
Affiliation(s)
- Ruobing Jia
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Yingying Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Shunying Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Jun Wang
- Shanxi Kunming Tobacco Co., Ltd., Shanxi, 030032, China
| | - Jun Kang
- Shanxi Kunming Tobacco Co., Ltd., Shanxi, 030032, China
| | - Qiangqiang Xu
- Shandong Zhaojin Motian Company Ltd., Shandong, 265400, China
| | - Hong Ye
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
9
|
Ji P, Xu Q, Li J, Wang Z, Mao W, Yan P. Advances in nanoparticle-based therapeutics for ischemic stroke: Enhancing drug delivery and efficacy. Biomed Pharmacother 2024; 180:117564. [PMID: 39405899 DOI: 10.1016/j.biopha.2024.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Ischemic stroke, characterized by vascular occlusion, has recently emerged as one of the primary causes of mortality and disability worldwide. Conventional treatment modalities, such as thrombolytic and neuroprotective therapies, face numerous challenges, including limited bioavailability, significant neurotoxicity, suboptimal targeting, short half-life, and poor blood-brain barrier (BBB) penetration. Nanoparticle-based drug delivery systems present distinct advantages, such as small size, enhanced lipophilicity, and modifiability, which can potentially address these limitations. Utilizing nanoparticles for drug delivery in ischemic stroke therapy offers improved drug bioavailability, reduced neurotoxicity, enhanced targeted delivery, prolonged drug half-life, and better dissolution kinetics. This review aims to provide a comprehensive overview of current strategies in preclinical studies for managing or preventing ischemic stroke from a nanomaterial perspective, highlighting the advantages and limitations of each approach.
Collapse
Affiliation(s)
- Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Qingqing Xu
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Jiahui Li
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Zihan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Wanyi Mao
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Peng Yan
- Taizhou Second People's Hospital Affiliated to Yangzhou University, Taizhou 225300, China.
| |
Collapse
|
10
|
Albukhaty S, Sulaiman GM, Al-Karagoly H, Mohammed HA, Hassan AS, Alshammari AAA, Ahmad AM, Madhi R, Almalki FA, Khashan KS, Jabir MS, Yusuf M, Al-aqbi ZT, Sasikumar P, Khan RA. Iron oxide nanoparticles: The versatility of the magnetic and functionalized nanomaterials in targeting drugs, and gene deliveries with effectual magnetofection. J Drug Deliv Sci Technol 2024; 99:105838. [DOI: 10.1016/j.jddst.2024.105838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Romdoni Y, Prasedya ES, Kadja GTM, Kitamoto Y, Khalil M. Efficient delivery of anticancer drugs using functionalized-Ag-decorated Fe 3O 4@SiO 2 nanocarrier with folic acid and β-cyclodextrin. Biochim Biophys Acta Gen Subj 2024; 1868:130643. [PMID: 38797254 DOI: 10.1016/j.bbagen.2024.130643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Nanocarrier surface functionalization has been widely regarded as a promising approach for achieving precise and targeted drug delivery systems. In this work, the fabrication of functionalized-Ag-decorated Fe3O4@SiO2 (Fe3O4@SiO2-Ag) nanocarriers with folic acid (FA) and β-cyclodextrin (BCD) exhibit a remarkable capacity for delivering two types of anticancer drugs, i.e., doxorubicin (DOX) and epirubicin (EPI), into cancer cells. The effective functionalization of Fe3O4@SiO2-Ag nanoparticles has been achieved through the use of cysteine (Cys) as an anchor for attaching FA and BCD via EDC-NHS coupling and Steglich esterification methods, respectively. The findings indicate that surface functionalization had no significant impact on the physicochemical characteristics of the nanoparticles. However, it notably affected DOX and EPI loading and release efficiency. The electrostatic conjugation of DOX/EPI onto the surface of Fe3O4@SiO2-Ag/Cys/FA and Fe3O4@SiO2-Ag/Cys/BCD exhibited maximum loading efficiency of 50-60% at concentration ratio of DOX/EPI to nanoparticles of 1:14. These nanocarriers also achieved an 40-47% DOX/EPI release over 36 days. Furthermore, the drug-loaded functionalized-nanocarrier showed cytotoxic effects on SK-MEL-2 cells, as demonstrated by an in vitro MTT assay. This suggests that the as-prepared functionalized-nanoparticles have promise as a carrier for the efficient anticancer drugs.
Collapse
Affiliation(s)
- Yoga Romdoni
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia; Low Dimension Materials Lab., Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia
| | - Eka Sunarwidhi Prasedya
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Mataram, 83125 Lombok, West Nusa Tenggara, Indonesia; Bioscience and Biotechnology Research Center, Faculty of Mathematics and Natural Sciences, University of Mataram, 83125 Lombok, West Nusa Tenggara, Indonesia
| | - Grandprix T M Kadja
- Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia; Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia; Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia
| | - Yoshitaka Kitamoto
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Munawar Khalil
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia; Low Dimension Materials Lab., Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia.
| |
Collapse
|
12
|
Bai H, Teng G, Zhang C, Yang J, Yang W, Tian F. Magnetic materials as adsorbents for the pre-concentration and separation of active ingredients from herbal medicine. J Sep Sci 2024; 47:e2400274. [PMID: 39073301 DOI: 10.1002/jssc.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Herbal medicine (HM) is crucial in disease management and contains complex compounds with few active pharmacological ingredients, presenting challenges in quality control of raw materials and formulations. Effective separation, identification, and analysis of active components are vital for HM efficacy. Traditional methods like liquid-liquid extraction and solid-phase extraction are time-consuming and environmentally concerning, with limitations such as sorbent issues, pressure, and clogging. Magnetic solid-phase extraction uses magnetic sorbents for targeted analyte separation and enrichment, offering rapid, pressure-free separation. However, inorganic magnetic particles' aggregation and oxidation, as well as lack of selectivity, have led to the use of various coatings and modifications to enhance specificity and selectivity for complex herbal samples. This review delves into magnetic composites in HM pretreatment, specifically focusing on encapsulated or modified magnetic nanoparticles and materials like silica, ionic liquids, graphene family derivatives, carbon nanotubes, metal-organic frameworks, covalent organic frameworks, and molecularly imprinted polymers.
Collapse
Affiliation(s)
- Hezhao Bai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Guohua Teng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Chen Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Jingyi Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Fei Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
13
|
Waqar M, Batool SA, Yaqoob Z, Manzur J, Abbas M, Vayalpurayil T, Ur Rehman MA. Potential magnetic drug targeting with magnetite nanoparticles in cancer treatment by enhancer-modifier natural herb and loaded drug. Heliyon 2024; 10:e32484. [PMID: 38961896 PMCID: PMC11219342 DOI: 10.1016/j.heliyon.2024.e32484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
In the present study, we prepared magnetite nanoparticles (MNPs) loaded with natural Moringa oleifera (M. olf) herb and Epilim (Ep) drug to evaluate the anti-cancerous activity against brain cancer cells. All the samples were prepared via co-precipitation approach modified with different concentrations of M. olf and Ep drug at room temperature. The MNPs loaded with drug and natural herb were studied in terms of crystal structure, morphology, colloidal stability, size distribution, and magnetic properties. Field emission scanning electron microscopy (FESEM) images exhibited the morphologies of samples with spherical shape as well as the particles size of 9 nm for MNPs and up to 23 nm for its composites. The results of vibrating sample magnetometer (VSM) indicated the magnetization saturation (Ms) of 42.510 emu/g for MNPs. This value reduced to 16-35 emu/g upon loading MNPs with different concentrations of M. olf and Ep. Fourier transform infrared spectroscopy (FTIR) indicated the chemical interaction between the Ep, M.olf and MNPs. Brunauer-Emmett-Teller (BET) analysis confirmed the largest surface area for MNPs (422.61 m2/g) which gradually reduced on addition of M. olf and Ep indicating the successful loading. The zeta potential measurements indicated that the MNPs and MNPs loaded with M. olf and Ep are negatively charged and can be dispersed in the suspension. Furthermore, U87 human glioblastoma cell line was used for the in vitro cellular studies to determine the efficacy of synthesized MNPs against cancer cells. The results confirmed the anti-proliferative activity of the MNPs loaded with M. olf and Ep.
Collapse
Affiliation(s)
- Maria Waqar
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Syeda Ammara Batool
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Zahida Yaqoob
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
- Centre of Excellence in Biomaterials and Tissue Engineering, Department of Materials Science and Engineering Government College University Lahore, 54000, Pakistan
| | - Jawad Manzur
- Centre of Excellence in Biomaterials and Tissue Engineering, Department of Materials Science and Engineering Government College University Lahore, 54000, Pakistan
| | - Mohamed Abbas
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Thafasalijyas Vayalpurayil
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| |
Collapse
|
14
|
Surendra D, Kumar CP, Nandini C, Chamaraja N, Raghu AV, Majani SS, Shivamallu C, Shati AA, Alfaifi MY, Elbehairi SEI, Sridhara Setty PB, Kollur SP. Synthesis, characterization and assessment of anticancer potency of oxcarbazepine with folic acid conjugated Fe2O3 nanostructures as nano-drugs. J Mol Struct 2024; 1306:137842. [DOI: 10.1016/j.molstruc.2024.137842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
|
15
|
Zandiyeh S, Kalantari H, Fakhri A, Nikkhah M, Janani BJ, Sabbaghian M. A review of recent developments in the application of nanostructures for sperm cryopreservation. Cryobiology 2024; 115:104890. [PMID: 38555012 DOI: 10.1016/j.cryobiol.2024.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
In the 1970s, sperm cryopreservation was presented as a unique route to fertility preservation. The ability to cryopreserve sperm from all species is challenging. The sperm cryopreservation process encompasses various cellular stresses such as increased osmotic pressure, ice crystal formation, and thermal shock, therefore decreasing the quality of sperm. The nanostructures due to their inherent features such as reactivity, high uptake, active surface area, and antioxidant activity, have contributed to modifying freezing protocols. In this review, the current state of the art with regards to emerging applications of nanotechnology in sperm cryopreservation are reviewed, some of the most promising advances are summarized, and the limitations and advantages are comprehensively discussed.
Collapse
Affiliation(s)
- Saeed Zandiyeh
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Hamid Kalantari
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ali Fakhri
- Nanotechnology Laboratory, Nano Smart Science Institute, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran
| | | | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
16
|
Laref S, Harrou F, Sun Y, Gao X, Gojobori T. Exploring Antiviral Drugs on Monolayer Black Phosphorene: Atomistic Theory and Explainable Machine Learning-Assisted Platform. Int J Mol Sci 2024; 25:4897. [PMID: 38732115 PMCID: PMC11084629 DOI: 10.3390/ijms25094897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Favipiravir (FP) and ebselen (EB) belong to a diverse class of antiviral drugs known for their significant efficacy in treating various viral infections. Utilizing molecular dynamics (MD) simulations, machine learning, and van der Waals density functional theory, we accurately elucidate the binding properties of these antiviral drugs on a phosphorene single-layer. To further investigate these characteristics, this study employs four distinct machine learning models-Random Forest, Gradient Boosting, XGBoost, and CatBoost. The Hamiltonian of antiviral molecules within a monolayer of phosphorene is appropriately trained. The key aspect of utilizing machine learning (ML) in drug design revolves around training models that are efficient and precise in approximating density functional theory (DFT). Furthermore, the study employs SHAP (SHapley Additive exPlanations) to elucidate model predictions, providing insights into the contribution of each feature. To explore the interaction characteristics and thermodynamic properties of the hybrid drug, we employ molecular dynamics and DFT calculations in a vacuum interface. Our findings suggest that this functionalized 2D complex exhibits robust thermostability, indicating its potential as an effective and enabled entity. The observed variations in free energy at different surface charges and temperatures suggest the adsorption potential of FP and EB molecules from the surrounding environment.
Collapse
Affiliation(s)
- Slimane Laref
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (X.G.); (T.G.)
| | - Fouzi Harrou
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Ying Sun
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (X.G.); (T.G.)
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (X.G.); (T.G.)
| |
Collapse
|
17
|
Ning S, Wang S, Liu Z, Zhang N, Yang B, Zhang F. Study on Magnetic and Plasmonic Properties of Fe 3O 4-PEI-Au and Fe 3O 4-PEI-Ag Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2024; 17:509. [PMID: 38276448 PMCID: PMC10817610 DOI: 10.3390/ma17020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Magnetic-plasmonic nanoparticles (NPs) have attracted great interest in many fields because they can exhibit more physical and chemical properties than individual magnetic or plasmonic NPs. In this work, we synthesized Au- or Ag-decorated Fe3O4 nanoparticles coated with PEI (Fe3O4-PEI-M (M = Au or Ag) NPs) using a simple method. The influences of the plasmonic metal NPs' (Au or Ag) coating density on the magnetic and plasmonic properties of the Fe3O4-PEI-M (M = Au or Ag) NPs were investigated, and the density of the plasmonic metal NPs coated on the Fe3O4 NPs surfaces could be adjusted by controlling the polyethyleneimine (PEI) concentration. It showed that the Fe3O4-PEI-M (M = Au or Ag) NPs exhibited both magnetic and plasmonic properties. When the PEI concentration increased from 5 to 35 mg/mL, the coating density of the Au or Ag NPs on the Fe3O4 NPs surfaces increased, the corresponding magnetic intensity became weaker, and the plasmonic intensity was stronger. At the same time, the plasmonic resonance peak of the Fe3O4-PEI-M (M = Au or Ag) NPs was red shifted. Therefore, there was an optimal coverage of the plasmonic metal NPs on the Fe3O4 NPs surfaces to balance the magnetic and plasmonic properties when the PEI concentration was between 15 and 25 mg/mL. This result can guide the application of the Fe3O4-M (M = Au or Ag) NPs in the biomedical field.
Collapse
Affiliation(s)
- Shuya Ning
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an 710021, China; (S.N.); (S.W.); (Z.L.); (F.Z.)
- Key Laboratory of Photonics Technology for Information, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Shuo Wang
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an 710021, China; (S.N.); (S.W.); (Z.L.); (F.Z.)
| | - Zhihui Liu
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an 710021, China; (S.N.); (S.W.); (Z.L.); (F.Z.)
| | - Naming Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Bin Yang
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Fanghui Zhang
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an 710021, China; (S.N.); (S.W.); (Z.L.); (F.Z.)
| |
Collapse
|
18
|
Yue H, Zhao D, Tegafaw T, Ahmad MY, Saidi AKAA, Liu Y, Cha H, Yang BW, Chae KS, Nam SW, Chang Y, Lee GH. Core-Shell Fe 3O 4@C Nanoparticles as Highly Effective T 2 Magnetic Resonance Imaging Contrast Agents: In Vitro and In Vivo Studies. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:177. [PMID: 38251140 PMCID: PMC10819740 DOI: 10.3390/nano14020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Magnetite nanoparticles (Fe3O4 NPs) have been intensively investigated because of their potential biomedical applications due to their high saturation magnetization. In this study, core-shell Fe3O4@C NPs (core = Fe3O4 NPs and shell = amorphous carbons, davg = 35.1 nm) were synthesized in an aqueous solution. Carbon coating terminated with hydrophilic -OH and -COOH groups imparted excellent biocompatibility and hydrophilicity to the NPs, making them suitable for biomedical applications. The Fe3O4@C NPs exhibited ideal relaxometric properties for T2 magnetic resonance imaging (MRI) contrast agents (i.e., high transverse and negligible longitudinal water proton spin relaxivities), making them exclusively induce only T2 relaxation. Their T2 MRI performance as contrast agents was confirmed in vivo by measuring T2 MR images in mice before and after intravenous injection.
Collapse
Affiliation(s)
- Huan Yue
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| | - Dejun Zhao
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| | - Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| | - Mohammad Yaseen Ahmad
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| | - Abdullah Khamis Ali Al Saidi
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| | - Ying Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| | - Hyunsil Cha
- Division of Biomedical Science, School of Medicine, Kyungpook National University, Taegu 41944, Republic of Korea;
| | - Byeong Woo Yang
- Theranocure, Medlifescience Bldg. 1, Chilgok, Bukgu, Taegu 41405, Republic of Korea;
| | - Kwon Seok Chae
- Department of Biology Education, Teachers’ College, Kyungpook National University, Taegu 41566, Republic of Korea;
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, Republic of Korea;
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, Republic of Korea;
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (H.Y.); (D.Z.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (Y.L.)
| |
Collapse
|
19
|
Jin Y, Cheng Z, Yuan Z, Du Y, Tian J, Shao B. Glucose-Regulated Protein 78 Targeting ICG and DOX Loaded Hollow Fe 3O 4 Nanoparticles for Hepatocellular Carcinoma Diagnosis and Therapy. Int J Nanomedicine 2024; 19:189-208. [PMID: 38223882 PMCID: PMC10785830 DOI: 10.2147/ijn.s428687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024] Open
Abstract
Purpose Liver cancer is considered as the third leading cause of cancer-related deaths, with hepatocellular carcinoma (HCC) accounting for approximately 90% of liver cancers. Improving the treatment of HCC is a serious challenge today. The primary objective of this study was to construct SP94-Fe3O4@ICG&DOX nanoparticles and investigate their potential diagnosis and treatment effect benefits on HCC. Methods Firstly, we synthesized and characterized SP94-Fe3O4@ICG&DOX nanoparticles and confirmed their in vitro release behavior, photothermal and photodynamic performance. Moreover, the in vivo imaging capability was also observed. Finally, the inhibitory effects on Hepa1-6 in vitro and in vivo were observed as well as biosafety. Results SP94-Fe3O4@ICG&DOX nanoparticles have a size of ~22.1 nm, with an encapsulation efficiency of 45.2% for ICG and 42.7% for DOX, showing excellent in vivo MPI and fluorescence imaging capabilities for precise tumor localization, and synergistic photo-chemotherapy (pH- and thermal-sensitive drug release) against tumors under irradiation. With the assistance of a fluorescence molecular imaging system or MPI scanner, the location and contours of the tumor were clearly visible. Under a constant laser irradiation (808 nm, 0.6 W/cm2) and a set concentration (50 µg/mL), the temperature of the solution could rapidly increase to ~45 °C, which could effectively kill the tumor cells. It could be effectively uptaken by HCC cells and significantly inhibit their proliferation under the laser irradiation (100% inhibition rate for HCC tumors). And most importantly, our nanoparticles exhibited favorable biocompatibility with normal tissues and cells. Conclusion This versatile agent can serve as an intelligent and promising nanoplatform that integrates multiple accurate diagnoses, precise positioning of cancer tissue, and effective coordination with synergistic tumor photodynamic therapy.
Collapse
Affiliation(s)
- Yushen Jin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Prevention and Control, Beijing, 100013, People’s Republic of China
| | - Zhongquan Cheng
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, People’s Republic of China
| | - Zhu Yuan
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, People’s Republic of China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Prevention and Control, Beijing, 100013, People’s Republic of China
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People’s Republic of China
| |
Collapse
|
20
|
Tsai LH, Young TH, Yen CH, Yao WC, Chang CH. Intratumoral thermo-chemotherapeutic alginate hydrogel containing doxorubicin loaded PLGA nanoparticle and heating agent. Int J Biol Macromol 2023; 251:126221. [PMID: 37572819 DOI: 10.1016/j.ijbiomac.2023.126221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/03/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Chemotherapy has been widely used to treat cancer; however, the non-specific systemic toxicity of chemotherapeutic agents has always been an issue. Local injection treatment is a strategy used to reduce the undesired adverse effects of chemotherapeutic drugs. In addition, chemotherapeutic agents combined with thermotherapy are effective in further enhancing therapeutic potency. In the present study, we prepared an injectable hydrogel, namely, doxorubicin (DOX)-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticle (DPN) and magnetite nanoparticle (MNP) embedded in alginate hydrogel (DPN/MNP-HG), where DPN and MNP were the chemotherapeutic and heating agents, respectively, for intratumoral thermo-chemotherapy. Injectable DPN/MNP-HG, which possesses solid-like elastic properties, was conveniently prepared via ionic cross-linking at room-temperature. When exposed to an alternating magnetic field (AMF), DPN/MNP-HG exhibited controllable heat generation with a reversible temperature-rise profile. Regarding the kinetics of DOX release, both with and without AMF, DPN/MNP-HG exhibited a slow initial burst and sustained release profile. In cytotoxicity studies and subcutaneous mouse cancer models, successful thermo-chemotherapy with DPN/MNP-HG resulted in significantly lower cell viability and increased tumor-growth suppression; mice also exhibited good tolerance to injected DPN/MNP-HG both with(+) and without AMF application. In conclusion, the proposed thermo-chemotherapeutic DPN/MNP-HG for local intratumoral injection is a promising formulation for cancer treatment.
Collapse
Affiliation(s)
- Li-Hui Tsai
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan; Department of Biomedical Engineering, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chia-Hsiang Yen
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Wei-Cheng Yao
- Department of Anesthesiology and Pain Medicine, Min-Sheng General Hospital, Taoyuan 330, Taiwan
| | - Chih-Hao Chang
- Department of Orthopedics, National Taiwan University Hospital Jin-Shan Branch, New Taipei City 20844, Taiwan; Department of Orthopedics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan.
| |
Collapse
|
21
|
Zhu S, Cheng Y, Wang J, Liu G, Luo T, Li X, Yang S, Yang R. Biohybrid magnetic microrobots: An intriguing and promising platform in biomedicine. Acta Biomater 2023; 169:88-106. [PMID: 37572981 DOI: 10.1016/j.actbio.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Biohybrid magnetic microrobots (BMMs) have emerged as an exciting class of microrobots and have been considered as a promising platform in biomedicine. Many microorganisms and body's own cells show intriguing properties, such as morphological characteristics, biosafety, and taxis abilities (e.g., chemotaxis, aerotaxis), which have made them attractive for the fabrication of microrobots. For remote controllability and sustainable actuation, magnetic components are usually incorporated onto these biological entities, and other functionalized non-biological components (e.g., therapeutic agents) are also included for specific applications. This review highlights the latest developments in BMMs with a focus on their biomedical applications. It starts by introducing the fundamental understanding of the propulsion system at the microscale in a magnetically driven manner, followed by a summary of diverse BMMs based on different microorganisms and body's own cells along with their relevant applications. Finally, the review discusses how BMMs contribute to the advancements of microrobots, the current challenges of using BMMs in practical clinical settings, and the future perspectives of this exciting field. STATEMENT OF SIGNIFICANCE: Biohybrid magnetic microrobots (BMMs), composed of biological entities and functional parts, hold great potential and serve as a novel and promising platform for biomedical applications such as targeted drug delivery. This review comprehensively summarizes the recent advancements in BMMs for biomedical applications, mainly focused on the representative propulsion modalities in a magnetically propelled manner and diverse designs of BMMs based on different biological entities, including microorganisms and body's own cells. We hope this review can provide ideas for the future design, development, and innovation of micro/nanorobots in the field of biomedicine.
Collapse
Affiliation(s)
- Shilu Zhu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Yifan Cheng
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Jian Wang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Guangli Liu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Tingting Luo
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China.
| | - Xiaojian Li
- Department of Management, Hefei University of Technology, Hefei 230009, China.
| | - Shanlin Yang
- Key Laboratory of Process Optimization and Intelligent Decision-Making (Ministry of Education), Hefei University of Technology, Hefei 230009, China.
| | - Runhuai Yang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
22
|
Wang J, Yang J, Liu K, Yuan J, Shi Y, Li H, Zhao L. Tumor targeted cancer membrane-camouflaged ultra-small Fe nanoparticles for enhanced collaborative apoptosis and ferroptosis in glioma. Mater Today Bio 2023; 22:100780. [PMID: 37680585 PMCID: PMC10480784 DOI: 10.1016/j.mtbio.2023.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/28/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023] Open
Abstract
Glioma is recognized as the most common and aggressive primary brain tumor in adults. Owing to the occurrence of drug resistance and the failure of drug to penetrate the blood-brain barrier (BBB), there is no effective strategy for the treatment of glioma. The main objective of this study was to develop a biomimetic glioma C6 cell membrane (C6M) derived nanovesicles (DOX-FN/C6M-NVs) loaded with doxorubicin (DOX) and ultra-small Fe nanoparticles (FN) for accomplishing the effective brain tumor-targeted delivery of DOX and improving anti-cancer efficacy via inducing collaborative apoptosis and ferroptosis. The findings revealed that employing C6M-NVs as a carrier significantly improved the therapeutic efficacy by enabling evasion of immune surveillance, facilitating targeted drug delivery to tumor sites, and minimizing cardiotoxicity and adverse effects associated with DOX. DOX-FN/C6M-NVs exhibited more potent anti-tumor effects as compared with free DOX by promoting DOX-mediated apoptosis and accelerating ferroptosis via the mediation of FN. This study suggested that DOX-FN/C6M-NVs as the potential inducer of ferroptosis and apoptosis conferred effective tumor suppression in the treatment of glioma.
Collapse
Affiliation(s)
- Jingchen Wang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, PR China
| | - Jian Yang
- Life Science Institution, Jinzhou Medical University, Jinzhou, 121000, PR China
| | - Kang Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, PR China
| | - Jiayu Yuan
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, PR China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, PR China
| | - Hongdan Li
- Life Science Institution, Jinzhou Medical University, Jinzhou, 121000, PR China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, PR China
| |
Collapse
|
23
|
Amirahmadi M, Hosseinkhani S, Hosseini M, Yaghmei P, Heydari A. Fe 3O 4@SiO 2@NiAl-LDH microspheres implication in separation, kinetic and structural properties of phenylalanine dehydrogenase. Heliyon 2023; 9:e19429. [PMID: 37809670 PMCID: PMC10558515 DOI: 10.1016/j.heliyon.2023.e19429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Fe3O4@SiO2@NiAl-LDH three-components microsphere contains a Fe3O4@SiO2 magnetic core and a layered double hydroxide with nickel cation provide the binding ability to (His)-tagged-protein and exhibits high performance in protein separation and purification. The morphology and chemistry of the synthesized Fe3O4@SiO2@NiAl-LDH microspheres were characterized by energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), vibrating sample magnetometer (VSM), Dynamic light scattering (DLS). Purified enzyme was assesed with SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis and intrinsic fluorescence spectroscopy. In this study, the separation of phenylalanine dehydrogenase (PheDH) by Fe3O4@SiO2@NiAl -LDH was performed and the effect of microsphere was investigated on the kinetic and structural properties of PheDH. After purification, kinetic parameters such as Km, Vmax, Kcat, kcat/Km, optimum temperature, thermal stability, and and activation energy were evaluated and compared according to the mentioned methods. The interaction between the enzyme and the microsphere displayed a high performance in protein binding capacity. The results also revealed that the kinetic parameters of the enzyme changed in a dose-dependent manner in the presence of a microsphere. Moreover, the results of intrinsic fluorescence and Circular Dichroism (CD) confirmed the structural changes of the protein in the interaction with the microsphere.
Collapse
Affiliation(s)
- Mozhgan Amirahmadi
- Department of Biochemistry, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1417614418, Iran
| | - Paricher Yaghmei
- Department of Biochemistry, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akbar Heydari
- Chemistry Department, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
| |
Collapse
|
24
|
Palma AS, Casadei BR, Lotierzo MC, de Castro RD, Barbosa LRS. A short review on the applicability and use of cubosomes as nanocarriers. Biophys Rev 2023; 15:553-567. [PMID: 37681099 PMCID: PMC10480096 DOI: 10.1007/s12551-023-01089-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/28/2023] [Indexed: 09/09/2023] Open
Abstract
Abstract Cubosomes are nanostructured lipid-based particles that have gained significant attention in the field of drug delivery and nanomedicine. These unique structures consist of a three-dimensional cubic lattice formed by the self-assembly of lipid molecules. The lipids used to construct cubosomes are typically nonionic surfactants, such as monoolein, which possess both hydrophilic and hydrophobic regions, allowing them to form stable, water-dispersible nanoparticles. One of the key advantages of cubosomes is their ability to encapsulate and deliver hydrophobic as well as hydrophilic drugs. The hydrophobic regions of the lipid bilayers provide an ideal environment for incorporating lipophilic drugs, while the hydrophilic regions can encapsulate water-soluble drugs. This versatility makes cubosomes suitable for delivering a wide range of therapeutic agents, including small molecules, proteins, peptides, and nucleic acids. The unique structure of cubosomes also offers stability and controlled release benefits. The lipid bilayers provide a protective barrier, shielding the encapsulated drugs from degradation and improving their stability. Moreover, the cubic lattice arrangement enables the modulation of drug release kinetics by varying the lipid composition and surface modifications. This allows for the development of sustained or triggered drug release systems, enhancing therapeutic efficacy and reducing side effects. Furthermore, cubosomes can be easily modified with targeting ligands or surface modifications to achieve site-specific drug delivery, enhancing therapeutic selectivity and reducing off-target effects. In conclusion, cubosomes offer a versatile and promising platform for the delivery of therapeutic agents. In this manuscript, we will highlight some of these applications. Graphical abstract
Collapse
Affiliation(s)
- Amanda Santos Palma
- Institute of Physics, University of São Paulo, USP, São Paulo, SP 05508-090 Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-100 Brazil
| | - Bruna Renata Casadei
- Institute of Physics, University of São Paulo, USP, São Paulo, SP 05508-090 Brazil
| | - Mayra Cristina Lotierzo
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, USP, São Paulo, SP 05508-000 Brazil
| | - Raphael Dias de Castro
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, USP, São Paulo, SP 05508-000 Brazil
| | - Leandro Ramos Souza Barbosa
- Institute of Physics, University of São Paulo, USP, São Paulo, SP 05508-090 Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-100 Brazil
| |
Collapse
|
25
|
Li J, Wang Q, Han Y, Jiang L, Lu S, Wang B, Qian W, Zhu M, Huang H, Qian P. Development and application of nanomaterials, nanotechnology and nanomedicine for treating hematological malignancies. J Hematol Oncol 2023; 16:65. [PMID: 37353849 PMCID: PMC10290401 DOI: 10.1186/s13045-023-01460-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/30/2023] [Indexed: 06/25/2023] Open
Abstract
Hematologic malignancies (HMs) pose a serious threat to patients' health and life, and the five-year overall survival of HMs remains low. The lack of understanding of the pathogenesis and the complex clinical symptoms brings immense challenges to the diagnosis and treatment of HMs. Traditional therapeutic strategies for HMs include radiotherapy, chemotherapy, targeted therapy and hematopoietic stem cell transplantation. Although immunotherapy and cell therapy have made considerable progress in the last decade, nearly half of patients still relapse or suffer from drug resistance. Recently, studies have emerged that nanomaterials, nanotechnology and nanomedicine show great promise in cancer therapy by enhancing drug targeting, reducing toxicity and side effects and boosting the immune response to promote durable immunological memory. In this review, we summarized the strategies of recently developed nanomaterials, nanotechnology and nanomedicines against HMs and then proposed emerging strategies for the future designment of nanomedicines to treat HMs based on urgent clinical needs and technological progress.
Collapse
Affiliation(s)
- Jinxin Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Qiwei Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Lingli Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Siqi Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Beini Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Wenchang Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Meng Zhu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
26
|
Wang Y, Wu X, Bao X, Mou X. Progress in the Mechanism of the Effect of Fe 3O 4 Nanomaterials on Ferroptosis in Tumor Cells. Molecules 2023; 28:molecules28114562. [PMID: 37299036 DOI: 10.3390/molecules28114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Ferroptosis is a new form of iron-dependent programmed cell death discovered in recent years, which is caused by the accumulation of lipid peroxidation (LPO) and reactive oxygen species (ROS). Recent studies have shown that cellular ferroptosis is closely related to tumor progression, and the induction of ferroptosis is a new means to inhibit tumor growth. Biocompatible Fe3O4 nanoparticles (Fe3O4-NPs), rich in Fe2+ and Fe3+, act as a supplier of iron ions, which not only promote ROS production but also participate in iron metabolism, thus affecting cellular ferroptosis. In addition, Fe3O4-NPs combine with other techniques such as photodynamic therapy (PDT); heat stress and sonodynamic therapy (SDT) can further induce cellular ferroptosis effects, which then enhance the antitumor effects. In this paper, we present the research progress and the mechanism of Fe3O4-NPs to induce ferroptosis in tumor cells from the perspective of related genes and chemotherapeutic drugs, as well as PDT, heat stress, and SDT techniques.
Collapse
Affiliation(s)
- Yaxuan Wang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xiao Wu
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, China
| | - Xiaoying Bao
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xianbo Mou
- Health Science Center, Ningbo University, Ningbo 315211, China
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning 530021, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
27
|
Pu Y, Ke H, Wu C, Xu S, Xiao Y, Han L, Lyv G, Li S. Superparamagnetic iron oxide nanoparticles target BxPC-3 cells and silence MUC4 for theranostics of pancreatic cancer. Biochim Biophys Acta Gen Subj 2023:130383. [PMID: 37236323 DOI: 10.1016/j.bbagen.2023.130383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
PURPOSE Superparamagnetic iron oxide nanoparticles (SPION) are excellent magnetic resonance imaging (MRI) contrast agents. Mucin 4 (MUC4) acts as pancreatic cancer (PC) tumor antigen and influences PC progression. Small interfering RNAs (siRNAs) are used as a gene-silencing tool to treat a variety of diseases. METHODS We designed a therapeutic probe based on polyetherimide-superparamagnetic iron oxide nanoparticles (PEI-SPION) combined with siRNA nanoprobes (PEI-SPION-siRNA) to assess the contrast in MRI. The biocompatibility of the nanocomposite, and silencing of MUC4 were characterized and evaluated. RESULTS The prepared molecular probe had a particle size of 61.7 ± 18.5 nmand a surface of 46.7 ± 0.8mVand showed good biocompatibility in vitro and T2 relaxation efficiency. It can also load and protect siRNA. PEI-SPION-siRNA showed a good silencing effect on MUC4. CONCLUSION PEI-SPION-siRNA may be beneficial as a novel theranostic tool for PC.
Collapse
Affiliation(s)
- Yu Pu
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China; Department of Medical Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of North Sichuan Medical College. No. 234, Fujiang Road, Shunqing District, Nanchong City 637000, People's Republic of China; Department of Medicine, Quanzhou Medical College, No. 2 Anji Road, Luojiang District, Quanzhou 362000, People's Republic of China
| | - Helin Ke
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China
| | - Changqiang Wu
- Department of Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College. No. 55, Dongshun Road, Gaoping District, Nanchong City 637100, People's Republic of China
| | - Shaodan Xu
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China
| | - Yang Xiao
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China
| | - Lina Han
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China
| | - Guorong Lyv
- Department of Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College. No. 55, Dongshun Road, Gaoping District, Nanchong City 637100, People's Republic of China.
| | - Shilin Li
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China.
| |
Collapse
|
28
|
Radoń A, Włodarczyk A, Sieroń Ł, Rost-Roszkowska M, Chajec Ł, Łukowiec D, Ciuraszkiewicz A, Gębara P, Wacławek S, Kolano-Burian A. Influence of the modifiers in polyol method on magnetically induced hyperthermia and biocompatibility of ultrafine magnetite nanoparticles. Sci Rep 2023; 13:7860. [PMID: 37188707 DOI: 10.1038/s41598-023-34738-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/06/2023] [Indexed: 05/17/2023] Open
Abstract
Magnetite nanoparticles (Fe3O4 NPs) are widely tested in various biomedical applications, including magnetically induced hyperthermia. In this study, the influence of the modifiers, i.e., urotropine, polyethylene glycol, and NH4HCO3, on the size, morphology, magnetically induced hyperthermia effect, and biocompatibility were tested for Fe3O4 NPs synthesized by polyol method. The nanoparticles were characterized by a spherical shape and similar size of around 10 nm. At the same time, their surface is functionalized by triethylene glycol or polyethylene glycol, depending on the modifiers. The Fe3O4 NPs synthesized in the presence of urotropine had the highest colloidal stability related to the high positive value of zeta potential (26.03 ± 0.55 mV) but were characterized by the lowest specific absorption rate (SAR) and intrinsic loss power (ILP). The highest potential in the hyperthermia applications have NPs synthesized using NH4HCO3, for which SAR and ILP were equal to 69.6 ± 5.2 W/g and 0.613 ± 0.051 nHm2/kg, respectively. Their application possibility was confirmed for a wide range of magnetic fields and by cytotoxicity tests. The absence of differences in toxicity to dermal fibroblasts between all studied NPs was confirmed. Additionally, no significant changes in the ultrastructure of fibroblast cells were observed apart from the gradual increase in the number of autophagous structures.
Collapse
Affiliation(s)
- Adrian Radoń
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44-100, Gliwice, Poland.
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St, 44-100, Gliwice, Poland.
| | - Agnieszka Włodarczyk
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Łukasz Sieroń
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Łukasz Chajec
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Dariusz Łukowiec
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44-100, Gliwice, Poland
| | - Agnieszka Ciuraszkiewicz
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St, 44-100, Gliwice, Poland
| | - Piotr Gębara
- Department of Physics, Częstochowa University of Technology, Armii Krajowej 19, 42-200, Czestochowa, Poland
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Aleksandra Kolano-Burian
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St, 44-100, Gliwice, Poland
| |
Collapse
|
29
|
Thakur S, Mohiuddin I, Singh R, Kaur V. Selective quantification of diclofenac from groundwater and pharmaceutical samples by magnetic molecularly imprinted polymer-based sorbent coupled with the HPLC-PDA detection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27431-1. [PMID: 37156956 DOI: 10.1007/s11356-023-27431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Diclofenac (DCF) is a pharmaceutical contaminant of water bodies and therefore, improvement of analytical techniques for its removal and quantitation is one of the current interests of analysts. Herein, DCF selective magnetic molecularly imprinted polymer (MMIP) has been fabricated and characterized by Fourier transform-infrared spectroscopy, thermogravimetric analysis, vibrating scanning magnetometer, scanning electron microscopy, high-resolution transmission electron microscope, energy-dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller analyzer. Furthermore, the protocol for the quantification of DCF using MMIP-HPLC-PDA combo has been optimized by investigating the effect of the amount of MMIP, type and volume of eluent, and variation of pH. The optimized protocol suggested a method detection limit of 0.042 ng mL-1 and linearity of results in the range 0.1-100 ng mL-1 (R2 = 0.99). The fabricated material offered recovery of DCF up to 96.38-99.46% from groundwater and pharmaceutical samples with a relative standard deviation of <4%. In addition, the material was found selective and sensitive for DCF among its analogous drugs like mefenamic acid, ketoprofen, fenofibrate, aspirin, ibuprofen, and naproxen.
Collapse
Affiliation(s)
- Sahil Thakur
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
- Department of Chemistry, DAV College, Sector 10, Chandigarh, 160011, India
| | - Irshad Mohiuddin
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India.
| | - Raghubir Singh
- Department of Chemistry, DAV College, Sector 10, Chandigarh, 160011, India
| | - Varinder Kaur
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
| |
Collapse
|
30
|
Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS OMEGA 2023; 8:14290-14320. [PMID: 37125102 PMCID: PMC10134471 DOI: 10.1021/acsomega.2c07840] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Cancer is ranked as the second leading cause of death globally. Traditional cancer therapies including chemotherapy are flawed, with off-target and on-target toxicities on the normal cells, requiring newer strategies to improve cell selective targeting. The application of nanomaterial has been extensively studied and explored as chemical biology tools in cancer theranostics. It shows greater applications toward stability, biocompatibility, and increased cell permeability, resulting in precise targeting, and mitigating the shortcomings of traditional cancer therapies. The nanoplatform offers an exciting opportunity to gain targeting strategies and multifunctionality. The advent of nanotechnology, in particular the development of smart nanomaterials, has transformed cancer diagnosis and treatment. The large surface area of nanoparticles is enough to encapsulate many molecules and the ability to functionalize with various biosubstrates such as DNA, RNA, aptamers, and antibodies, which helps in theranostic action. Comparatively, biologically derived nanomaterials perceive advantages over the nanomaterials produced by conventional methods in terms of economy, ease of production, and reduced toxicity. The present review summarizes various techniques in cancer theranostics and emphasizes the applications of smart nanomaterials (such as organic nanoparticles (NPs), inorganic NPs, and carbon-based NPs). We also critically discussed the advantages and challenges impeding their translation in cancer treatment and diagnostic applications. This review concludes that the use of smart nanomaterials could significantly improve cancer theranostics and will facilitate new dimensions for tumor detection and therapy.
Collapse
Affiliation(s)
- Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
| | - Virendra Vikram Singh
- Defence Research and Development Establishment, DRDO, Gwalior 474002, Madhya Pradesh, India
| | - Manoj Kumar Solanki
- Faculty of Natural Sciences, Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Anil Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke 835222, Ranchi, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Vikkinkaari 1, 00100 Helsinki, Finland
| |
Collapse
|
31
|
张 琳, 努 尔, 兰 中, 余 忠, 李 启, 蒋 晓, 邬 传, 孙 科. [Surface modification of multifunctional ferrite magnetic nanoparticles and progress in biomedicine]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:378-383. [PMID: 37139772 PMCID: PMC10162916 DOI: 10.7507/1001-5515.202209056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/05/2023] [Indexed: 05/05/2023]
Abstract
Magnetic ferrite nanoparticles (MFNPs) have great application potential in biomedical fields such as magnetic resonance imaging, targeted drugs, magnetothermal therapy and gene delivery. MFNPs can migrate under the action of a magnetic field and target specific cells or tissues. However, to apply MFNPs to organisms, further modifications on the surface of MFNPs are required. In this paper, the common modification methods of MFNPs are reviewed, their applications in medical fields such as bioimaging, medical detection, and biotherapy are summarized, and the future application directions of MFNPs are further prospected.
Collapse
Affiliation(s)
- 琳雪 张
- 电子科技大学 材料与能源学院(成都 610054)School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 尔尼沙·阿里甫 努
- 电子科技大学 材料与能源学院(成都 610054)School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 中文 兰
- 电子科技大学 材料与能源学院(成都 610054)School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 忠 余
- 电子科技大学 材料与能源学院(成都 610054)School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 启帆 李
- 电子科技大学 材料与能源学院(成都 610054)School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 晓娜 蒋
- 电子科技大学 材料与能源学院(成都 610054)School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 传健 邬
- 电子科技大学 材料与能源学院(成都 610054)School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 科 孙
- 电子科技大学 材料与能源学院(成都 610054)School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|
32
|
Laref S, Harrou F, Wang B, Sun Y, Laref A, Laleg-Kirati TM, Gojobori T, Gao X. Synergy of Small Antiviral Molecules on a Black-Phosphorus Nanocarrier: Machine Learning and Quantum Chemical Simulation Insights. Molecules 2023; 28:molecules28083521. [PMID: 37110754 PMCID: PMC10142408 DOI: 10.3390/molecules28083521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Favipiravir (FP) and Ebselen (EB) belong to a broad range of antiviral drugs that have shown active potential as medications against many viruses. Employing molecular dynamics simulations and machine learning (ML) combined with van der Waals density functional theory, we have uncovered the binding characteristics of these two antiviral drugs on a phosphorene nanocarrier. Herein, by using four different machine learning models (i.e., Bagged Trees, Gaussian Process Regression (GPR), Support Vector Regression (SVR), and Regression Trees (RT)), the Hamiltonian and the interaction energy of antiviral molecules in a phosphorene monolayer are trained in an appropriate way. However, training efficient and accurate models for approximating the density functional theory (DFT) is the final step in using ML to aid in the design of new drugs. To improve the prediction accuracy, the Bayesian optimization approach has been employed to optimize the GPR, SVR, RT, and BT models. Results revealed that the GPR model obtained superior prediction performance with an R2 of 0.9649, indicating that it can explain 96.49% of the data's variability. Then, by means of DFT calculations, we examine the interaction characteristics and thermodynamic properties in a vacuum and a continuum solvent interface. These results illustrate that the hybrid drug is an enabled, functionalized 2D complex with vigorous thermostability. The change in Gibbs free energy at different surface charges and temperatures implies that the FP and EB molecules are allowed to adsorb from the gas phase onto the 2D monolayer at different pH conditions and high temperatures. The results reveal a valuable antiviral drug therapy loaded by 2D biomaterials that may possibly open a new way of auto-treating different diseases, such as SARS-CoV, in primary terms.
Collapse
Affiliation(s)
- Slimane Laref
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Fouzi Harrou
- A Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bin Wang
- Center for Interfacial Reaction Engineering (CIRE), School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Ying Sun
- A Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Amel Laref
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taous-Meriem Laleg-Kirati
- A Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
33
|
Sharif MS, Hameed H, Waheed A, Tariq M, Afreen A, Kamal A, Mahmoud EA, Elansary HO, Saqib S, Zaman W. Biofabrication of Fe 3O 4 Nanoparticles from Spirogyra hyalina and Ajuga bracteosa and Their Antibacterial Applications. Molecules 2023; 28:3403. [PMID: 37110639 PMCID: PMC10144552 DOI: 10.3390/molecules28083403] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Iron oxide nanoparticles (NPs) have attracted substantial interest due to their superparamagnetic features, biocompatibility, and nontoxicity. The latest progress in the biological production of Fe3O4 NPs by green methods has improved their quality and biological applications significantly. In this study, the fabrication of iron oxide NPs from Spirogyra hyalina and Ajuga bracteosa was conducted via an easy, environmentally friendly, and cost-effective process. The fabricated Fe3O4 NPs were characterized using various analytical methods to study their unique properties. UV-Vis absorption peaks were observed in algal and plant-based Fe3O4 NPs at 289 nm and 306 nm, respectively. Fourier transform infrared (FTIR) spectroscopy analyzed diverse bioactive phytochemicals present in algal and plant extracts that functioned as stabilizing and capping agents in the fabrication of algal and plant-based Fe3O4 NPs. X-ray diffraction of NPs revealed the crystalline nature of both biofabricated Fe3O4 NPs and their small size. Scanning electron microscopy (SEM) revealed that algae and plant-based Fe3O4 NPs are spherical and rod-shaped, averaging 52 nm and 75 nm in size. Energy dispersive X-ray spectroscopy showed that the green-synthesized Fe3O4 NPs require a high mass percentage of iron and oxygen to ensure their synthesis. The fabricated plant-based Fe3O4 NPs exhibited stronger antioxidant properties than algal-based Fe3O4 NPs. The algal-based NPs showed efficient antibacterial potential against E. coli, while the plant-based Fe3O4 NPs displayed a higher zone of inhibition against S. aureus. Moreover, plant-based Fe3O4 NPs exhibited superior scavenging and antibacterial potential compared to the algal-based Fe3O4 NPs. This might be due to the greater number of phytochemicals in plants that surround the NPs during their green fabrication. Hence, the capping of bioactive agents over iron oxide NPs improves antibacterial applications.
Collapse
Affiliation(s)
- Muhammad Shakeeb Sharif
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur 10250, Pakistan; (M.S.S.); (H.H.)
| | - Hajra Hameed
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur 10250, Pakistan; (M.S.S.); (H.H.)
| | - Abdul Waheed
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Muhammad Tariq
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur 10250, Pakistan; (M.S.S.); (H.H.)
| | - Afshan Afreen
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur 10250, Pakistan; (M.S.S.); (H.H.)
| | - Asif Kamal
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta 34511, Egypt
| | - Hosam O. Elansary
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Saddam Saqib
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
34
|
Mbatha LS, Akinyelu J, Chukwuma CI, Mokoena MP, Kudanga T. Current Trends and Prospects for Application of Green Synthesized Metal Nanoparticles in Cancer and COVID-19 Therapies. Viruses 2023; 15:741. [PMID: 36992450 PMCID: PMC10054370 DOI: 10.3390/v15030741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer and COVID-19 have been deemed as world health concerns due to the millions of lives that they have claimed over the years. Extensive efforts have been made to develop sophisticated, site-specific, and safe strategies that can effectively diagnose, prevent, manage, and treat these diseases. These strategies involve the implementation of metal nanoparticles and metal oxides such as gold, silver, iron oxide, titanium oxide, zinc oxide, and copper oxide, formulated through nanotechnology as alternative anticancer or antiviral therapeutics or drug delivery systems. This review provides a perspective on metal nanoparticles and their potential application in cancer and COVID-19 treatments. The data of published studies were critically analysed to expose the potential therapeutic relevance of green synthesized metal nanoparticles in cancer and COVID-19. Although various research reports highlight the great potential of metal and metal oxide nanoparticles as alternative nanotherapeutics, issues of nanotoxicity, complex methods of preparation, biodegradability, and clearance are lingering challenges for the successful clinical application of the NPs. Thus, future innovations include fabricating metal nanoparticles with eco-friendly materials, tailor making them with optimal therapeutics for specific disease targeting, and in vitro and in vivo evaluation of safety, therapeutic efficiency, pharmacokinetics, and biodistribution.
Collapse
Affiliation(s)
- Londiwe Simphiwe Mbatha
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Jude Akinyelu
- Department of Biochemistry, Federal University Oye-Ekiti, Private Mail Bag 373, Ekiti State 370111, Nigeria
| | - Chika Ifeanyi Chukwuma
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa
| | - Mduduzi Paul Mokoena
- Department of Pathology, Pre-Clinical Sciences Division, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| |
Collapse
|
35
|
Habila MA, Moshab MS, El-Toni AM, Al-Awadi AS, ALOthman ZA. Facile Strategy for Fabricating an Organosilica-Modified Fe 3O 4 (OS/Fe 3O 4) Hetero-nanocore and OS/Fe 3O 4@SiO 2 Core-Shell Structure for Wastewater Treatment with Promising Recyclable Efficiency. ACS OMEGA 2023; 8:7626-7638. [PMID: 36872962 PMCID: PMC9979343 DOI: 10.1021/acsomega.2c07214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/31/2023] [Indexed: 05/03/2023]
Abstract
The development of a sustainable process for heavy metal ion remediation has become a point of interest in various fields of research, including wastewater treatment, industrial development, and health and environmental safety. In the present study, a promising sustainable adsorbent was fabricated through continuous controlled adsorption/desorption processes for heavy metal uptake. The fabrication strategy is based on a simple modification of Fe3O4 magnetic nanoparticles with organosilica in a one-pot solvothermal process, carried out in order to insert the organosilica moieties into the Fe3O4 nanocore during their formation. The developed organosilica-modified Fe3O4 hetero-nanocores had hydrophilic citrate moieties, together with hydrophobic organosilica ones, on their surfaces, which facilitated the further surface coating procedures. To prevent the formed nanoparticles from leaching into the acidic medium, a dense silica layer was coated on the fabricated organosilica/Fe3O4 (OS/Fe3O4). In addition, the prepared OS/Fe3O4@SiO2 was utilized for the adsorption of cobalt(II), lead(II), and manganese(II) from the solutions. The data for the adsorption processes of cobalt(II), lead(II), and manganese(II) on OS/(Fe3O4)@SiO2 were found to follow the pseudo-second-order kinetic model, indicating the fast uptake of heavy metals. The Freundlich isotherm was found to be more suitable for describing the uptake of heavy metals by OS/Fe3O4@SiO2 nanoparticles. The negative values of the ΔG° showed a spontaneous adsorption process of a physical nature. The super-regeneration and recycling capacities of the OS/Fe3O4@SiO2 were achieved, comparing the results to those of previous adsorbents, with a recyclable efficiency of 91% up to the seventh cycle, which is promising for environmental sustainability.
Collapse
Affiliation(s)
- Mohamed A. Habila
- Chemistry
Department, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Mohamed Sheikh Moshab
- Chemistry
Department, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Ahmed Mohamed El-Toni
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
- Nanomaterials
and Nanotechnology Department, Central Metallurgical
Research and Development Institute (CMRDI), P.O. 87 Helwan, Cairo 11421, Egypt
| | - Abdulrhman S. Al-Awadi
- Chemical
Engineering Department, King Saud University, Riyadh 11451, Saudi Arabia
- King
Abdullah City for Atomic and Renewable Energy (K.A. CARE), Energy
Research and Innovation Center at Riyadh, Riyadh 12244, Saudi Arabia
| | - Zeid A. ALOthman
- Chemistry
Department, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
36
|
Khabibullin VR, Chetyrkina MR, Obydennyy SI, Maksimov SV, Stepanov GV, Shtykov SN. Study on Doxorubicin Loading on Differently Functionalized Iron Oxide Nanoparticles: Implications for Controlled Drug-Delivery Application. Int J Mol Sci 2023; 24:4480. [PMID: 36901910 PMCID: PMC10002596 DOI: 10.3390/ijms24054480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Nanoplatforms applied for the loading of anticancer drugs is a cutting-edge approach for drug delivery to tumors and reduction of toxic effects on healthy cells. In this study, we describe the synthesis and compare the sorption properties of four types of potential doxorubicin-carriers, in which iron oxide nanoparticles (IONs) are functionalized with cationic (polyethylenimine, PEI), anionic (polystyrenesulfonate, PSS), and nonionic (dextran) polymers, as well as with porous carbon. The IONs are thoroughly characterized by X-ray diffraction, IR spectroscopy, high resolution TEM (HRTEM), SEM, magnetic susceptibility, and the zeta-potential measurements in the pH range of 3-10. The degree of doxorubicin loading at pH 7.4, as well as the degree of desorption at pH 5.0, distinctive to cancerous tumor environment, are measured. Particles modified with PEI were shown to exhibit the highest loading capacity, while the greatest release at pH 5 (up to 30%) occurs from the surface of magnetite decorated with PSS. Such a slow release of the drug would imply a prolonged tumor-inhibiting action on the affected tissue or organ. Assessment of the toxicity (using Neuro2A cell line) for PEI- and PSS-modified IONs showed no negative effect. In conclusion, the preliminary evaluation of the effects of IONs coated with PSS and PEI on the rate of blood clotting was carried out. The results obtained can be taken into account when developing new drug delivery platforms.
Collapse
Affiliation(s)
- Vladislav R. Khabibullin
- Chemistry Department, Lomonosov Moscow State University, Lenin Hills, 119991 Moscow, Russia
- State Scientific Center of the Russian Federation, Joint Stock Company “State Order of the Red Banner of Labor Research Institute of Chemistry and Technology of Organoelement Compounds”, 105118 Moscow, Russia
| | | | - Sergei I. Obydennyy
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, 119334 Moscow, Russia
| | - Sergey V. Maksimov
- Chemistry Department, Lomonosov Moscow State University, Lenin Hills, 119991 Moscow, Russia
| | - Gennady V. Stepanov
- State Scientific Center of the Russian Federation, Joint Stock Company “State Order of the Red Banner of Labor Research Institute of Chemistry and Technology of Organoelement Compounds”, 105118 Moscow, Russia
| | - Sergei N. Shtykov
- Department of Analytical Chemistry and Chemical Ecology, Institute of Chemistry, Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
37
|
Wang K, Zhang F, Xu K, Che Y, Qi M, Song C. Modified magnetic chitosan materials for heavy metal adsorption: a review. RSC Adv 2023; 13:6713-6736. [PMID: 36860541 PMCID: PMC9969337 DOI: 10.1039/d2ra07112f] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Magnetic chitosan materials have the characteristics of both chitosan and magnetic particle nuclei, showing the characteristics of easy separation and recovery, strong adsorption capacity and high mechanical strength, and have received extensive attention in adsorption, especially in the treatment of heavy metal ions. In order to further improve its performance, many studies have modified magnetic chitosan materials. This review discusses the strategies for the preparation of magnetic chitosan using coprecipitation, crosslinking, and other methods in detail. Besides, this review mainly summarizes the application of modified magnetic chitosan materials in the removal of heavy metal ions in wastewater in recent years. Finally, this review also discusses the adsorption mechanism, and puts forward the prospect of the future development of magnetic chitosan in wastewater treatment.
Collapse
Affiliation(s)
- Ke Wang
- Marine College, Shandong University Weihai 264209 China
| | - Fanbing Zhang
- Marine College, Shandong University Weihai 264209 China
| | - Kexin Xu
- Marine College, Shandong University Weihai 264209 China
| | - Yuju Che
- Marine College, Shandong University Weihai 264209 China
| | - Mingying Qi
- Marine College, Shandong University Weihai 264209 China
| | - Cui Song
- Marine College, Shandong University Weihai 264209 China
- Shandong University-Weihai Research Institute of Industrial Technology Weihai 264209 China
| |
Collapse
|
38
|
Ebadi M, Rifqi Md Zain A, Tengku Abdul Aziz TH, Mohammadi H, Tee CATH, Rahimi Yusop M. Formulation and Characterization of Fe 3O 4@PEG Nanoparticles Loaded Sorafenib; Molecular Studies and Evaluation of Cytotoxicity in Liver Cancer Cell Lines. Polymers (Basel) 2023; 15:polym15040971. [PMID: 36850253 PMCID: PMC9959119 DOI: 10.3390/polym15040971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
Iron oxide nanoparticles are one of the nanocarriers that are suitable for novel drug delivery systems due to low toxicity, biocompatibility, loading capacity, and controlled drug delivery to cancer cells. The purpose of the present study is the synthesis of coated iron oxide nanoparticles for the delivery of sorafenib (SFB) and its effects on cancer cells. In this study, Fe3O4 nanoparticles were synthesized by the co-precipitation method, and then sorafenib was loaded onto PEG@Fe3O4 nanoparticles. FTIR was used to ensure polyethylene glycol (PEG) binding to nanoparticles and loading the drug onto the nanoshells. A comparison of the mean size and the crystalline structure of nanoparticles was performed by TEM, DLS, and X-ray diffraction patterns. Then, cell viability was obtained by the MTT assay for 3T3 and HepG2 cell lines. According to FT-IR results, the presence of O-H and C-H bands at 3427 cm-1 and 1420 cm-1 peak correlate with PEG binding to nanoparticles. XRD pattern showed the cubic spinel structure of trapped magnetite nanoparticles carrying medium. The magnetic properties of nanoparticles were examined by a vibrating-sample magnetometer (VSM). IC50 values at 72 h for treatment with carriers of Fe3O4@PEG nanoparticle for the HepG2 cell line was 15.78 μg/mL (p < 0.05). This study showed that Fe3O4 nanoparticles coated by polyethylene glycol and using them in the drug delivery process could be beneficial for increasing the effect of sorafenib on cancer cells.
Collapse
Affiliation(s)
- Mona Ebadi
- College of Physics and Electrical Information Engineering, Zhejiang Normal University, Jinhua 321017, China
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Ahmad Rifqi Md Zain
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Correspondence: (C.A.T.H.T.); (A.R.M.Z.); Tel.: +86-(579)-8229-8650 (C.A.T.H.T.); +60-3-8911-8160 (A.R.M.Z.)
| | - Tengku Hasnan Tengku Abdul Aziz
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Hossein Mohammadi
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Clarence Augustine TH Tee
- College of Physics and Electrical Information Engineering, Zhejiang Normal University, Jinhua 321017, China
- Correspondence: (C.A.T.H.T.); (A.R.M.Z.); Tel.: +86-(579)-8229-8650 (C.A.T.H.T.); +60-3-8911-8160 (A.R.M.Z.)
| | - Muhammad Rahimi Yusop
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| |
Collapse
|
39
|
Li J, Zhang J, Shi M, Yu S, Ji M, Liang Y, Meng X. Crosstalk between Inflammation and Hemorrhage/Coagulation Disorders in Primary Blast Lung Injury. Biomolecules 2023; 13:biom13020351. [PMID: 36830720 PMCID: PMC9953683 DOI: 10.3390/biom13020351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Primary blast lung injury (PBLI), caused by exposure to high-intensity pressure waves from explosions in war, terrorist attacks, industrial production, and life explosions, is associated with pulmonary parenchymal tissue injury and severe ventilation insufficiency. PBLI patients, characterized by diffused intra-alveolar destruction, including hemorrhage and inflammation, might deteriorate into acute respiratory distress syndrome (ARDS) with high mortality. However, due to the absence of guidelines about PBLI, emergency doctors and rescue teams treating PBLI patients rely on experience. The goal of this review is to summarize the mechanisms of PBLI and their cross-linkages, exploring potential diagnostic and therapeutic targets of PBLI. We summarize the pathophysiological performance and pharmacotherapy principles of PBLI. In particular, we emphasize the crosstalk between hemorrhage and inflammation, as well as coagulation, and we propose early control of hemorrhage as the main treatment of PBLI. We also summarize several available therapy methods, including some novel internal hemostatic nanoparticles to prevent the vicious circle of inflammation and coagulation disorders. We hope that this review can provide information about the mechanisms, diagnosis, and treatment of PBLI for all interested investigators.
Collapse
Affiliation(s)
- Junfeng Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Jianfeng Zhang
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
| | - Mingyu Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Sifan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Mengjun Ji
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
- Correspondence:
| |
Collapse
|
40
|
Formation mechanism of surface modified iron oxide nanoparticles using controlled hydrolysis reaction in supercritical CO2. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
41
|
Hyaluronic Acid-Modified Cisplatin-Encapsulated Poly(Lactic-co-Glycolic Acid) Magnetic Nanoparticles for Dual-Targeted NIR-Responsive Chemo-Photothermal Combination Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15010290. [PMID: 36678917 PMCID: PMC9862698 DOI: 10.3390/pharmaceutics15010290] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Combination chemo-photothermal therapy with nanomaterials can reduce the dose of chemotherapeutic drugs required for effective cancer treatment by minimizing toxic side effects while improving survival times. Toward this end, we prepare hyaluronic acid (HA)-modified poly(lactic-co-glycolic acid) (PLGA) magnetic nanoparticles (MNP) for the CD44 receptor-mediated and magnetic field-guided dual-targeted delivery of cisplatin (CDDP). By co-encapsulating the CDDP and oleic acid-coated iron oxide MNP (IOMNP) in PLGA, the PMNPc was first prepared in a single emulsification/solvent evaporation step and successively surface modified with chitosan and HA to prepare the HA/PMNPc. Spherical HA/PMNPc nanoparticles of ~300 nm diameter can be prepared with 18 and 10% (w/w) loading content of CDDP and IOMNP and a pH-sensitive drug release to facilitate the endosomal release of the CDDP after intracellular uptake. This leads to the higher cytotoxicity of the HA/PMNPc toward the U87 glioblastoma cells than free CDDP with reduced IC50, a higher cell apoptosis rate, and the enhanced expression of cell apoptosis marker proteins. Furthermore, the nanoparticles show the hyperthermia effect toward U87 after short-term near-infrared (NIR) light exposure, which can further elevate the cell apoptosis/necrosis rate and upregulate the HSP70 protein expression due to the photothermal effects. The combined cancer therapeutic efficacy was studied in vivo using subcutaneously implanted U87 cells in nude mice. By using dual-targeted chemo-photothermal combination cancer therapy, the intravenously injected HA/PMNPc under magnetic field guidance and followed by NIR laser irradiation was demonstrated to be the most effective treatment modality by inhibiting the tumor growth and prolonging the survival time of the tumor-bearing nude mice.
Collapse
|
42
|
Laref S, Wang B, Gao X, Gojobori T. Computational Studies of Auto-Active van der Waals Interaction Molecules on Ultra-Thin Black-Phosphorus Film. Molecules 2023; 28:molecules28020681. [PMID: 36677738 PMCID: PMC9864666 DOI: 10.3390/molecules28020681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Using the van der Waals density functional theory, we studied the binding peculiarities of favipiravir (FP) and ebselen (EB) molecules on a monolayer of black phosphorene (BP). We systematically examined the interaction characteristics and thermodynamic properties in a vacuum and a continuum, solvent interface for active drug therapy. These results illustrate that the hybrid molecules are enabled functionalized two-dimensional (2D) complex systems with a vigorous thermostability. We demonstrate in this study that these molecules remain flat on the monolayer BP system and phosphorus atoms are intact. It is inferred that the hybrid FP+EB molecules show larger adsorption energy due to the van der Waals forces and planar electrostatic interactions. The changes in Gibbs free energy at different surface charge fluctuations and temperatures imply that the FP and EB are allowed to adsorb from the gas phase onto the 2D film at high temperatures. Thereby, the results unveiled beneficial inhibitor molecules on two dimensional BP nanocarriers, potentially introducing a modern strategy to enhance the development of advanced materials, biotechnology, and nanomedicine.
Collapse
Affiliation(s)
- Slimane Laref
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Correspondence:
| | - Bin Wang
- School of Chemical, Biological and Materials Engineering, Center for Interfacial Reaction Engineering (CIRE), University of Oklahoma, Norman, OK 73019, USA
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
43
|
Herea DD, Lăbuşcă L, Lupu N, Chiriac H. Magnetic particles for drug delivery. MAGNETIC SENSORS AND ACTUATORS IN MEDICINE 2023:259-304. [DOI: 10.1016/b978-0-12-823294-1.00002-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
44
|
Meng X, Huang J, Zhu G, Xu Y, Zhu S, Li Q, Chen M, Lin MC. Fe 2O 3nanoparticles anchored on thermally oxidized MWCNTs as anode material for lithium-ion battery. NANOTECHNOLOGY 2022; 34:015602. [PMID: 36170800 DOI: 10.1088/1361-6528/ac959f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Thermally oxidized MWCNTs (OMWCNTs) are fabricated by a thermal treatment of MWCNTs at 500 °C for 3 h in an oxygen-containing atmosphere. The oxygen content of OMWCNTs increases from 1.9 wt% for MWCNTs to 8.3 wt%. And the BET specific surface area of OMWCNTs enhances from 254.2 m2g-1for MWCNTs to 496.1 m2g-1. The Fe2O3/OMWCNTs nanocomposite is prepared by a hydrothermal method. Electrochemical measurements show that Fe2O3/OMWCNTs still keeps a highly reversible specific capacity of 653.6 mA h g-1after 200 cycles at 0.5 A g-1, which shows an obviously higher capacity than the sum of that of single Fe2O3and OMWCNTs. The OMWCNTs not only buffer the volume changes of Fe2O3nanoparticles but also provide high-speed electronic transmission channels in the charge-discharge process. The thermal oxidation method of OMWCNTs avoids using strong corrosive acids such as nitric acid and sulfuric acid, which has the advantages of safety, environmental protection, macroscopic preparation, etc.
Collapse
Affiliation(s)
- Xiaoru Meng
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Jingrui Huang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Guangzhao Zhu
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Yan Xu
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Shoupu Zhu
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Qi Li
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China
| | - Ming Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Meng-Chang Lin
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| |
Collapse
|
45
|
Sudewi S, Li CH, Dayalan S, Zulfajri M, Sashankh PVS, Huang GG. Enhanced fluorescent iron oxide quantum dots for rapid and interference free recognizing lysine in dairy products. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121453. [PMID: 35667139 DOI: 10.1016/j.saa.2022.121453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
In this work, a simple, easy and selective method for sensing lysine in an acidic medium was developed based on fluorescent iron oxide quantum dots (IO QDs). IO QDs using the hydrothermal method were prepared with different conditions (concentration of NPs, amount of citric acid, heating time, heating temperature, and total volume in the hydrothermal reactor) where iron oxide nanoparticles (IO NPs) were used as the starting materials. TEM, FTIR, UV-Vis Spectrometry, fluorescence spectrometry, Powder XRD, VSM were used to characterize the as-prepared IO QDs. The surface of the IO QDs contained -OH, -COO-, and other functional groups that acted as a bridge to bind the IO QDs nanoprobe with the surrounding analytes. Under acidic conditions (pH 3.0), IO QDs exhibited a rapid and interference-free fluorescence enhancement behavior after adding lysine within 2 min at room temperature, whereas other amino acids had no effect on IO QDs fluorescence. Therefore, the IO QDs prepared in this study have shown potential in lysine sensing applications. The results showed that the relative FL intensity was linear with lysine concentration in the range of 1-100 μM and had a detection limit of 0.66 μM. This proposed method has high selectivity for lysine over other amino acids, and the developed methods were used in real sample with good recoveries. Under relatively acidic conditions, a specific and fast lysine interaction was observed, resulting in the successful of IO QDs as the fluorescent probe for rapid and interference-free lysine assessment in dairy products.
Collapse
Affiliation(s)
- Sri Sudewi
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Pharmacy, Faculty of Mathematic and Natural Science, Universitas Sam Ratulangi, Manado 95115, Indonesia
| | - Chien-Hung Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sandhiya Dayalan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Muhammad Zulfajri
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Chemistry Education, Universitas Serambi Mekkah, Banda Aceh, Aceh 23245, Indonesia
| | | | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
46
|
Wu C, Shen Z, Lu Y, Sun F, Shi H. p53 Promotes Ferroptosis in Macrophages Treated with Fe 3O 4 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42791-42803. [PMID: 36112832 DOI: 10.1021/acsami.2c00707] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fe3O4 nanoparticles are the most widely used magnetic nanoparticles in the biomedicine field. The biodistribution of most nanoparticles in vivo is determined by the capture of macrophages; however, the effects of nanoparticles on macrophages remain poorly understood. Here, we demonstrated that Fe3O4 nanoparticles could reduce macrophage viability after 48 h of treatment and induce a shift in macrophage polarization toward the M1 phenotype; RNA sequencing revealed the activation of the ferroptosis pathway and p53 upregulation compared to the control group. The expression in p53, xCT, glutathione peroxidase 4 (GPX4), and transferrin receptor (TFR) in macrophages was similar to that in erastin-induced ferroptosis in macrophages, and the ultrastructural morphology of mitochondria was consistent with that of erastin-treated cells. We used DCFH-DA to estimate the intracellular reactive oxygen species content in Fe3O4 nanoparticles treated with Ana-1 and JC-1 fluorescent probes to detect the mitochondrial membrane potential change; both showed to be time-dependent. Fer-1 inhibited the reduction of the glutathione/oxidized glutathione (GSH/GSSG) ratio and inhibited intracellular oxidative stress states; therefore, Fe3O4 nanoparticles induced ferroptosis in macrophages. Finally, we used pifithrin-α hydrobromide (PFT) as a p53 inhibitor to verify whether the high expression of p53 is involved in mediating this process. After PFT treatment, the live/dead cell rate, TFR, p53 expression, and GPX4 consumption were inhibited and mitigated the GSH/GSSG ratio reduction as well. This indicates that p53 may contribute to Fe3O4 nanoparticle-induced ferroptosis of macrophages. We provide a theoretical basis for the molecular mechanisms of ferroptosis in macrophages and the biotoxicity in vivo induced by Fe3O4 nanoparticles.
Collapse
Affiliation(s)
- Cong Wu
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225000, China
| | - Zhiming Shen
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225000, China
| | - Yi Lu
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225000, China
| | - Fei Sun
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225000, China
| | - Hongcan Shi
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
47
|
Ge J, Li C, Wang N, Zhang R, Afshari MJ, Chen C, Kou D, Zhou D, Wen L, Zeng J, Gao M. Effects of PEG Chain Length on Relaxometric Properties of Iron Oxide Nanoparticles-Based MRI Contrast Agent. NANOMATERIALS 2022; 12:nano12152673. [PMID: 35957104 PMCID: PMC9370369 DOI: 10.3390/nano12152673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/10/2022]
Abstract
Iron oxide nanoparticles (IONPs) as magnetic resonance imaging (MRI) contrast agents have received considerable interest due to their superior magnetic properties. To increase the biocompatibility and blood circulation time, polyethylene glycol (PEG) is usually chosen to decorate IONPs. Although the surface effect induced by the PEGylation has an impact on the relaxometric properties of IONPs and can subsequently affect the imaging results, the occurrence of particle aggregation has troubled researchers to deeply explore this correlation. To shed light on this relationship, three diphosphonate PEGs with molecular weights of 1000, 2000, and 5000 Da were used to replace the hydrophobic oleate ligands of 3.6 nm and 10.9 nm IONPs. Then, the contrast enhancement properties of the resultant “aggregation-free” nanoparticles were carefully evaluated. Moreover, related theories were adopted to predict certain properties of IONPs and to compare with the experimental data, as well as obtain profound knowledge about the impacts of the PEG chain length on transverse relaxivity (r2) and longitudinal relaxivity (r1). It was found that r2 and the saturated magnetization of the IONPs, independent of particle size, was closely related to the chain length of PEG. The results unveiled the correlation between the chain length of the coated PEG and the relaxometric properties of IONPs, providing valuable information which might hold great promise in designing optimized, high-performance IONPs for MRI-related applications.
Collapse
Affiliation(s)
- Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Cang Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ning Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ruru Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mohammad Javad Afshari
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Can Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Dandan Kou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ling Wen
- The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Correspondence: (L.W.); (J.Z.)
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- Correspondence: (L.W.); (J.Z.)
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
48
|
Fe3O4-PAA–(HP-γ-CDs) Biocompatible Ferrimagnetic Nanoparticles for Increasing the Efficacy in Superparamagnetic Hyperthermia. NANOMATERIALS 2022; 12:nano12152577. [PMID: 35957011 PMCID: PMC9370715 DOI: 10.3390/nano12152577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 12/10/2022]
Abstract
In this paper, we present the obtaining of Fe3O4-PAA–(HP-γ-CDs) ferrimagnetic nanobioconjugates (PAA: polyacrylic acid, HP-γ-CDs: hydroxypropyl gamma-cyclodextrins) in a hybrid core-shell biostructure (core: inorganic Fe3O4 nanoparticles, and shell: organic PAA–(HP-γ-CDs)) and their use in superparamagnetic hyperthermia without cellular toxicity and with increased efficacy for future alternative cancer therapy. In order to design the optimal experimental conditions for obtaining nanobioconjugates and then superparamagnetic hyperthermia (SPMHT), we used molecular docking simulation and computational assessment of the maximum specific loss power (SLP) that led to nanoparticles’ heating. The nanoparticles and nanobioconjugates obtained were studied and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transformed-infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and magnetic measurements (MMs). The cell viability of the nanoparticles and nanobioconjugates was assessed by means of the MTT assay using human immortalized keratinocytes (HaCaT) as an in vitro model. Superparamagnetic hyperthermia with nanoparticles and nanobioconjugates was obtained experimentally in a magnetic field of 15.92 kA/m and frequency of 312.2 kHz for the magnetic nanoparticle core with a (average) diameter of 15.8 nm, which resulted in the maximum hyperthermic effect that led to a temperature of ~42.5 °C necessary in the therapy of tumors in a short time so as not to affect healthy tissues. The biological screening of Fe3O4-PAA nanoparticles and PAA–(HP-γ-CDs) nanobioconjugates showed no cytotoxic effect on HaCaT cells for a time interval of 24 h, both under standard (37 °C) and hyperthermia conditions (42.5 °C). Thus, Fe3O4-PA–(HP-γ-CDs) ferrimagnetic nanobioconjugates can be used successfully in superparamagnetic hyperthermia without toxicity and with increased efficiency due to the small layer thickness of the PAA–(HP-γ-CDs) shell, which is suitable in this alternative therapeutic technique.
Collapse
|
49
|
Mazhir SN, Ali AH, Abdalameer NK, Qasim SA. ZnO: Fe 3O 4 Nanoparticles produced by Cold Plasma: Synthesis, Characterization, and Anti-macrobial Activity. INTERNATIONAL JOURNAL OF NANOSCIENCE 2022. [DOI: 10.1142/s0219581x22500211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Ferroferric oxide loaded near-infrared triggered photothermal microneedle patch for controlled drug release. J Colloid Interface Sci 2022; 617:718-729. [DOI: 10.1016/j.jcis.2022.03.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
|