1
|
Zito G, Siciliano G, Seifalinezhad A, Miranda B, Lanzio V, Schwartzberg A, Gigli G, Turco A, Rendina I, Mocella V, Primiceri E, Romano S. Molecularly Imprinted Polymer Sensor Empowered by Bound States in the Continuum for Selective Trace-Detection of TGF-beta. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401843. [PMID: 39236340 PMCID: PMC11538715 DOI: 10.1002/advs.202401843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/23/2024] [Indexed: 09/07/2024]
Abstract
The integration of advanced materials and photonic nanostructures can lead to enhanced biodetection capabilities, crucial in clinical scenarios and point-of-care diagnostics, where simplified strategies are essential. Herein, a molecularly imprinted polymer (MIP) photonic nanostructure is demonstrated, which selectively binding to transforming growth factor-beta (TGF-β), in which the sensing transduction is enhanced by bound states in the continuum (BICs). The MIP operating as a synthetic antibody matrix and coupled with BIC resonance, enhances the optical response to TGF-β at imprinted sites, leading to an augmented detection capability, thoroughly evaluated through spectral shift and optical lever analogue readout. The validation underscores the MIP-BIC sensor capability to detect TGF-β in spiked saliva, achieving a limit of detection of 10 fM and a resolution of 0.5 pM at physiological concentrations, with a precision of two orders of magnitude above discrimination threshold in patients. The MIP tailored selectivity is highlighted by an imprinting factor of 52, showcasing the sensor resistance to interference from other analytes. The MIP-BIC sensor architecture streamlines the detection process eliminating the need for complex sandwich immunoassays and demonstrates the potential for high-precision quantification. This positions the system as a robust tool for biomarker detection, especially in real-world diagnostic scenarios.
Collapse
Affiliation(s)
- Gianluigi Zito
- Institute of Applied Sciences and Intelligent SystemsNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
| | - Giulia Siciliano
- Institute of NanotechnologyNational Research Councilc/o Campus Ecotekne, Via MonteroniLecce73100Italy
| | - Aida Seifalinezhad
- Institute of Applied Sciences and Intelligent SystemsNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
- Department of EngineeringUniversità degli Studi di Napoli ParthenopeCentro Direzionale di Napoli, Isola C4Naples80143Italy
| | - Bruno Miranda
- Institute of Applied Sciences and Intelligent SystemsNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
| | - Vittorino Lanzio
- Molecular FoundryLawrence Berkeley National Laboratory1 Cyclotron RdBerkeleyCA94720USA
| | - Adam Schwartzberg
- Molecular FoundryLawrence Berkeley National Laboratory1 Cyclotron RdBerkeleyCA94720USA
| | - Giuseppe Gigli
- Institute of NanotechnologyNational Research Councilc/o Campus Ecotekne, Via MonteroniLecce73100Italy
| | - Antonio Turco
- Institute of NanotechnologyNational Research Councilc/o Campus Ecotekne, Via MonteroniLecce73100Italy
| | - Ivo Rendina
- Institute of Applied Sciences and Intelligent SystemsNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
| | - Vito Mocella
- Institute of Applied Sciences and Intelligent SystemsNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
| | - Elisabetta Primiceri
- Institute of NanotechnologyNational Research Councilc/o Campus Ecotekne, Via MonteroniLecce73100Italy
| | - Silvia Romano
- Institute of Applied Sciences and Intelligent SystemsNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
| |
Collapse
|
2
|
Wang M, Ji CY, Li L, Zheng N. Anomalous far-field polarization around bound states in the continuum in non-Bravais lattices. OPTICS LETTERS 2024; 49:1401-1404. [PMID: 38489410 DOI: 10.1364/ol.516016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
It is generally believed that at-Γ bound states in the continuum (BICs) are enclosed by a linearly polarized vortex in momentum space when the structures have mirror (σz) symmetry, in-plane inversion (I) symmetry, and time reversal symmetry (T). Here, we reveal an anomalous situation in which at-Γ BICs can be enclosed by linearly and elliptically polarized far-field even when the σz, I, and T symmetries are all maintained in non-Bravais lattices, which is radically different from previous cognition. Asymmetric, diatomic structures are designed to elaborate this intriguing phenomenon. By controlling the geometric parameters or refractive indexes of the two meta-atoms, the far-field polarization around the at-Γ BICs gradually deviates from linear polarization and approaches circular polarization. Our findings reveal that non-Bravais lattices can provide a novel platform to manipulate the far-field polarization, showing important applications in quantum entanglement, structured light, and radiation modulation.
Collapse
|
3
|
Duan S, Su X, Qiu H, Jiang Y, Wu J, Fan K, Zhang C, Jia X, Zhu G, Kang L, Wu X, Wang H, Xia K, Jin B, Chen J, Wu P. Linear and phase controllable terahertz frequency conversion via ultrafast breaking the bond of a meta-molecule. Nat Commun 2024; 15:1119. [PMID: 38321010 PMCID: PMC10847458 DOI: 10.1038/s41467-024-45416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
The metasurface platform with time-varying characteristics has emerged as a promising avenue for exploring exotic physics associated with Floquet materials and for designing photonic devices like linear frequency converters. However, the limited availability of materials with ultrafast responses hinders their applications in the terahertz range. Here we present a time-varying metasurface comprising an array of superconductor-metal hybrid meta-molecules. Each meta-molecule consists of two meta-atoms that are "bonded" together by double superconducting microbridges. Through experimental investigations, we demonstrate high-efficiency linear terahertz frequency conversion by rapidly breaking the bond using a coherent ultrashort terahertz pump pulse. The frequency and relative phase of the converted wave exhibit strong dependence on the pump-probe delay, indicating phase controllable wave conversion. The dynamics of the meta-molecules during the frequency conversion process are comprehensively understood using a time-varying coupled mode model. This research not only opens up new possibilities for developing innovative terahertz sources but also provides opportunities for exploring topological dynamics and Floquet physics within metasurfaces.
Collapse
Affiliation(s)
- Siyu Duan
- Research Institute of Superconductor Electronics (RISE) & Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
- Purple Mountain Laboratories, Nanjing, 211111, China
| | - Xin Su
- Research Institute of Superconductor Electronics (RISE) & Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Hongsong Qiu
- Research Institute of Superconductor Electronics (RISE) & Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Yushun Jiang
- Research Institute of Superconductor Electronics (RISE) & Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Jingbo Wu
- Research Institute of Superconductor Electronics (RISE) & Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China.
- Purple Mountain Laboratories, Nanjing, 211111, China.
| | - Kebin Fan
- Research Institute of Superconductor Electronics (RISE) & Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
- Purple Mountain Laboratories, Nanjing, 211111, China
| | - Caihong Zhang
- Research Institute of Superconductor Electronics (RISE) & Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
- Purple Mountain Laboratories, Nanjing, 211111, China
| | - Xiaoqing Jia
- Research Institute of Superconductor Electronics (RISE) & Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
- Purple Mountain Laboratories, Nanjing, 211111, China
| | - Guanghao Zhu
- Research Institute of Superconductor Electronics (RISE) & Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Lin Kang
- Research Institute of Superconductor Electronics (RISE) & Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
- Purple Mountain Laboratories, Nanjing, 211111, China
| | - Xinglong Wu
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China
- School of Physics, Nanjing University, Nanjing, 210093, China
| | - Huabing Wang
- Research Institute of Superconductor Electronics (RISE) & Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
- Purple Mountain Laboratories, Nanjing, 211111, China
| | - Keyu Xia
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China.
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China.
- Shishan Laboratory, Suzhou Campus of Nanjing University, Suzhou, 215000, China.
| | - Biaobing Jin
- Research Institute of Superconductor Electronics (RISE) & Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China.
- Purple Mountain Laboratories, Nanjing, 211111, China.
| | - Jian Chen
- Research Institute of Superconductor Electronics (RISE) & Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
- Purple Mountain Laboratories, Nanjing, 211111, China
| | - Peiheng Wu
- Research Institute of Superconductor Electronics (RISE) & Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
- Purple Mountain Laboratories, Nanjing, 211111, China
| |
Collapse
|
4
|
Zou JH, Sui JY, Wu YR, Zhang HF. A multiple cancer cell optical biosensing metastructure realized by CPA. Phys Chem Chem Phys 2024; 26:4447-4454. [PMID: 38240154 DOI: 10.1039/d3cp04728h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
A one-dimensional optical biosensing metastructure (OBM) with graphene layers is presented in this paper. It is realized by coherent perfect absorption (CPA) and operates in the transverse electric mode. It shows a strong linear fitting relationship between the refractive index (RI) of the analysis layer and the frequency corresponding to the absorption peak, and the R-square is up to 1. Additionally, based on the principle of CPA, the OBM can realize the function of multiple cancer cell detection by adjusting the detection range by controlling the phase difference of coherent electromagnetic waves. Its detection ranges are 1.34-1.355 and 1.658-1.662. Thanks to its high-quality factor, great figure of merit, and low detection limit, whose best values are, respectively, 6.9 × 104, 1.2 × 104 RIU-1, and 3.6 × 10-6 RIU, the detection of weak changes in the RI of a cancer cell is possible. Additionally, its sensitivity can reach 26.57 THz RIU-1. This OBM based on CPA has major implications for advancing the study and investigation into the application of CPA. It also provides a simple and efficient approach to distinguish cancer cells and may be widely used in the biomedical field.
Collapse
Affiliation(s)
- Jia-Hao Zou
- College of and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Jun-Yang Sui
- College of and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - You-Ran Wu
- College of and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Hai-Feng Zhang
- College of and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
5
|
Zhang N, Lu YY. Non-generic bound states in the continuum in waveguides with lateral leakage channels. OPTICS EXPRESS 2024; 32:3764-3778. [PMID: 38297590 DOI: 10.1364/oe.512076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024]
Abstract
For optical waveguides with a layered background which itself is a slab waveguide, a guided mode is a bound state in the continuum (BIC), if it coexists with slab modes propagating outwards in the lateral direction; i.e., there are lateral leakage channels. It is known that generic BICs in optical waveguides with lateral leakage channels are robust in the sense that they still exist if the waveguide is perturbed arbitrarily. However, the theory is not applicable to non-generic BICs which can be defined precisely. Near a BIC, the waveguide supports resonant and leaky modes with a complex frequency and a complex propagation constant, respectively. In this paper, we develop a perturbation theory to show that the resonant and leaky modes near a non-generic BIC have an ultra-high Q factor and ultra-low leakage loss, respectively. Recently, many authors studied merging-BICs in periodic structures through tuning structural parameters. It has been shown that resonant modes near a merging-BIC have an ultra-high Q factor. However, the existing studies on merging-BICs are concerned with specific examples and specific parameters. Moreover, we analyze an arbitrary structural perturbation given by δF(r) to waveguides supporting a non-generic BIC, where F(r) is the perturbation profile and δ is the amplitude, and show that the perturbed waveguide has two BICs for δ > 0 (or δ < 0) and no BIC for δ < 0 (or δ > 0). This implies that a non-generic BIC can be regarded as a merging-BIC (for almost any perturbation profile F) when δ is considered as a parameter. Our study indicates that non-generic BICs have interesting special properties that are useful in applications.
Collapse
|
6
|
Huang L, Jin R, Zhou C, Li G, Xu L, Overvig A, Deng F, Chen X, Lu W, Alù A, Miroshnichenko AE. Ultrahigh-Q guided mode resonances in an All-dielectric metasurface. Nat Commun 2023; 14:3433. [PMID: 37301939 DOI: 10.1038/s41467-023-39227-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
High quality(Q) factor optical resonators are indispensable for many photonic devices. While very large Q-factors can be obtained theoretically in guided-mode settings, free-space implementations suffer from various limitations on the narrowest linewidth in real experiments. Here, we propose a simple strategy to enable ultrahigh-Q guided-mode resonances by introducing a patterned perturbation layer on top of a multilayer-waveguide system. We demonstrate that the associated Q-factors are inversely proportional to the perturbation squared while the resonant wavelength can be tuned through material or structural parameters. We experimentally demonstrate such high-Q resonances at telecom wavelengths by patterning a low-index layer on top of a 220 nm silicon on insulator substrate. The measurements show Q-factors up to 2.39 × 105, comparable to the largest Q-factor obtained by topological engineering, while the resonant wavelength is tuned by varying the lattice constant of the top perturbation layer. Our results hold great promise for exciting applications like sensors and filters.
Collapse
Affiliation(s)
- Lujun Huang
- School of Engineering and Information Technology, University of New South Wales, Canberra, Northcott Drive, ACT, 2600, Australia.
| | - Rong Jin
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No.1 SubLane Xiangshan, Hangzhou, 310024, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China
| | - Chaobiao Zhou
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Guanhai Li
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No.1 SubLane Xiangshan, Hangzhou, 310024, China.
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China.
| | - Lei Xu
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Adam Overvig
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Fu Deng
- School of Engineering and Information Technology, University of New South Wales, Canberra, Northcott Drive, ACT, 2600, Australia
| | - Xiaoshuang Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No.1 SubLane Xiangshan, Hangzhou, 310024, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China
| | - Wei Lu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No.1 SubLane Xiangshan, Hangzhou, 310024, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.
- Physics Program, Graduate Center, City University of New York, New York, NY, 10016, USA.
| | - Andrey E Miroshnichenko
- School of Engineering and Information Technology, University of New South Wales, Canberra, Northcott Drive, ACT, 2600, Australia.
| |
Collapse
|
7
|
Zhang N, Lu YY. Robust and non-robust bound states in the continuum in rotationally symmetric periodic waveguides. OPTICS EXPRESS 2023; 31:15810-15824. [PMID: 37157673 DOI: 10.1364/oe.487053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A fiber grating and a one-dimensional (1D) periodic array of spheres are examples of rotationally symmetric periodic (RSP) waveguides. It is well known that bound states in the continuum (BICs) may exist in lossless dielectric RSP waveguides. Any guided mode in an RSP waveguide is characterized by an azimuthal index m, the frequency ω, and Bloch wavenumber β. A BIC is a guided mode, but for the same m, ω and β, cylindrical waves can propagate to or from infinity in the surrounding homogeneous medium. In this paper, we investigate the robustness of nondegenerate BICs in lossless dielectric RSP waveguides. The question is whether a BIC in an RSP waveguide with a reflection symmetry along its axis z, can continue its existence when the waveguide is perturbed by small but arbitrary structural perturbations that preserve the periodicity and the reflection symmetry in z. It is shown that for m = 0 and m ≠ 0, generic BICs with only a single propagating diffraction order are robust and non-robust, respectively, and a non-robust BIC with m ≠ 0 can continue to exist if the perturbation contains one tunable parameter. The theory is established by proving the existence of a BIC in the perturbed structure mathematically, where the perturbation is small but arbitrary, and contains an extra tunable parameter for the case of m ≠ 0. The theory is validated by numerical examples for propagating BICs with m ≠ 0 and β ≠ 0 in fiber gratings and 1D arrays of circular disks.
Collapse
|
8
|
Understanding the characteristics of phytofabricated silver nanoparticles and their leishmanicidal potential against Indian strain of Leishmania donovani. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
9
|
Zhao H, Cao X, Dong Q, Song C, Wang L, Gao L. Large-area silicon photonic crystal supporting bound states in the continuum and optical sensing formed by nanoimprint lithography. NANOSCALE ADVANCES 2023; 5:1291-1298. [PMID: 36866269 PMCID: PMC9972860 DOI: 10.1039/d3na00001j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Optical bound states in the continuum (BIC) are found in various dielectric, plasmonic and hybrid photonic systems. The localized BIC modes and quasi-BIC resonances can result in a large near-field enhancement and a high-quality factor with low optical loss. They represent a very promising class of ultrasensitive nanophotonic sensors. Usually, such quasi-BIC resonances can be carefully designed and realized in the photonic crystal that is precisely sculptured by electron beam lithography or interference lithography. Here, we report quasi-BIC resonances in large-area silicon photonic crystal slabs formed by soft nanoimprinting lithography and reactive ion etching. Such quasi-BIC resonances are extremely tolerant to fabrication imperfections while the optical characterization can be performed over macroscopic area by simple transmission measurements. By introducing lateral and vertical dimension changes during the etching process, the quasi-BIC resonance can be tuned over a wide range with the highest experimental quality factor of 136. We observe an ultra-high sensitivity of 1703 nm per RIU and a figure-of-merit of 65.5 for refractive index sensing. A good spectral shift is observed for detecting glucose solution concentration changes and adsorption of monolayer silane molecules. Our approach involves low-cost fabrication and easy characterization process for large-area quasi-BIC devices, which might enable future realistic optical sensing applications.
Collapse
Affiliation(s)
- Huijuan Zhao
- Nanjing University of Posts and Telecommunications, School of Materials Science and Engineering, State Key Laboratory for Organic Electronics and Information Displays China
| | - Xinyi Cao
- Nanjing University of Posts and Telecommunications, School of Materials Science and Engineering, State Key Laboratory for Organic Electronics and Information Displays China
| | - Qiao Dong
- Nanjing University of Posts and Telecommunications, School of Materials Science and Engineering, State Key Laboratory for Organic Electronics and Information Displays China
| | - Chunyuan Song
- Nanjing University of Posts and Telecommunications, School of Materials Science and Engineering, State Key Laboratory for Organic Electronics and Information Displays China
| | - Lianhui Wang
- Nanjing University of Posts and Telecommunications, School of Materials Science and Engineering, State Key Laboratory for Organic Electronics and Information Displays China
| | - Li Gao
- Nanjing University of Posts and Telecommunications, School of Materials Science and Engineering, State Key Laboratory for Organic Electronics and Information Displays China
| |
Collapse
|
10
|
Nifontova G, Petrova I, Gerasimovich E, Konopsky VN, Ayadi N, Charlier C, Fleury F, Karaulov A, Sukhanova A, Nabiev I. Label-Free Multiplexed Microfluidic Analysis of Protein Interactions Based on Photonic Crystal Surface Mode Imaging. Int J Mol Sci 2023; 24:ijms24054347. [PMID: 36901779 PMCID: PMC10002048 DOI: 10.3390/ijms24054347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
High-throughput protein assays are crucial for modern diagnostics, drug discovery, proteomics, and other fields of biology and medicine. It allows simultaneous detection of hundreds of analytes and miniaturization of both fabrication and analytical procedures. Photonic crystal surface mode (PC SM) imaging is an effective alternative to surface plasmon resonance (SPR) imaging used in conventional gold-coated, label-free biosensors. PC SM imaging is advantageous as a quick, label-free, and reproducible technique for multiplexed analysis of biomolecular interactions. PC SM sensors are characterized by a longer signal propagation at the cost of a lower spatial resolution, which makes them more sensitive than classical SPR imaging sensors. We describe an approach for designing label-free protein biosensing assays employing PC SM imaging in the microfluidic mode. Label-free, real-time detection of PC SM imaging biosensors using two-dimensional imaging of binding events has been designed to study arrays of model proteins (antibodies, immunoglobulin G-binding proteins, serum proteins, and DNA repair proteins) at 96 points prepared by automated spotting. The data prove feasibility of simultaneous PC SM imaging of multiple protein interactions. The results pave the way to further develop PC SM imaging as an advanced label-free microfluidic assay for the multiplexed detection of protein interactions.
Collapse
Affiliation(s)
- Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Structure Fédérative de Recherche Cap Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Irina Petrova
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115522 Moscow, Russia
| | - Evgeniia Gerasimovich
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115522 Moscow, Russia
| | | | - Nizar Ayadi
- DNA Repair Groupe, CNRS UMR 6286, US2B, Nantes Université, 44000 Nantes, France
| | - Cathy Charlier
- IMPACT Platform “Interactions Moléculaires Puces ACTivités”, UMR CNRS 6286 UFIP, Université de Nantes, 44000 Nantes, France
| | - Fabrice Fleury
- DNA Repair Groupe, CNRS UMR 6286, US2B, Nantes Université, 44000 Nantes, France
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Structure Fédérative de Recherche Cap Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Correspondence: (A.S.); (I.N.)
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Structure Fédérative de Recherche Cap Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115522 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- Correspondence: (A.S.); (I.N.)
| |
Collapse
|
11
|
Luo M, Zhou Y, Zhao X, Li Y, Guo Z, Yang X, Zhang M, Wang Y, Wu X. Label-Free Bound-States-in-the-Continuum Biosensors. BIOSENSORS 2022; 12:1120. [PMID: 36551087 PMCID: PMC9775062 DOI: 10.3390/bios12121120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/03/2023]
Abstract
Bound states in the continuum (BICs) have attracted considerable attentions for biological and chemical sensing due to their infinite quality (Q)-factors in theory. Such high-Q devices with enhanced light-matter interaction ability are very sensitive to the local refractive index changes, opening a new horizon for advanced biosensing. In this review, we focus on the latest developments of label-free optical biosensors governed by BICs. These BICs biosensors are summarized from the perspective of constituent materials (i.e., dielectric, metal, and hybrid) and structures (i.e., grating, metasurfaces, and photonic crystals). Finally, the current challenges are discussed and an outlook is also presented for BICs inspired biosensors.
Collapse
Affiliation(s)
- Man Luo
- The Key Laboratory of Micro and Nano Photonic Structures, Department of Optical Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yi Zhou
- The Key Laboratory of Micro and Nano Photonic Structures, Department of Optical Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xuyang Zhao
- The Key Laboratory of Micro and Nano Photonic Structures, Department of Optical Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yuxiang Li
- The Key Laboratory of Micro and Nano Photonic Structures, Department of Optical Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zhihe Guo
- The Key Laboratory of Micro and Nano Photonic Structures, Department of Optical Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xi Yang
- The Key Laboratory of Laser Device Technology, China North Industries Group Corporation Limited, Southwest Institute of Technical Physics, Chengdu 640041, China
| | - Meng Zhang
- The Key Laboratory of Laser Device Technology, China North Industries Group Corporation Limited, Southwest Institute of Technical Physics, Chengdu 640041, China
| | - You Wang
- The Key Laboratory of Laser Device Technology, China North Industries Group Corporation Limited, Southwest Institute of Technical Physics, Chengdu 640041, China
| | - Xiang Wu
- The Key Laboratory of Micro and Nano Photonic Structures, Department of Optical Science and Engineering, Fudan University, Shanghai 200438, China
| |
Collapse
|
12
|
Kozlov AA, Aksenov AS, Bolshakov ES, Ivanov AV, Flid VR. Colloidal photonic crystals with controlled morphology. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Huo Y, Zhang X, Yan M, Sun K, Jiang S, Ning T, Zhao L. Highly-sensitive sensor based on toroidal dipole governed by bound state in the continuum in dielectric non-coaxial core-shell cylinder. OPTICS EXPRESS 2022; 30:19030-19041. [PMID: 36221690 DOI: 10.1364/oe.456362] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/30/2022] [Indexed: 06/16/2023]
Abstract
The electromagnetic fields distributed on the surface region of the nanostructure is very important to improve the performance of the sensor. Here, we proposed a highly sensitive sensor based on toroidal dipole (TD) governed by bound state in the continuum (BIC) in all-dielectric metasurface consisting of single non-coaxial core-shell cylinder nanostructure array. The excitation of TD resonance in a single nanostructure is still challenging. The designed nanostructure not only supports TD resonance in a single nanostructure but also has very high Q-factor. More importantly, its electric field distributes at the surface of outer cylinder-shell, which is very suitable for biosensing. To evaluate the sensing performance of our proposed structure, we investigated the sensitivity and the figure of merit (FOM) of nanostructure with different structural parameters. Maximum sensitivity and FOM can reach up to 342 nm/RIU and 1295 when the asymmetric parameter d =10 nm. These results are of great significance to the research of TD resonance and the development of ultrasensitive sensor.
Collapse
|
14
|
Numerical Study on a Bound State in the Continuum Assisted Plasmonic Refractive Index Sensor. PHOTONICS 2022. [DOI: 10.3390/photonics9040224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plasmonic sensors have attracted intensive attention due to their high sensitivity. However, due to intrinsic metallic loss, plasmonic sensors usually have a large full width at half maximum (FWHM) that limits the wavelength resolution. In this paper, we numerically investigate and propose a dielectric grating-assisted plasmonic device, leveraging the bound states in the continuum (BIC) effect to suppress the FWHM of the resonance. We initiate quasi-SP-BIC modes at 1559 nm and 1905 nm wavelengths by slightly tilting the incident angle at 2° to break the symmetry, featuring a narrow linewidth of 1.8 nm and 0.18 nm at these two wavelengths, respectively. Refractive index sensing has also been investigated, showing high sensitivity of 938 nm/RIU and figure of merit (FOM) of 521/RIU at 1559 nm and even higher sensitivity of 1264 nm/RIU and FOM of 7022/RIU at 1905 nm.
Collapse
|
15
|
Vaz R, Valpradinhos B, Frasco MF, Sales MGF. Emerging Optical Materials in Sensing and Discovery of Bioactive Compounds. SENSORS (BASEL, SWITZERLAND) 2021; 21:5784. [PMID: 34502675 PMCID: PMC8434157 DOI: 10.3390/s21175784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/16/2022]
Abstract
Optical biosensors are used in numerous applications and analytical fields. Advances in these sensor platforms offer high sensitivity, selectivity, miniaturization, and real-time analysis, among many other advantages. Research into bioactive natural products serves both to protect against potentially dangerous toxic compounds and to promote pharmacological innovation in drug discovery, as these compounds have unique chemical compositions that may be characterized by greater safety and efficacy. However, conventional methods for detecting these biomolecules have drawbacks, as they are time-consuming and expensive. As an alternative, optical biosensors offer a faster, simpler, and less expensive means of detecting various biomolecules of clinical interest. In this review, an overview of recent developments in optical biosensors for the detection and monitoring of aquatic biotoxins to prevent public health risks is first provided. In addition, the advantages and applicability of these biosensors in the field of drug discovery, including high-throughput screening, are discussed. The contribution of the investigated technological advances in the timely and sensitive detection of biotoxins while deciphering the pathways to discover bioactive compounds with great health-promoting prospects is envisaged to meet the increasing demands of healthcare systems.
Collapse
Affiliation(s)
- Raquel Vaz
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; (R.V.); (M.G.F.S.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Beatriz Valpradinhos
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
| | - Manuela F. Frasco
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; (R.V.); (M.G.F.S.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
| | - Maria Goreti F. Sales
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; (R.V.); (M.G.F.S.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
| |
Collapse
|
16
|
Mesli S, Yala H, Hamidi M, BelKhir A, Baida FI. High performance for refractive index sensors via symmetry-protected guided mode resonance. OPTICS EXPRESS 2021; 29:21199-21211. [PMID: 34265911 DOI: 10.1364/oe.424930] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/09/2021] [Indexed: 06/13/2023]
Abstract
The symmetry breaking in a typical dielectric GMR-grating structure allows the coupling of the incident wave with the so-called Symmetry-Protected Modes (SPM). In this present work, the excitation conditions of such particular modes are investigated. A parametric study including the grating dimensions is carried out to exploit them for a blood refractive index sensing with higher Sensitivity (S) and Figure Of Merit (FOM). To our knowledge, the performances obtained by FDTD calculations (Q = 2.1 × 104, S = 657 nm/RIU and FOM ≃ ~9 112 RIU-1) and FMM calculations (Q = 3 × 106, S = 656 nm/RIU and FOM ≃ ~1.64 × 106 RIU-1) are the highest level reached.
Collapse
|
17
|
Dielectric nanohole array metasurface for high-resolution near-field sensing and imaging. Nat Commun 2021; 12:3293. [PMID: 34078903 PMCID: PMC8172834 DOI: 10.1038/s41467-021-23357-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Dielectric metasurfaces support resonances that are widely explored both for far-field wavefront shaping and for near-field sensing and imaging. Their design explores the interplay between localised and extended resonances, with a typical trade-off between Q-factor and light localisation; high Q-factors are desirable for refractive index sensing while localisation is desirable for imaging resolution. Here, we show that a dielectric metasurface consisting of a nanohole array in amorphous silicon provides a favourable trade-off between these requirements. We have designed and realised the metasurface to support two optical modes both with sharp Fano resonances that exhibit relatively high Q-factors and strong spatial confinement, thereby concurrently optimizing the device for both imaging and biochemical sensing. For the sensing application, we demonstrate a limit of detection (LOD) as low as 1 pg/ml for Immunoglobulin G (IgG); for resonant imaging, we demonstrate a spatial resolution below 1 µm and clearly resolve individual E. coli bacteria. The combined low LOD and high spatial resolution opens new opportunities for extending cellular studies into the realm of microbiology, e.g. for studying antimicrobial susceptibility. Dielectric metasurfaces have different Q-factor and light localisation requirements for sensing and imaging. Here, the authors present a dielectric metasurface, supporting two optical modes with sharp Fano resonances for high Q-factors and strong spatial confinement, allowing both sensing and imaging.
Collapse
|
18
|
Yuan L, Lu YY. On the robustness of bound states in the continuum in waveguides with lateral leakage channels. OPTICS EXPRESS 2021; 29:16695-16709. [PMID: 34154227 DOI: 10.1364/oe.424671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Bound states in the continuum (BICs) are trapped or guided modes with frequencies in radiation continua. They are associated with high-quality-factor resonances that give rise to strong local field enhancement and rapid variations in scattering spectra, and have found many valuable applications. A guided mode of an optical waveguide can also be a BIC, if there is a lateral structure supporting compatible waves propagating in the lateral direction; i.e., there is a channel for lateral leakage. A BIC is typically destroyed (becomes a resonant or a leaky mode) if the structure is slightly perturbed, but some BICs are robust with respect to a large family of perturbations. In this paper, we show (analytically and numerically) that a typical BIC in optical waveguides with a left-right mirror symmetry and a single lateral leakage channel is robust with respect to any structural perturbation that preserves the left-right mirror symmetry. Our study improves the theoretical understanding on BICs and can be useful when applications of BICs in optical waveguides are explored.
Collapse
|
19
|
Mukherjee S, Gomis-Bresco J, Artigas D, Torner L. Unidirectional guided resonances in anisotropic waveguides. OPTICS LETTERS 2021; 46:2545-2548. [PMID: 33988631 DOI: 10.1364/ol.425393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
We show that anisotropic planar anti-guiding waveguide structures with two radiation channels toward the surrounding cladding materials can support unidirectional guided resonances (UGRs), where radiation is canceled in one of the radiation channels and redirected into the other. Their formation is subtle as it requires breaking the so-called polar anisotropy-symmetry of the structures. Then, UGRs appear at specific wavelengths and light propagation directions, are robust, and are characterized by phase singularities in the channel in which radiation is canceled. The mechanism we describe allows for ready selection of the radiation direction, as well as tuning of the wavelength and the propagation angle at which UGRs occur.
Collapse
|
20
|
Abstract
Recently, tunable photonic crystals (PhCs) have received great research interest, thanks to the wide range of applications in which they can be employed, such as light emission and sensing, among others. In addition, the versatility and ease of fabrication of PhCs allow for the integration of a large range of responsive elements that, in turn, can permit active tuning of PhC optical properties upon application of external stimuli, e.g., physical, chemical or even biological triggers. In this work, we summarize the most employed theoretical tools used for the design of optical properties of responsive PhCs and the most used fabrication techniques. Furthermore, we collect the most relevant results related to this field, with particular emphasis on electrochromic devices.
Collapse
|
21
|
Abstract
Recently the recipes to achieve the high-Q subwavelength resonances in an isolated dielectric disk have been reported based on avoided crossing (anticrossing) of the TE resonances under variation of the aspect ratio of the disk. In a silicon disk that recipe gives an enhancement of the Q factor by one order of magnitude. In the present paper we present the approach based on engineering of the spherical Mie resonances with high orbital index in two coaxial disks by two-fold avoided crossing of the resonant modes of the disks. At the first step we select the resonant modes of single disk which are degenerate because of the opposite symmetry. Approaching of the second disk removes this degeneracy because of interaction between the disks. As a result at certain distances we realize the hybridized anti-bonding resonant modes whose morphology becomes close to the spherical Mie resonant mode with high orbital index. Respectively the Q factor of the anti-bonding resonant mode can be enhanced by three orders of magnitude compared to the case of single disk.
Collapse
|
22
|
Maksimov DN, Gerasimov VS, Romano S, Polyutov SP. Refractive index sensing with optical bound states in the continuum. OPTICS EXPRESS 2020; 28:38907-38916. [PMID: 33379449 DOI: 10.1364/oe.411749] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
We consider refractive index sensing with optical bounds states in the continuum (BICs) in dielectric gratings. Applying a perturbative approach we derived the differential sensitivity and the figure of merit of a sensor operating in the spectral vicinity of a BIC. Optimisation design approach for engineering an effective sensor is proposed. An analytic formula for the maximal sensitivity with an optical BIC is derived. The results are supplied with straightforward numerical simulations.
Collapse
|
23
|
Romano S, Mangini M, Penzo E, Cabrini S, De Luca AC, Rendina I, Mocella V, Zito G. Ultrasensitive Surface Refractive Index Imaging Based on Quasi-Bound States in the Continuum. ACS NANO 2020; 14:15417-15427. [PMID: 33171041 DOI: 10.1021/acsnano.0c06050] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we demonstrate a cavity-enhanced hyperspectral refractometric imaging using an all-dielectric photonic crystal slab (PhCS). Our approach takes advantage of the synergy between two mechanisms, surface-enhanced fluorescence (SEF) and refractometric sensing, both based on high-Q resonances in proximity of bound states in the continuum (BICs). The enhanced local optical field of the first resonance amplifies of 2 orders of magnitude the SEF emission of a probe dye. Simultaneously, hyperspectral refractometric sensing, based on Fano interference between second mode and fluorescence emission, is used for mapping the spatially variant refractive index produced by the specimen on the PhCS. The spectral matching between first resonance and input laser is modulated by the specimen local refractive index, and thanks to the calibrated dependence with the spectral shift of the Fano resonance, the cavity tuning is used to achieve an enhanced correlative refractometric map with a resolution of 10-5 RIU within femtoliter-scale sampling volumes. This is experimentally applied also on live prostate cancer cells grown on the PhCS, reconstructing enhanced surface refractive index images at the single-cell level. This dual mechanism of quasi-BIC spatially variant gain tracked by quasi-BIC refractometric sensing provides a correlative imaging platform that can find application in many fields for monitoring physical and biochemical processes, such as molecular interactions, chemical reactions, or surface cell analysis.
Collapse
Affiliation(s)
- Silvia Romano
- Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, Napoli, 80131, Italy
| | - Maria Mangini
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, Napoli, 80131, Italy
| | - Erika Penzo
- Molecular Foundry, Lawrence Berkeley National Laboratory, 67 Cyclotron Road, Berkeley, California 94720, United States
| | - Stefano Cabrini
- Molecular Foundry, Lawrence Berkeley National Laboratory, 67 Cyclotron Road, Berkeley, California 94720, United States
| | - Anna Chiara De Luca
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, Napoli, 80131, Italy
| | - Ivo Rendina
- Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, Napoli, 80131, Italy
| | - Vito Mocella
- Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, Napoli, 80131, Italy
| | - Gianluigi Zito
- Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, Napoli, 80131, Italy
| |
Collapse
|
24
|
Abstract
This paper presents a new capsule-shaped sensor to detect the glucose concentration in the human body. The model under study was formulated by relying on the index change in the refractive index (RI) because of the change in the sample that infiltrated the cavity. The index of refraction change is accompanied by modifying the resonant wavelength. The recommended model has considered the simple shape and ease of manufacture, along with other characteristics such as sensitivity and a low detection limit. The results report a high sensitivity of S = 546.72 nm/RI unit (RIU), a high quality factor of Q = 2066.24, a low detection limit of DL = 1.44 × 10−4 RIU, and a high value of transmission of 97%, which are considered to be sufficient and efficient in detecting measured material. This proposed model provides many opportunities and is promising for the manufacture of different types of sensing detection devices.
Collapse
|
25
|
Kravtsov V, Khestanova E, Benimetskiy FA, Ivanova T, Samusev AK, Sinev IS, Pidgayko D, Mozharov AM, Mukhin IS, Lozhkin MS, Kapitonov YV, Brichkin AS, Kulakovskii VD, Shelykh IA, Tartakovskii AI, Walker PM, Skolnick MS, Krizhanovskii DN, Iorsh IV. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. LIGHT, SCIENCE & APPLICATIONS 2020; 9:56. [PMID: 32284858 PMCID: PMC7145813 DOI: 10.1038/s41377-020-0286-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 05/03/2023]
Abstract
Optical bound states in the continuum (BICs) provide a way to engineer very narrow resonances in photonic crystals. The extended interaction time in these systems is particularly promising for the enhancement of nonlinear optical processes and the development of the next generation of active optical devices. However, the achievable interaction strength is limited by the purely photonic character of optical BICs. Here, we mix the optical BIC in a photonic crystal slab with excitons in the atomically thin semiconductor MoSe2 to form nonlinear exciton-polaritons with a Rabi splitting of 27 meV, exhibiting large interaction-induced spectral blueshifts. The asymptotic BIC-like suppression of polariton radiation into the far field toward the BIC wavevector, in combination with effective reduction of the excitonic disorder through motional narrowing, results in small polariton linewidths below 3 meV. Together with a strongly wavevector-dependent Q-factor, this provides for the enhancement and control of polariton-polariton interactions and the resulting nonlinear optical effects, paving the way toward tuneable BIC-based polaritonic devices for sensing, lasing, and nonlinear optics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ivan S. Mukhin
- ITMO University, Saint Petersburg, 197101 Russia
- St. Petersburg Academic University, Saint Petersburg, 194021 Russia
| | - Maksim S. Lozhkin
- Saint Petersburg State University, ul. Ulyanovskaya 1, Saint Petersburg, 198504 Russia
| | - Yuri V. Kapitonov
- Saint Petersburg State University, ul. Ulyanovskaya 1, Saint Petersburg, 198504 Russia
| | | | | | - Ivan A. Shelykh
- ITMO University, Saint Petersburg, 197101 Russia
- Science Institute, University of Iceland, Dunhagi 3, IS-107, Reykjavik, Iceland
| | | | - Paul M. Walker
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH UK
| | - Maurice S. Skolnick
- ITMO University, Saint Petersburg, 197101 Russia
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH UK
| | - Dmitry N. Krizhanovskii
- ITMO University, Saint Petersburg, 197101 Russia
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH UK
| | | |
Collapse
|
26
|
Mukherjee S, Gomis-Bresco J, Pujol-Closa P, Artigas D, Torner L. Angular control of anisotropy-induced bound states in the continuum. OPTICS LETTERS 2019; 44:5362-5365. [PMID: 31675007 DOI: 10.1364/ol.44.005362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Radiation of leaky modes existing in anisotropic waveguides can be cancelled by destructive interference at special propagation directions relative to the optical axis orientation, resulting in fully bound states surrounded by radiative modes. Here we study the variation of the loci of such special directions in terms of the waveguide constitutive parameters. We show that the angular loci of the bound states are sensitive to several design parameters, allowing bound states to exist for a broad range of angular directions and wavelengths and suggesting applications in filtering and sensing.
Collapse
|
27
|
Koshelev K, Bogdanov A, Kivshar Y. Meta-optics and bound states in the continuum. Sci Bull (Beijing) 2019; 64:836-842. [PMID: 36659673 DOI: 10.1016/j.scib.2018.12.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023]
Abstract
We discuss the recent advances in meta-optics and nanophotonics associated with the physics of bound states in the continuum (BICs). Such resonant states appear due to a strong coupling between leaky modes in optical guiding structures being supported by subwavelength high-index dielectric Mie-resonant nanoantennas or all-dielectric metasurfaces. First, we review briefly very recent developments in the BIC physics in application to isolated subwavelength particles. We pay a special attention to novel opportunities for nonlinear nanophotonics due to the large field enhancement inside the particle volume creating the resonant states with high-quality (high-Q) factors, the so-called quasi-BIC, that can be supported by the subwavelength particles. Second, we discuss novel applications of the BIC physics to all-dielectric optical metasurfaces with broken-symmetry meta-atoms when tuning to the BIC conditions allows to enhance substantially the Q factor of the flat-optics dielectric structures. We also present the original results on nonlinear high-Q metasurfaces and predict that the frequency conversion efficiency can be boosted dramatically by smart engineering of the asymmetry parameter of dielectric metasurfaces in the vicinity of the quasi-BIC regime.
Collapse
Affiliation(s)
- Kirill Koshelev
- Nonlinear Physics Centre, Australian National University, Canberra ACT 2601, Australia; ITMO University, St. Petersburg 197101, Russia
| | | | - Yuri Kivshar
- Nonlinear Physics Centre, Australian National University, Canberra ACT 2601, Australia; ITMO University, St. Petersburg 197101, Russia.
| |
Collapse
|
28
|
Romano S, Zito G, Lara Yépez SN, Cabrini S, Penzo E, Coppola G, Rendina I, Mocellaark V. Tuning the exponential sensitivity of a bound-state-in-continuum optical sensor. OPTICS EXPRESS 2019; 27:18776-18786. [PMID: 31252814 DOI: 10.1364/oe.27.018776] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
In this work, we investigate the evanescent field sensing mechanism provided by an all-dielectric metasurface supporting bound states in the continuum (BICs). The metasurface is based on a transparent photonic crystal with subwavelength thickness. The BIC electromagnetic field is localized along the direction normal to the photonic crystal nanoscale-thin slab (PhCS) because of a topology-induced confinement, exponentially decaying in the material to detect. On the other hand, it is totally delocalized in the PhCS plane, which favors versatile and multiplexing sensing schemes. Liquids with different refractive indices, ranging from 1.33 to 1.45, are infiltrated in a microfluidic chamber bonded to the sensing dielectric metasurface. We observe an experimental exponential sensitivity leading to differential values as large as 226 nm/RIU with excellent FOM. This behavior is explained in terms of the physical superposition of the field with the material under investigation and supported by a thorough numerical analysis. The mechanism is then translated to the case of molecular adsorption where a suitable theoretical engineering of the optical structure points out potential sensitivities as large as 4000 nm/RIU.
Collapse
|
29
|
Bulgakov EN, Maksimov DN. Nonlinear response from optical bound states in the continuum. Sci Rep 2019; 9:7153. [PMID: 31073204 PMCID: PMC6509346 DOI: 10.1038/s41598-019-43672-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/28/2019] [Indexed: 11/24/2022] Open
Abstract
We consider nonlinear effects in scattering of light by a periodic structure supporting optical bound states in the continuum. In the spectral vicinity of the bound states the scattered electromagnetic field is resonantly enhanced triggering optical bistability. Using coupled mode approach we derive a nonlinear equation for the amplitude of the resonant mode associated with the bound state. We show that such an equation for the isolated resonance can be easily solved yielding bistable solutions which are in quantitative agreement with the full-wave solutions of Maxwell’s equations. The coupled mode approach allowed us to cast the the problem into the form of a driven nonlinear oscillator and analyze the onset of bistability under variation of the incident wave. The results presented drastically simplify the analysis nonlinear Maxwell’s equations and, thus, can be instrumental in engineering optical response via bound states in the continuum.
Collapse
Affiliation(s)
- Evgeny N Bulgakov
- Reshetnev Siberian State University of Science and Technology, 660037, Krasnoyarsk, Russia.,Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036, Krasnoyarsk, Russia
| | - Dmitrii N Maksimov
- Reshetnev Siberian State University of Science and Technology, 660037, Krasnoyarsk, Russia. .,Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036, Krasnoyarsk, Russia. .,Siberian Federal University, Krasnoyarsk, 660041, Russia.
| |
Collapse
|
30
|
Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Mahmoudi T, Chenab KK, Baradaran B, Hashemzaei M, Radinekiyan F, Mokhtarzadeh A, Maleki A. Dengue virus: a review on advances in detection and trends - from conventional methods to novel biosensors. Mikrochim Acta 2019; 186:329. [PMID: 31055654 DOI: 10.1007/s00604-019-3420-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/06/2019] [Indexed: 02/06/2023]
Abstract
Dengue virus is an important arbovirus infection which transmitted by the Aedes female mosquitoes. The attempt to control and early detection of this infection is a global public health issue at present. Because of the clinical importance of its detection, the main focus of this review is on all of the methods that can offer the new diagnosis strategies. The advantages and disadvantages of reported methods have been discussed comprehensively from different aspects like biomarkers type, sensitivity, accuracy, rate of detection, possibility of commercialization, availability, limit of detection, linear range, simplicity, mechanism of detection, and ability of usage for clinical applications. The optical, electrochemical, microfluidic, enzyme linked immunosorbent assay (ELISA), and smartphone-based biosensors are the main approaches which developed for detection of different biomarkers and serotypes of Dengue virus. Future efforts in miniaturization of these methods open the horizons for development of commercial biosensors for early-diagnosis of Dengue virus infection. Graphical abstract Transmission of Dengue virus by the biting of an Aedes aegypti mosquito, the symptoms of Dengue hemorrhagic fever and the structure of Dengue virus and application of biosensors for its detection.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Paria Pashazadeh-Panahi
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan Province, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Fateme Radinekiyan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
31
|
Zhang W, Charous A, Nagai M, Mittleman DM, Mendis R. Extraordinary optical reflection resonances and bound states in the continuum from a periodic array of thin metal plates. OPTICS EXPRESS 2018; 26:13195-13204. [PMID: 29801346 DOI: 10.1364/oe.26.013195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
The creation of artificial structures with very narrow spectral features in the terahertz range has been a long-standing goal, as they can enable many important applications. Unlike in the visible and infrared, where compact dielectric resonators can readily achieve a quality factor (Q) of 106, terahertz resonators with a Q of 103 are considered heroic. Here, we describe a new approach to this challenging problem, inspired by the phenomenon of extraordinary optical transmission (EOT) in 1D structures. In the well-studied EOT problem, a complex spectrum of resonances can be observed in transmission through a mostly solid metal structure. However, these EOT resonances can hardly exhibit extremely high Q, even in a perfect structure with lossless components. In contrast, we show that the inverse structure, a periodic array of very thin metal plates separated by air gaps, can exhibit non-trivial bound states in the continuum (BICs) reflection resonances, with arbitrarily high Q, and with peak reflectivity approaching 100% even for a vanishingly small metal filling fraction. Our analytical predictions are supported by numerical simulations, and also agree well with our experimental measurements. This configuration offers a new approach to achieving ultra-narrow optical resonances in the terahertz range, as well as a new experimentally accessible configuration for studying BICs.
Collapse
|