1
|
Tsakiropoulos P. On the Stability of Complex Concentrated (CC)/High Entropy (HE) Solid Solutions and the Contamination with Oxygen of Solid Solutions in Refractory Metal Intermetallic Composites (RM(Nb)ICs) and Refractory Complex Concentrated Alloys (RCCAs). MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238479. [PMID: 36499973 PMCID: PMC9739258 DOI: 10.3390/ma15238479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/01/2023]
Abstract
In as-cast (AC) or heat-treated (HT) metallic ultra-high temperature materials often "conventional" and complex-concentrated (CC) or high-entropy (HE) solid solutions (sss) are observed. Refractory metal containing bcc sss also are contaminated with oxygen. This paper studied the stability of CC/HE Nbss and the contamination with oxygen of Nbss in RM(INb)ICs, RM(Nb)ICs/RCCAs and RM(Nb)ICs/RHEAs. "Conventional" and CC/HE Nbss were compared. "Conventional" Nbss can be Ti-rich only in AC alloys. Ti-rich Nbss is not observed in HT alloys. In B containing alloys the Ti-rich Nbss is usually CC/HE. The CC/HE Nbss is stable in HT alloys with simultaneous addition of Mo, W with Hf, Ge+Sn. The implications for alloy design of correlations between the parameter δ of "conventional" and CC/HE Nbss with the B or the Ge+Sn concentration in the Nbss and of relationships of other solutes with the B or Ge+Sn content are discussed. The CC/HE Nbss has low Δχ, VEC and Ω and high ΔSmix, |ΔHmix| and δ parameters, and is formed in alloys that have high entropy of mixing. These parameters are compared with those of single-phase bcc ss HEAs and differences in ΔHmix, δ, Δχ and Ω, and similarities in ΔSmix and VEC are discussed. Relationships between the parameters of alloy and "conventional" Nbss also apply for CC/HE Nbss. The parameters δss and Ωss, and VECss and VECalloy can differentiate between types of alloying additions and their concentrations and are key regarding the formation or not of CC/HE Nbss. After isothermal oxidation at a pest temperature (800 oC/100 h) the contaminated with oxygen Nbss in the diffusion zone is CC/HE Nbss, whereas the Nbss in the bulk can be "conventional" Nbss or CC/HE Nbss. The parameters of "uncontaminated" and contaminated with oxygen sss are linked with linear relationships. There are correlations between the oxygen concentration in contaminated sss in the diffusion zone and the bulk of alloys with the parameters ΔχNbss, δNbss and VECNbss, the values of which increase with increasing oxygen concentration in the ss. The effects of contamination with oxygen of the near surface areas of a HT RM(Nb)IC with Al, Cr, Hf, Si, Sn, Ti and V additions and a high vol.% Nbss on the hardness and Young's modulus of the Nbss, and contributions to the hardness of the Nbss in B free or B containing alloys are discussed. The hardness and Young's modulus of the bcc ss increased linearly with its oxygen concentration and the change in hardness and Young's modulus due to contamination increased linearly with [O]2/3.
Collapse
Affiliation(s)
- Panos Tsakiropoulos
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| |
Collapse
|
2
|
Vellios N, Tsakiropoulos P. The Effect of Fe Addition in the RM(Nb)IC Alloy Nb-30Ti-10Si-2Al-5Cr-3Fe-5Sn-2Hf (at.%) on Its Microstructure, Complex Concentrated and High Entropy Phases, Pest Oxidation, Strength and Contamination with Oxygen, and a Comparison with Other RM(Nb)ICs, Refractory Complex Concentrated Alloys (RCCAs) and Refractory High Entropy Alloys (RHEAs). MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175815. [PMID: 36079197 PMCID: PMC9456705 DOI: 10.3390/ma15175815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/02/2023]
Abstract
In this work, the RM(Nb)IC alloy Nb−30Ti−10Si−5Cr−5Sn−3Fe−2Al−2Hf (NV2) was studied in the as-cast and heat-treated conditions; its isothermal oxidation at 700, 800 and 900 °C and its room temperature hardness and specific strength were compared with other Sn-containing RM(Nb)ICs—in particular, the alloy Nb−24Ti−18Si−5Cr−5Fe−5Sn (NV5)—and with RCCAs and RHEAs. The addition of Fe (a) stabilised Nbss; A15−Nb3X (X = Al, Si and Sn) and Nb3Si; metastable Nb3Si-m’ and Nb5Si3 silicides; (b) supported the formation of eutectic Nbss + Nb5Si3; (c) suppressed pest oxidation at all three temperatures and (d) stabilised a Cr- and Fe-rich phase instead of a C14−Nb(Cr,Fe)2 Laves phase. Complex concentrated (or compositionally complex) and/or high entropy phases co-existed with “conventional” phases in all conditions and after oxidation at 800 °C. In NV2, the macrosegregation of Si decreased but liquation occurred at T >1200 °C. A solid solution free of Si and rich in Cr and Ti was stable after the heat treatments. The relationships between solutes in the various phases, between solutes and alloy parameters and between alloy hardness or specific strength and the alloy parameters were established (parameters δ, Δχ and VEC). The oxidation of NV2 at 700 °C was better than the other Sn-containing RM(Nb)ICs with/without Fe addition, even better than RM(Nb)IC alloys with lower vol.% Nbss. At 800 °C, the mass change of NV2 was slightly higher than that of NV5, and at 900 °C, both alloys showed scale spallation. At 800 °C, both alloys formed a more or less continuous layer of A15−Nb3X below the oxide scale, but in NV5, this compound was Sn-rich and severely oxidised. At 800 °C, in the diffusion zone (DZ) and the bulk of NV2, Nbss was more severely contaminated with oxygen than Nb5Si3, and the contamination of A15−Nb3X was in-between these phases. The contamination of all three phases was more severe in the DZ. The contamination of all three phases in the bulk of NV5 was more severe compared with NV2. The specific strength of NV2 was comparable with that of RCCAs and RHEAs, and its oxidation at all three temperatures was significantly better than RHEAs and RCCAs.
Collapse
|
3
|
Zacharis E, Utton C, Tsakiropoulos P. A Study of the Effects of Hf and Sn on the Microstructure, Hardness and Oxidation of Nb-18Si Silicide-Based Alloys-RM(Nb)ICs with Ti Addition and Comparison with Refractory Complex Concentrated Alloys (RCCAs). MATERIALS 2022; 15:ma15134596. [PMID: 35806720 PMCID: PMC9267193 DOI: 10.3390/ma15134596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023]
Abstract
In this paper, we present a systematic study of the as-cast and heat-treated microstructures of three refractory metal intermetallic composites based on Nb (i.e., RM(Nb)ICs), namely the alloys EZ2, EZ5, and EZ6, and one RM(Nb)IC/RCCA (refractory complex concentrated alloy), namely the alloy EZ8. We also examine the hardness and phases of these alloys. The nominal compositions (at.%) of the alloys were Nb-24Ti-18Si-5Hf-5Sn (EZ2), Nb-24Ti-18Si-5Al-5Hf-5Sn (EZ5), Nb-24Ti-18Si-5Cr-5Hf-5Sn (EZ6), and Nb-24Ti-18Si-5Al-5Cr-5Hf-5Sn (EZ8). All four alloys had density less than 7.3 g/cm3. The Nbss was stable in EZ2 and EZ6 and the C14-NbCr2 Laves phase in EZ6 and EZ8. In all four alloys, the A15-Nb3X (X = Al,Si,Sn) and the tetragonal and hexagonal Nb5Si3 were stable. Eutectics of Nbss + Nb5Si3 and Nbss + C14-NbCr2 formed in the cast alloys without and with Cr addition, respectively. In all four alloys, Nb3Si was not formed. In the heat-treated alloys EZ5 and EZ8, A15-Nb3X precipitated in the Nb5Si3 grains. The chemical compositions of Nbss + C14-NbCr2 eutectics and some Nb5Si3 silicides and lamellar microstructures corresponded to high-entropy or complex concentrated phases (compositionally complex phases). Microstructures and properties were considered from the perspective of the alloy design methodology NICE. The vol.% Nbss increased with increasing ΔχNbss. The hardness of the alloys respectively increased and decreased with increasing vol.% of A15-Nb3X and Nbss. The hardness of the A15-Nb3X increased with its parameter Δχ, and the hardness of the Nbss increased with its parameters δ and Δχ. The room-temperature-specific strength of the alloys was in the range 271.7 to 416.5 MPa cm3g−1. The effect of the synergy of Hf and Sn, or Hf and B, or Hf and Ge on the macrosegregation of solutes, microstructures, and properties of RM(Nb)ICs/RCCAs from this study and others is compared. Phase transformations involving compositionally complex phases are discussed.
Collapse
|
4
|
Refractory Metal Intermetallic Composites, High-Entropy Alloys, and Complex Concentrated Alloys: A Route to Selecting Substrate Alloys and Bond Coat Alloys for Environmental Coatings. MATERIALS 2022; 15:ma15082832. [PMID: 35454525 PMCID: PMC9028980 DOI: 10.3390/ma15082832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 12/04/2022]
Abstract
This paper considers metallic ultrahigh-temperature materials (UHTMs) and the alloying behaviour and properties of alloys and their phases by using maps of the parameters δ (based on atomic size), Δχ (based on electronegativity), and valence electron concentration (VEC), and discusses what connects and what differentiates material groups in the maps. The formation of high-entropy or complex concentrated intermetallics, namely 5-3 silicides, C14 Laves and A15 compounds, and bcc solid solutions and eutectics in metallic UHTMs and their co-existence with “conventional” phases is discussed. The practicality of maps for the design/selection of substrate alloys is deliberated upon. The need for environmental coatings for metallic UHTMs was considered and the design of bond coat alloys is discussed by using relevant maps.
Collapse
|
5
|
Thandorn T, Tsakiropoulos P. On the Microstructure and Properties of Nb-Ti-Cr-Al-B-Si-X (X = Hf, Sn, Ta) Refractory Complex Concentrated Alloys. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7615. [PMID: 34947210 PMCID: PMC8715753 DOI: 10.3390/ma14247615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
We studied the effect of the addition of Hf, Sn, or Ta on the density, macrosegregation, microstructure, hardness and oxidation of three refractory metal intermetallic composites based on Nb (RM(Nb)ICs) that were also complex concentrated alloys (i.e., RM(Nb)ICs/RCCAs), namely, the alloys TT5, TT6, and TT7, which had the nominal compositions (at.%) Nb-24Ti-18Si-5Al-5B-5Cr-6Ta, Nb-24Ti-18Si-4Al-6B-5Cr-4Sn and Nb-24Ti-17Si-5Al-6B-5Cr-5Hf, respectively. The alloys were compared with B containing and B free RM(Nb)ICs. The macrosegregation of B, Ti, and Si was reduced with the addition, respectively of Hf, Sn or Ta, Sn or Ta, and Hf or Sn. All three alloys had densities less than 7 g/cm3. The alloy TT6 had the highest specific strength in the as cast and heat-treated conditions, which was also higher than that of RCCAs and refractory metal high entropy alloys (RHEAs). The bcc solid solution Nbss and the tetragonal T2 and hexagonal D88 silicides were stable in the alloys TT5 and TT7, whereas in TT6 the stable phases were the A15-Nb3Sn and the T2 and D88 silicides. All three alloys did not pest at 800 °C, where only the scale that was formed on TT5 spalled off. At 1200 °C, the scale of TT5 spalled off, but not the scales of TT6 and TT7. Compared with the B free alloys, the synergy of B with Ta was the least effective regarding oxidation at 800 and 1200 °C. Macrosegregation of solutes, the chemical composition of phases, the hardness of the Nbss and the alloys, and the oxidation of the alloys at 800 and 1200 °C were considered from the perspective of the Niobium Intermetallic Composite Elaboration (NICE) alloy design methodology. Relationships between properties and the parameters VEC, δ, and Δχ of alloy or phase and between parameters were discussed. The trends of parameters and the location of alloys and phases in parameter maps were in agreement with NICE.
Collapse
Affiliation(s)
- Tophan Thandorn
- Department of Materials Science and Engineering, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Sheffield S1 3JD, UK
| | - Panos Tsakiropoulos
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
6
|
On the Microstructure and Properties of the Nb-23Ti-5Si-5Al-5Hf-5V-2Cr-2Sn (at.%) Silicide-Based Alloy—RM(Nb)IC. METALS 2021. [DOI: 10.3390/met11111868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The microstructure, isothermal oxidation, and hardness of the Nb-23Ti-5Si-5Al-5Hf-5V-2Cr-2Sn alloy and the hardness and Young’s moduli of elasticity of its Nbss and Nb5Si3 were studied. The alloy was selected using the niobium intermetallic composite elaboration (NICE) alloy design methodology. There was macrosegregation of Ti and Si in the cast alloy. The Nbss, αNb5Si3, γNb5Si3, and HfO2 phases were present in the as-cast or heat-treated alloy plus TiN in the near-the-surface areas of the latter. The vol.% of Nbss was about 80%. There were Ti- and Ti-and-Hf-rich areas in the solid solution and the 5-3 silicide, respectively, and there was a lamellar microstructure of these two phases. The V partitioned to the Nbss, where the solubilities of Al, Cr, Hf, and V increased with increasing Ti concentration. At 700, 800, and 900 °C, the alloy did not suffer from catastrophic pest oxidation; it followed parabolic oxidation kinetics in the former two temperatures and linear oxidation kinetics in the latter, where its mass change was the lowest compared with other Sn-containing alloys. An Sn-rich layer formed in the interface between the scale and the substrate, which consisted of the Nb3Sn and Nb6Sn5 compounds at 900 °C. The latter compound was not contaminated with oxygen. Both the Nbss and Nb5Si3 were contaminated with oxygen, with the former contaminated more severely than the latter. The bulk of the alloy was also contaminated with oxygen. The alloying of the Nbss with Sn increased its elastic modulus compared with Sn-free solid solutions. The hardness of the alloy, its Nbss, and its specific room temperature strength compared favourably with many refractory metal-complex-concentrated alloys (RCCAs). The agreement of the predictions of NICE with the experimental results was satisfactory.
Collapse
|
7
|
Thandorn T, Tsakiropoulos P. The Effect of Boron on the Microstructure and Properties of Refractory Metal Intermetallic Composites (RM(Nb)ICs) Based on Nb-24Ti-xSi (x = 16, 17 or 18 at.%) with Additions of Al, Cr or Mo. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6101. [PMID: 34683690 PMCID: PMC8537113 DOI: 10.3390/ma14206101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
Abstract
This paper is about metallic ultra-high temperature materials, in particular, refractory metal intermetallic composites based on Nb, i.e., RM(Nb)ICs, with the addition of boron, which are compared with refractory metal high entropy alloys (RHEAs) or refractory metal complex concentrated alloys (RCCAs). We studied the effect of B addition on the density, macrosegregation, microstructure, hardness and oxidation of four RM(Nb)IC alloys, namely the alloys TT2, TT3, TT4 and TT8 with nominal compositions (at.%) Nb-24Ti-16Si-5Cr-7B, Nb-24Ti-16Si-5Al-7B, Nb-24Ti-18Si-5Al-5Cr-8B and Nb-24Ti-17Si-3.5Al-5Cr-6B-2Mo, respectively. The alloys made it possible to compare the effect of B addition on density, hardness or oxidation with that of Ge or Sn addition. The alloys were made using arc melting and their microstructures were characterised in the as cast and heat-treated conditions. The B macrosegregation was highest in TT8. The macrosegregation of Si or Ti increased with the addition of B and was lowest in TT8. The alloy TT8 had the lowest density of 6.41 g/cm3 and the highest specific strength at room temperature, which was also higher than that of RCCAs and RHEAs. The Nbss and T2 silicide were stable in the alloys TT2 and TT3, whereas in TT4 and TT8 the stable phases were the Nbss and the T2 and D88 silicides. Compared with the Ge or Sn addition in the same reference alloy, the B and Ge addition was the least and most effective at 800 °C (i.e., in the pest regime), when no other RM was present in the alloy. Like Ge or Sn, the B addition in TT2, TT3 and TT4 did not suppress scale spallation at 1200 °C. Only the alloy TT8 did not pest and its scales did not spall off at 800 and 1200 °C. The macrosegregation of Si and Ti, the chemical composition of Nbss and T2, the microhardness of Nbss and the hardness of alloys, and the oxidation of the alloys at 800 and 1200 °C were also viewed from the perspective of the alloy design methodology NICE and relationships with the alloy or phase parameters VEC, δ and Δχ. The trends of these parameters and the location of alloys and phases in parameter maps were found to be in agreement with NICE.
Collapse
Affiliation(s)
- Tophan Thandorn
- Department of Materials Science and Engineering, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Sheffield S1 3JD, UK
| | - Panos Tsakiropoulos
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
8
|
Tsakiropoulos P. Refractory Metal (Nb) Intermetallic Composites, High Entropy Alloys, Complex Concentrated Alloys and the Alloy Design Methodology NICE-Mise-en-scène † Patterns of Thought and Progress. MATERIALS (BASEL, SWITZERLAND) 2021; 14:989. [PMID: 33669890 PMCID: PMC7923302 DOI: 10.3390/ma14040989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/03/2022]
Abstract
The paper reflects on the usefulness of the alloy design methodology NICE (Niobium Intermetallic Composite Elaboration) for the development of new Nb-containing metallic ultra-high-temperature materials (UHTMs), namely refractory metal (Nb) intermetallic composites (RM(Nb)ICs), refractory high entropy alloys (RHEAs) and refractory complex concentrated alloys (RCCAs), in which the same phases can be present, specifically bcc solid solution(s), M5Si3 silicide(s) and Laves phases. The reasons why a new alloy design methodology was sought and the foundations on which NICE was built are discussed. It is shown that the alloying behavior of RM(Nb)ICs, RHEAs and RCCAs can be described by the same parameters. The practicality of parameter maps inspired by NICE for describing/understanding the alloying behavior and properties of alloys and their phases is demonstrated. It is described how NICE helps the alloy developer to understand better the alloys s/he develops and what s/he can do and predict (calculate) with NICE. The paper expands on RM(Nb)ICs, RHEAs and RCCAs with B, Ge or Sn, the addition of which and the presence of A15 compounds is recommended in RHEAs and RCCAs to achieve a balance of properties.
Collapse
Affiliation(s)
- Panos Tsakiropoulos
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| |
Collapse
|
9
|
Kishida K, Maruyama T, Fukuyama T, Inui H. Micropillar compression deformation of single crystals of α-Nb 5Si 3 with the tetragonal D8 l structure. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 21:805-816. [PMID: 33488298 PMCID: PMC7801114 DOI: 10.1080/14686996.2020.1855065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The plastic deformation behavior of single crystals of α-Nb5Si3 with the tetragonal D8 l structure has been investigated by micropillar compression at room temperature as a function of crystal orientation and specimen size. Three slip systems, (001)<010>, {110}<1 1 - 0> and {0 1 - 1}<111>, are found to be operative in micropillar specimens of α-Nb5Si3 single crystals at room temperature, as in the case of isostructural Mo5SiB2. The CRSS values obtained for the three slip systems are extremely high above 2.0 GPa and exhibit the 'smaller is stronger' trend, which can be approximated by the inverse power-law relationship. The fracture toughness evaluated by single-cantilever bend testing of a chevron-notched micro-beam specimen is 1.79 MPa m1/2, which is considerably lower than that (2.43 MPa m1/2) reported for isostructural Mo5SiB2. The selection for the dissociation schemes and possible glide planes for dislocations of the three slip systems is discussed based on generalized stacking fault energy (GSFE) curves theoretically calculated by first-principles calculations.
Collapse
Affiliation(s)
- Kyosuke Kishida
- Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Japan
- Center for Elements Strategy Initiative for Structural Materials (ESISM), Kyoto University, Sakyo-ku, Japan
| | - Takuto Maruyama
- Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Japan
| | - Takayoshi Fukuyama
- Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Japan
| | - Haruyuki Inui
- Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Japan
- Center for Elements Strategy Initiative for Structural Materials (ESISM), Kyoto University, Sakyo-ku, Japan
| |
Collapse
|
10
|
Kishida K, Fukuyama T, Maruyama T, Inui H. Room temperature deformation of single crystals of Ti 5Si 3 with the hexagonal D8 8 structure investigated by micropillar compression tests. Sci Rep 2020; 10:17983. [PMID: 33093506 PMCID: PMC7581531 DOI: 10.1038/s41598-020-75007-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/08/2020] [Indexed: 11/14/2022] Open
Abstract
Micropillar compression tests of Ti5Si3 single crystals were conducted at room temperature as a function of loading axis orientation and specimen size in order to investigate their room temperature plastic deformation behavior. Plastic flow by the operation of three deformation modes, {1[Formula: see text]00}[0001], {2[Formula: see text][Formula: see text]2} < 2[Formula: see text][Formula: see text][Formula: see text] > and {1[Formula: see text]01} < 2[Formula: see text][Formula: see text][Formula: see text] > slip were observed in [2[Formula: see text]05]-, [0001]- and [4[Formula: see text][Formula: see text]0]-oriented micropillar specimens deformed at room temperature, respectively. The CRSS values were evaluated to be very high above 2.7 GPa and were confirmed to increase up to about 6 GPa with the decrease in the specimen size. The fracture toughness values are evaluated to be 0.45 MPa m1/2 (notch plane // (0001)) and 0.73 MPa m1/2 (notch plane //(1[Formula: see text]00)) based on the results of micro-cantilever bend tests of chevron-notched specimens. The fracture toughness values are considerably lower than those for D8l-Mo5SiB2 and D8l-Nb5Si3 evaluated by the same method, indicating the inherent brittleness of binary Ti5Si3 compared to the other transition-metal silicides of the TM5Si3 type (TM: transition-metal).
Collapse
Affiliation(s)
- Kyosuke Kishida
- Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
- Center for Elements Strategy Initiative for Structural Materials (ESISM), Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Takayoshi Fukuyama
- Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takuto Maruyama
- Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Haruyuki Inui
- Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
- Center for Elements Strategy Initiative for Structural Materials (ESISM), Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
11
|
Zhao J, Utton C, Tsakiropoulos P. On the Microstructure and Properties of Nb-18Si-6Mo-5Al-5Cr-2.5W-1Hf Nb-Silicide Based Alloys with Ge, Sn and Ti Additions (at.%). MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4548. [PMID: 33066311 PMCID: PMC7602085 DOI: 10.3390/ma13204548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022]
Abstract
We studied the microstructures and isothermal oxidation of the Nb-silicide-based alloys Nb-11.5Ti-18Si-5Mo-2W-4.9Sn-4.6Ge-4.5Cr-4.7Al-1Hf (JZ4) and Nb-21Ti-18Si-6.7Mo-1.2W-4.4Sn-4.2Ge-4Cr-3.7Al-0.8Hf (JZ5), calculated their average creep rate for the creep goal conditions of T = 1200 °C and σ = 170 MPa, and compared properties of the two alloys with those of other refractory metal (RM) complex concentrated alloys (RCCAs). Both alloys had a density less than 7.3 g/cm3 and lower than the density of multiphase bcc solid solution + M5Si3 silicide RCCAs. There was macrosegregation of Si in both alloys, which had the same phases in their as-cast microstructures, namely βNb5Si3, αNb5Si3, A15-Nb3X (X = Al, Ge, Si, Sn), TM5Sn2X (X = Al, Ge, Si), C14-Cr2Nb, but no solid solution. After heat treatment at 1500 °C for 100 h, a low volume fraction of a W-rich (Nb, W)ss solid solution was observed in both alloys together with βNb5Si3, αNb5Si3 and A15-Nb3X but not the TM5Sn2X, whereas the Laves phase was observed only in JZ4. At 800 °C, both alloys did not pest, and there was no spallation of their scales at 1200 °C. At both temperatures, both alloys followed parabolic oxidation kinetics and their weight changes were lower than those of Ti-rich Nb-silicide-based alloys. The oxidation of both alloys was superior to that of other RCCAs studied to date. For each alloy the Si macrosegregation, volume fraction of solid solution, chemical composition of solid solution and Nb5Si3, and weight changes in isothermal oxidation at 800 and 1200 °C that were calculated using the alloy design methodology NICE agreed well with the experimental results.
Collapse
Affiliation(s)
- Jiang Zhao
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; (J.Z.); (C.U.)
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Three Gorges University, Yichang 443002, China
| | - Claire Utton
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; (J.Z.); (C.U.)
| | - Panos Tsakiropoulos
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; (J.Z.); (C.U.)
| |
Collapse
|
12
|
Zhao J, Utton C, Tsakiropoulos P. On the Microstructure and Properties of Nb-12Ti-18Si-6Ta-5Al-5Cr-2.5W-1Hf (at.%) Silicide-Based Alloys with Ge and Sn Additions. MATERIALS 2020; 13:ma13173719. [PMID: 32842708 PMCID: PMC7504593 DOI: 10.3390/ma13173719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022]
Abstract
The microstructures and properties of the alloys JZ3 (Nb-12.4Ti-17.7Si-6Ta-2.7W-3.7Sn-4.8Ge-1Hf-4.7Al-5.2Cr) and JZ3+(Nb-12.4Ti-19.7Si-5.7Ta-2.3W-5.7Sn-4.9Ge-0.8Hf-4.6Al-5.2Cr) were studied. The densities of both alloys were lower than the densities of Ni-based superalloys and many of the refractory metal complex concentrated alloys (RCCAs) studied to date. Both alloys had Si macrosegregation and the same phases in their as cast and heat treated microstructures, namely βNb5Si3, αNb5Si3, A15-Nb3X (X = Al, Ge, Si, Sn), C14-Cr2Nb and solid solution. W-rich solid solutions were stable in both alloys. At 800 °C only the alloy JZ3 did not show pest oxidation, and at 1200 °C a thin and well adhering scale formed only on JZ3+. The alloy JZ3+ followed parabolic oxidation with rate constant one order of magnitude higher than the single crystal Ni-superalloy CMSX-4 for the first 14 h of oxidation. The oxidation of both alloys was superior to that of RCCAs. Both alloys were predicted to have better creep at the creep goal condition compared with the superalloy CMSX-4. Calculated Si macrosegregation, solid solution volume fractions, chemical compositions of solid solution and Nb5Si3, weight changes in isothermal oxidation at 800 and 1200 °C using the alloy design methodology NICE agreed well with the experimental results.
Collapse
|
13
|
Müller C, Hasemann G, Regenberg M, Betke U, Krüger M. Microstructure and Compression Properties of V SS‑V 3B 2 Eutectic Alloys in the V-Si-B System. MATERIALS (BASEL, SWITZERLAND) 2020; 13:ma13092100. [PMID: 32370030 PMCID: PMC7254208 DOI: 10.3390/ma13092100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The present study reports on the microstructural evolution and room temperature plasticity of V(‑Si)‑B alloys with respect to the V solid solution (VSS)‑V3B2 phase region. To investigate the occurring effects systematically, different binary V‑B and ternary V‑Si‑B alloys were produced by conventional arc melting. Scanning electron microscope (SEM) analyses and X-ray diffraction (XRD) measurements were used to characterize the resulting as-cast microstructures. For the first time, the eutectic composition was systematically traced from the binary V‑B domain to the ternary V‑Si‑B system. The observations discover that the binary eutectic trough (VSS‑V3B2) seems to reach into the ternary system up to an alloy composition of V‑5Si‑9B. Room temperature compression tests were carried out in order to study the impact of single-phase and multi-phase microstructures on the strength and plasticity of binary and ternary alloys. The results indicate that the VSS phase controls the plastic deformability in the VSS‑V3B2 eutectic microstructure whereas the intermetallic V3B2 acts as a strong hardening phase.
Collapse
|
14
|
On the Microstructure and Properties of Nb-12Ti-18Si-6Ta-2.5W-1Hf (at.%) Silicide-Based Alloys with Ge and Sn Additions. MATERIALS 2020; 13:ma13071778. [PMID: 32290070 PMCID: PMC7179019 DOI: 10.3390/ma13071778] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 11/25/2022]
Abstract
In this paper two Nb-silicide-based alloys with nominal compositions (at.%) Nb-12Ti-18Si-6Ta-2.5W-1Hf-2Sn-2Ge (JZ1) and Nb-12Ti-18Si-6Ta-2.5W-1Hf-5Sn-5Ge (JZ2) were studied. The alloys were designed using the alloy design methodology NICE to meet specific research objectives. The cast microstructures of both alloys were sensitive to solidification conditions. There was macro-segregation of Si in JZ1 and JZ2. In both alloys the βNb5Si3 was the primary phase and the Nbss was stable. The A15-Nb3X (X = Ge,Si,Sn) was stable only in JZ2. The Nbss+βNb5Si3 eutectic in both alloys was not stable as was the Nb3Si silicide that formed only in JZ1. At 800 °C both alloys followed linear oxidation kinetics and were vulnerable to pesting. At 1200 °C both alloys exhibited parabolic oxidation kinetics in the early stages and linear kinetics at longer times. The adhesion of the scale that formed on JZ2 at 1200 °C and consisted of Nb and Ti-rich oxides, silica and HfO2 was better than that of JZ1. The microstructure of JZ2 was contaminated by oxygen to a depth of about 200 μm. There was no Ge or Sn present in the scale. The substrate below the scale was richer in Ge and Sn where the NbGe2, Nb5(Si1-xGex)3, W-rich Nb5(Si1-xGex)3, and A15-Nb3X compounds (X = Ge,Si,Sn) were formed in JZ2. The better oxidation behavior of JZ2 compared with JZ1 correlated well with the decrease in VEC and increase in δ parameter values, in agreement with NICE. For both alloys the experimental data for Si macrosegregation, vol.% Nbss, chemical composition of Nbss and Nb5Si3, and weight gains at 800 and 1200 °C was compared with the calculations (predictions) of NICE. The agreement was very good. The calculated creep rates of both alloys at 1200 °C and 170 MPa were lower than that of the Ni-based superalloy CMSX-4 for the same conditions but higher than 10−7 s−1.
Collapse
|
15
|
Hernández-Negrete O, Tsakiropoulos P. On the Microstructure and Isothermal Oxidation at 800 and 1200 °C of the Nb-24Ti-18Si-5Al-5Cr-5Ge-5Sn (at.%) Silicide-Based Alloy. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E722. [PMID: 32033435 PMCID: PMC7040784 DOI: 10.3390/ma13030722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 11/16/2022]
Abstract
The research presented in this paper aspired to understand how the simultaneous addition of Ge and Sn in an Hf-free Nb-silicide-based alloy affected its oxidation resistance. Results are presented for the Nb-24Ti-18Si-5Al-5Cr-5Ge-5Sn alloy (at.%) which was studied in the as-cast and heat-treated (1400 °C/100 h) conditions and after isothermal oxidation in air at 800 and 1200 °C. There was macrosegregation in the cast alloy, in which the Nbss formed at a low volume fraction and was not stable after heat treatment at 1400 °C. The βNb5Si3, A15-Nb3Sn, and C14-NbCr2 were stable phases. The alloy did not undergo pest oxidation at 800 °C, and there was no spallation of its scale at 1200 °C. There was enrichment in Ge and Sn in the substrate below the scale/substrate interface, where the compounds Nb3Sn, Nb5Sn2Si, (Ti,Nb)6Sn5, and Nb5Ge3 were formed. After the oxidation at 1200 °C, the solid solution in the bulk of the alloy was very Ti-rich (Ti,Nb)ss. Improvement of oxidation resistance at both temperatures was accompanied by a decrease and increase, respectively, of the alloy parameters VEC (valence electron concentration) and , in agreement with the alloy design methodology NICE (Niobium Intermetallic Composite Elaboration). The elimination of scale spallation at 1200 °C was attributed (a) to the formation of Ti-rich (Ti,Nb)ss solid solution and (Ti,Nb)6Sn5, respectively, in the bulk and below the scale, (b) to the low concentration of Cr in the scale, (c) to the absence of GeO2 in the scale, (d) to the formation of αAl2O3 in the scale, and (e) to the presence (i) of Nb5Ge3 below the scale/substrate interface and (ii) of oxides in the scale, namely, SiO2, Al2O3, TiO2, and SnO2, and Ti2Nb10O29,TiNb2O7, and AlNbO4, respectively, with a range of intrinsic thermal shock resistances and coefficient of thermal expansion (CTE) values that reduced stresses in the scale and the substrate below it.
Collapse
Affiliation(s)
| | - Panos Tsakiropoulos
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK;
| |
Collapse
|
16
|
Xu Z, Utton C, Tsakiropoulos P. A Study of the Effect of 5 at.% Sn on the Micro-Structure and Isothermal Oxidation at 800 and 1200 °C of Nb-24Ti-18Si Based Alloys with Al and/or Cr Additions. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E245. [PMID: 31935906 PMCID: PMC6981790 DOI: 10.3390/ma13010245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 11/16/2022]
Abstract
This paper presents the results of a systematic study of Nb-24Ti-18Si based alloys with 5 at.% Sn addition. Three alloys of nominal compositions (at.%), namely Nb-24Ti-18Si-5Cr-5Sn (ZX4), Nb-24Ti-18Si-5Al-5Sn (ZX6), and Nb-24Ti-18Si-5Al-5Cr-5Sn (ZX8), were studied to understand how the increased Sn concentration improved oxidation resistance. In all three alloys there was macrosegregation, which was most severe in ZX8 and the primary βNb5Si3 transformed completely to αNb5Si3 after heat treatment. The Nbss was not stable in ZX6, the Nb3Sn was stable in all three alloys, and the Nbss and C14-NbCr2 Laves phase were stable in ZX4 and ZX8. The 5 at.% Sn addition suppressed pest oxidation at 800 °C but not scale spallation at 1200 °C. At both temperatures, a Sn-rich area with Nb3Sn, Nb5Sn2Si, and NbSn2 compounds developed below the scale. This area was thicker and continuous after oxidation at 1200 °C and was contaminated by oxygen at both temperatures. The contamination of the Nbss by oxygen was most severe in the bulk of all three alloys. Nb-rich, Ti-rich and Nb and Si-rich oxides formed in the scales. The adhesion of the latter on ZX6 at 1200 °C was better, compared with the alloys ZX4 and ZX8. At both temperatures, the improved oxidation was accompanied by a decrease and increase respectively of the alloy parameters VEC (Valence Electron Concentration) and δ, in agreement with the alloy design methodology NICE (Niobium Intermetallic Composite Elaboration). Comparison with similar alloys with 2 at.% Sn addition showed (a) that a higher Sn concentration is essential for the suppression of pest oxidation of Nb-24Ti-18Si based alloys with Cr and no Al additions, but not for alloys where Al and Cr are in synergy with Sn, (b) that the stability of Nb3Sn in the alloy is "assured" with 5 at.% Sn addition, which improves oxidation with/out the presence of the Laves phase and (c) that the synergy of Sn with Al presents the "best" oxidation behaviour with improved scale adhesion at high temperature.
Collapse
Affiliation(s)
| | | | - Panos Tsakiropoulos
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; (Z.X.); (C.U.)
| |
Collapse
|
17
|
Ab Initio Study of Ternary W 5Si 3 Type TM 5Sn 2X Compounds (TM = Nb, Ti and X = Al, Si). MATERIALS 2019; 12:ma12193217. [PMID: 31581432 PMCID: PMC6804048 DOI: 10.3390/ma12193217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022]
Abstract
The adhesion of the scale formed on Nb-silicide based alloys at 1473 K improves when Al and Sn are in synergy with Si and Ti. This improvement is observed when there is segregation of Sn in the microstructure below the alloy/scale interface and a layer rich in intermetallics that include TM5Sn2X compounds is formed at the interface. Data for the ternary compounds is scarce. In this paper elastic and thermodynamic properties of the Nb5Sn2Al, Ti5Sn2Si, Ti5Sn2Al and Nb5Sn2Si compounds were studied using the first-principles, pseudopotential plane-wave method based on density functional theory. The enthalpy of formation of the ternary intermetallics was calculated using the quasi-harmonic approximation. The calculations suggest that the Nb5Sn2Si is the stiffest; that the Nb5Sn2Al and Ti5Sn2Si are the most and less ductile phases respectively; and that Nb significantly increases the bulk, shear and elastic moduli of the ternary compound compared with Ti.
Collapse
|
18
|
Li Z, Tsakiropoulos P. The Effect of Ge Addition on the Oxidation of Nb-24Ti-18Si Silicide Based Alloys. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3120. [PMID: 31557805 PMCID: PMC6804173 DOI: 10.3390/ma12193120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 11/28/2022]
Abstract
In this paper, we report research about the isothermal oxidation in air at 800 and 1200 °C for 100 h of the as-cast alloys (at.%) Nb-18Si-5Ge (ZF1), Nb-18Si-10Ge (ZF2), Nb-24Ti-18Si-5Ge (ZF3), Nb-24Ti-18Si-5Cr (ZF4), Nb-24Ti-18Si-5Al (ZF5), Nb-24Ti-18Si-5Al-5Cr-5Ge (ZF6), and Nb-24Ti-18Si-5Al-5Cr-5Ge-5Hf (ZF9), the microstructures of which were reported in previous publications. Only the alloys ZF1, ZF2, and ZF3 suffered from pest oxidation at 800 °C. The Ge addition substantially improved the oxidation resistance of the other alloys both at 800 °C and 1200 °C, which followed parabolic kinetics at 800 °C and in the early stages at 1200 °C and linear kinetics at longer times, where there was spallation of the scales. The Nb2O5 and TiNb2O7 oxides were formed in the scales of the alloys ZF4, ZF5, ZF6, and ZF9 at 800 °C and 1200 °C, the GeO2 was observed in all scales and the SiO2 in the scales of the alloys ZF4 and ZF5, the CrNbO4 in the scales of the alloys ZF4, ZF6, and ZF9 and the AlNbO4 in the scales of the alloys ZF5, ZF6, and ZF9. Diffusion zones were formed below the scale/substrate interface only in the alloys ZF4 and ZF5 where the Nbss and Nb5Si3 were contaminated by oxygen. However, these phases were not contaminated by oxygen in the bulk of the alloys ZF4, ZF5, ZF6, and ZF9. The alloys ZF9 and ZF6 exhibited the best oxidation behaviour at 800 °C and 1200 °C, respectively. The alloys were compared with Nb-silicide based alloys of similar compositions without Ge and Hf additions and the alloy ZF9 with refractory metal High Entropy Alloys. Compared with the former alloys, the addition of Ge reduced the vol % of the Nbss. Compared with the latter alloys, the superior oxidation behaviour of the alloy ZF9 was attributed to its higher and lower values respectively of the parameters δ and VEC.
Collapse
Affiliation(s)
- Zifu Li
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK.
| | - Panos Tsakiropoulos
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK.
| |
Collapse
|
19
|
Li Z, Tsakiropoulos P. On The Microstructures and Hardness of The Nb-24Ti-18Si-5Al-5Cr-5Ge and Nb-24Ti-18Si-5Al-5Cr-5Ge-5Hf (at.%) Silicide Based Alloys. MATERIALS 2019; 12:ma12172655. [PMID: 31438493 PMCID: PMC6747797 DOI: 10.3390/ma12172655] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 11/16/2022]
Abstract
The microstructures and hardness of the as cast and heat treated (1400 °C/100 h) alloys Nb-24Ti-18Si-5Ge-5Cr-5Al (ZF6) and Nb-24Ti-18Si-5Ge-5Cr-5Al-5Hf (ZF9) were studied. Both alloys were compared with refractory metal bcc solid solution + intermetallic High Entropy Alloys (HEAs). There was macrosegregation of Si, Ti, Cr and Al in both alloys. The roles of Ge and Hf on macrosegregation are discussed. In both alloys the primary phase was the βNb5Si3. In the as cast alloy ZF6 the Nbss, βNb5Si3 and C14-NbCr2 Laves phase and Nbss + βNb5Si3 eutectic were formed. The microstructure of the as cast alloy ZF9 consisted of Nbss, βNb5Si3, γNb5Si3 and C14-NbCr2 Laves phase. The heat-treated microstructures of the alloys ZF6 and ZF9 consisted of Nbss, βNb5Si3 and αNb5Si3 and Nbss, βNb5Si3, αNb5Si3 and γNb5Si3, respectively. The surfaces of both alloys were contaminated by oxygen where TiO2 and HfO2 formed respectively in the alloys ZF6 and ZF9. Alloying with Hf increased the lattice parameter of Nbss and decreased the hardness of ZF9 and Nb5Si3. The roles of alloying additions on the hardness of the Nbss and Nb5Si3 and relationships between alloy hardness and alloy parameters VEC (valence electron concentration), δ (related to atomic size) and Δχ (related to electronegativity) were discussed.
Collapse
Affiliation(s)
- Zifu Li
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Panos Tsakiropoulos
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK.
| |
Collapse
|
20
|
Hernández-Negrete O, Tsakiropoulos P. On the Microstructure and Isothermal Oxidation at 800, 1200, and 1300 °C of the Al-25.5Nb-6Cr-0.5Hf (at %) Alloy. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2531. [PMID: 31398951 PMCID: PMC6719109 DOI: 10.3390/ma12162531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 11/22/2022]
Abstract
Nb-silicide-based alloys have the potential to replace Ni-based superalloys in future aero engines to enable the latter to meet environmental and performance targets. These new alloys, like the Ni-based superalloys that are currently used, will require environmental protection with a coating system that should be chemically compatible with the substrate. A challenge for alloy development is to discover αAl2O3 scale forming coating alloys and in particular to find out whether such alloys could be "compatible" with other coating alloys for environmental coating systems for the Nb-silicide-based alloys. This paper focuses on these challenges. The alloy Al-25.5Nb-6Cr-0.5Hf (at %) was studied in the cast and heat-treated (1400 °C) conditions and after isothermal oxidation for 100 h in air at 800, 1200 and 1300 °C. The microstructure consisted of the alloyed NbAl3 and C14-NbCr2 compounds, both of which were stable at least up to 1400 °C, a eutectic of the two compounds and very small volume fractions of (Cr,Al,Nb)ss and HfO2. The prior eutectic microstructure was stable at T ≤ 1200 °C and the solid solution was not stable at T < 1200 °C. At 800 °C the alloy did not pest, but exhibited external and internal oxidation, with AlNbO4, CrNbAlO4, and αAl2O3 in the former and deeper oxidation along the NbAl3/Laves phase boundaries in the latter At 1200 and 1300 °C there was only external oxidation and the scale consisted of two layers, the outer was (Al,Cr)NbO4 intermixed with αAl2O3 and the inner was continuous αAl2O3. At all three oxidation temperatures, no Nb2Al was observed below the alloy/scale interface and Hf acted as a reactive element forming HfO2 that enhanced the adhesion of the scale. The alloy exhibited good correlations with αAl2O3 scale forming silicide and silicide + aluminide intermetallic alloys in maps of the parameters (related to atomic size), (related to electronegativity), and VEC (number of valence electrons per atom filled into the valence band) that should assist the design of bond coats that do not pest and form αAl2O3 in their scales.
Collapse
Affiliation(s)
- Ofelia Hernández-Negrete
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Panos Tsakiropoulos
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| |
Collapse
|
21
|
Hernández-Negrete O, Tsakiropoulos P. On the Microstructure and Isothermal Oxidation of the Si-22Fe-12Cr-12Al-10Ti-5Nb (at.%) Alloy. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1806. [PMID: 31163707 PMCID: PMC6600695 DOI: 10.3390/ma12111806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/05/2022]
Abstract
Nb-silicide based alloys are new ultra-high temperature materials that could replace Ni-based superalloys. Environmentally resistant coating system (s) with αAl2O3 or SiO2 forming bond coat alloys that are chemically compatible with the Nb-silicide based alloy substrates are needed. This paper makes a contribution to the search for non-pesting bond coat alloys. The microstructure and isothermal oxidation at 800 °C of the silicide-based alloy Si-22Fe-12Cr-12Al-10Ti-5Nb (OHC2) were studied. The cast alloy exhibited macrosegregation of all elements. The microstructures in the cast alloy and after the heat treatment at 800 °C consisted of the same phases, namely TM6Si5, TM5Si3 (TM = transition metal), FeSi2Ti, Fe3Al2Si3, (Fe,Cr)(Si,Al), and an unknown phase of dark contrast. The latter two phases were not stable at 950 °C, where the TMSi2 was formed. There was evidence of endothermic reaction(s) below 1200 °C and liquation at 1200 °C. The alloy followed parabolic oxidation kinetics after the first hour of isothermal oxidation at 800 °C, did not pest, and formed a self-healing scale, in which the dominant oxide was Al2O3. The alloy was compared with other alumina or silica scale-forming intermetallic alloys and approaches to the design of bond coat alloys were suggested.
Collapse
Affiliation(s)
- Ofelia Hernández-Negrete
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| | - Panos Tsakiropoulos
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| |
Collapse
|
22
|
Hernández-Negrete O, Tsakiropoulos P. On the Microstructure and Isothermal Oxidation of Silica and Alumina Scale Forming Si-23Fe-15Cr-15Ti-1Nb and Si-25Nb-5Al-5Cr-5Ti (at.%) Silicide Alloys. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1091. [PMID: 30986999 PMCID: PMC6479351 DOI: 10.3390/ma12071091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 11/17/2022]
Abstract
An Nb-silicide based alloy will require some kind of coating system. Alumina and/or SiO₂ forming alloys that are chemically compatible with the substrate could be components of such systems. In this work, the microstructures, and isothermal oxidation at 800 °C and 1200 °C of the alloys (at.%) Si-23Fe-15Cr-15Ti-1Nb (OHC1) and Si-25Nb-5Al-5Cr-5Ti (OHC5) were studied. The cast microstructures consisted of the (TM)₆Si₅, FeSi₂Ti and (Fe,Cr)Si (OHC1), and the (Nb,Ti)(Si,Al)₂, (Nb,Cr,Ti)₆Si₅, (Cr,Ti,Nb)(Si,Al)₂ (Si)ss and (Al)ss (OHC5) phases. The same compounds were present in OHC1 at 1200 °C and the (Nb,Ti)(Si,Al)₂ and (Nb,Cr,Ti)₆Si₅ in OHC5 at 1400 °C. In OHC1 the (TM)₆Si₅ was the primary phase, and the FeSi and FeSi₂Ti formed a binary eutectic. In OHC5 the (Nb,Ti)(Si,Al)₂ was the primary phase. At 800 °C both alloys did not pest. The scale of OHC1 was composed of SiO₂, TiO₂ and (Cr,Fe)₂O₃. The OHC5 formed a very thin and adherent scale composed of Al₂O₃, SiO₂ and (Ti(1-x-y),Crx,Nby)O₂. The scale on (Cr,Ti,Nb)(Si,Al)₂ had an outer layer of SiO₂ and Al₂O₃ and an inner layer of Al₂O₃. The scale on the (Nb,Cr,Ti)₆Si₅ was thin, and consisted of (Ti(1-x-y),Crx,Nby)O₂ and SiO₂ and some Al₂O₃ near the edges. In (Nb,Ti)(Si,Al)₂ the critical Al concentration for the formation of Al₂O₃ scale was 3 at.%. For Al < 3 at.% there was internal oxidation. At 1200 °C the scale of OHC1 was composed of a SiO₂ inner layer and outer layers of Cr₂O₃ and TiO₂, and there was internal oxidation. It is most likely that a eutectic reaction had occurred in the scale. The scale of OHC5 was α-Al₂O₃. Both alloys exhibited good correlations with alumina forming Nb-Ti-Si-Al-Hf alloys and with non-pesting and oxidation resistant B containing Nb-silicide based alloys in maps of the parameters δ, Δχ and VEC.
Collapse
Affiliation(s)
- Ofelia Hernández-Negrete
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| | - Panos Tsakiropoulos
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| |
Collapse
|
23
|
Ghadyani M, Utton C, Tsakiropoulos P. Microstructures and Isothermal Oxidation of the Alumina Scale Forming Nb 1.45Si 2.7Ti 2.25Al 3.25Hf 0.35 and Nb 1.35Si 2.3Ti 2.3Al 3.7Hf 0.35 Alloys. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E759. [PMID: 30841625 PMCID: PMC6427440 DOI: 10.3390/ma12050759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 11/24/2022]
Abstract
Coating system(s) will be required for Nb-silicide based alloys. Alumina forming alloys that are chemically compatible with the Nb-silicide based alloy substrate could be components of such systems. The intermetallic alloys Nb1.45Si2.7Ti2.25Al3.25Hf0.35 (MG5) and Nb1.35Si2.3Ti2.3Al3.7Hf0.35 (MG6) were studied in the cast, heat treated and isothermally oxidised conditions at 800 and 1200 °C to find out if they are αAl₂O₃ scale formers. A (Al/Si)alloy versus Nb/(Ti + Hf)alloy map, which can be considered to be a map for Multi-Principle Element or Complex Concentrated Nb-Ti-Si-Al-Hf alloys, and a [Nb/(Ti + Hf)]Nb5Si3 versus [Nb/(Ti + Hf)]alloy map were constructed making use of the alloy design methodology NICE and data from a previously studied alloy, and were used to select the alloys MG5 and MG6 that were expected (i) not to pest, (ii) to form αAl₂O₃ scale at 1200 °C, (iii) to have no solid solution, (iv) to form only hexagonal Nb₅Si₃ and (v) to have microstructures consisting of hexagonal Nb₅Si₃, Ti₅Si₃, Ti₅Si₄, TiSi silicides, and tri-aluminides and Al rich TiAl. Both alloys met the requirements (i) to (v). The alumina scale was able to self-heal at 1200 °C. Liquation in the alloy MG6 at 1200 °C was linked with the formation of a eutectic like structure and the TiAl aluminide in the cast alloy. Key to the oxidation of the alloys was the formation (i) of "composite" silicide grains in which the Nb₅Si₃ core was surrounded by the Ti₅Si₄ and TiSi silicides, and (ii) of tri-aluminides with high Al/Si ratio, particularly at 1200 °C and very low Nb/Ti ratio forming in-between the "composite" silicide grains. Both alloys met the "standard definition" of high entropy alloys (HEAs). Compared with HEAs with bcc solid solution and intermetallics, the VEC values of both the alloys were outside the range of reported values. The parameters VEC, and of Nb-Ti-Si-Al-Hf coating alloys and non-pesting Nb-silicide based alloys were compared and trends were established. Selection of coating alloys with possible "layered" structures was discussed and alloy compositions were proposed.
Collapse
Affiliation(s)
- Mohammad Ghadyani
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| | - Claire Utton
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| | - Panos Tsakiropoulos
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| |
Collapse
|
24
|
Ghadyani M, Utton C, Tsakiropoulos P. Microstructures and Isothermal Oxidation of the Alumina Scale Forming Nb 1.7Si 2.4Ti 2.4Al₃Hf 0.5 and Nb 1.3Si 2.4Ti 2.4Al 3.5Hf 0.4 Alloys. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E222. [PMID: 30634663 PMCID: PMC6356250 DOI: 10.3390/ma12020222] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 11/17/2022]
Abstract
Nb⁻silicide based alloy will require some kind of coating system. Alumina forming alloys that are chemically compatible with the Nb⁻silicide based alloy substrate could be components of such systems. The intermetallic alloys Nb1.7Si2.4Ti2.4Al₃Hf0.5 and Nb1.3Si2.4Ti2.4Al3.5Hf0.4 were studied in the cast, heat treated and isothermally oxidised conditions at 800 and 1200 °C to find out if they are alumina scale formers. The alloys were designed using the alloy design methodology NICE and were required (i) not to have stable solid solution phase in their microstructures; (ii) not to pest and (iii) to form alumina scale. Their microstructures consisted of silicides and aluminides. Both alloys satisfied (i) and (ii) and formed thin scales at 800 °C. At 1200 °C the former alloy suffered from internal oxidation and formed alumina intermixed with Ti rich oxide beneath a thick "layered" scale of mixed oxides that contained Ti and/or Al and/or Si. There was no internal oxidation in the latter alloy that formed a thin continuous well adhering α-Al₂O₃ scale that was able to repair itself during oxidation at 1200 °C. In both alloys there was severe macrosegregation of Si, which in Nb1.3Si2.4Ti2.4Al3.5Hf0.4 was almost double that in Nb1.7Si2.4Ti2.4Al₃Hf0.5. The severe macrosegregation of Si contributed to the formation of a "layered" structure in the former alloy that was retained at 800 and 1200 °C. Both alloys met the "standard definition" of High Entropy Alloys (HEAs). Compared with the range of values of the parameters valence band (VEC), δ and Δχ of bcc solid solution plus intermetallic(s) HEAs, only the Δχ of the alloy Nb1.7Si2.4Ti2.4Al₃Hf0.5 was within the range and the parameters VEC and δ of both alloys respectively were outside and within the corresponding ranges. The alloy Nb1.3Si2.4Ti2.4Al3.5Hf0.4 exhibited strong correlations between the parameters Δχ, δ and VEC, and the range of values of each parameter was wider compared with the alloy Nb1.7Si2.4Ti2.4Al₃Hf0.5. There was a strong correlation only between the parameters Δχ and δ of the latter alloy that was similar to that of the former alloy.
Collapse
Affiliation(s)
- Mohammad Ghadyani
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| | - Claire Utton
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| | - Panos Tsakiropoulos
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| |
Collapse
|
25
|
A Study of the Effects of Hf and Sn on the Microstructure, Hardness and Oxidation of Nb-18Si Silicide Based Alloys without Ti Addition. MATERIALS 2018; 11:ma11122447. [PMID: 30513947 PMCID: PMC6317196 DOI: 10.3390/ma11122447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 11/17/2022]
Abstract
The paper presents the results of an experimental study of large (≈0.6 kg) arc melted buttons of four Ti free Nb-silicide based alloys with Sn addition with nominal compositions (at.%) Nb-18Si-5Hf-5Sn (EZ1), Nb-18Si-5Al-5Sn (EZ7), Nb-18Si-5Cr-5Hf-5Sn (EZ3) and Nb-18Si-5Al-5Hf-5Sn (EZ4). The alloys were studied in the as-cast and heat treated conditions. In all the alloys there was macrosegregation of Si (MACSi). Among the single element additions Hf had the weakest and Sn the strongest effect on MACSi. The simultaneous presence of Cr and Hf in the alloy EZ3 had the strongest effect on MACSi. In all the alloys the βNb5Si3 was the primary phase and was present after the heat treatment(s), the Nb3Si silicide was suppressed and the A15-Nb3Sn intermetallic was stable. The Nbss was not stable in the alloys EZ7 and EZ4 and the C14-NbCr2 Laves phase was stable in the alloy EZ3. Very Hf-rich Nb5Si3 was stable in the alloy EZ4 after prolonged heat treatments. Eutectics were observed in all the alloys. These were binary eutectics in the alloys EZ1 and EZ7, where respectively they consisted of the Nbss and βNb5Si3, and βNb5Si3 and A15-Nb3Sn phases. Most likely ternary eutectics consisting of the Nbss, C14-NbCr2 and βNb5Si3, and Nbss, βNb5Si3 and A15-Nb3Sn phases were observed, respectively in the alloys EZ3 and EZ4. The addition of Al increased the vol% of the Nb5Si3 and A15-Nb3Sn phases, particularly after the heat treatment(s). The lattice parameter of Nb respectively increased and decreased with the addition of Hf, and Al or Cr and the latter element had the stronger negative effect. Pest oxidation was not suppressed in the alloys of this study.
Collapse
|
26
|
A Study of the Effect of 2 at.% Sn on the Microstructure and Isothermal Oxidation at 800 and 1200 °C of Nb-24Ti-18Si-Based Alloys with Al and/or Cr Additions. MATERIALS 2018; 11:ma11101826. [PMID: 30257519 PMCID: PMC6212920 DOI: 10.3390/ma11101826] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 11/24/2022]
Abstract
Alloying with Al, Cr, Sn, and Ti significantly improves the oxidation of Nb silicide-based alloys at intermediate and high temperatures. There is no agreement about what the concentration of Sn in the alloys should be. It has been suggested that with Sn ≤ 3 at.% the oxidation is improved and formation of the brittle A15-Nb3Sn compound is suppressed. Definite improvements in oxidation behaviour have been observed with 5 at.% Sn or even higher concentrations, up to 8 at.% Sn. The research reported in this paper is about three model alloys with low Sn concentration and nominal compositions Nb-24Ti-18Si-5Cr-2Sn (ZX3), Nb-24Ti-18Si-5Al-2Sn (ZX5), and Nb-24Ti-18Si-5Al-5Cr-2Sn (ZX7) that were studied to understand the effect of the 2 at.% Sn addition on as-cast and heat-treated microstructures and isothermal oxidation in air at 800 and 1200 °C for 100 h. There was macrosegregation of Si and Ti in the alloys ZX3 and ZX5 and only of Si in the alloy ZX7. The Nbss was stable in all alloys. Tin and Ti exhibited opposite partitioning behaviour in the Nbss. The βNb5Si3 was the primary phase in all three cast alloys and had partially transformed to αNb5Si3 in the alloy ZX3. Aluminium in synergy with Sn increased the sluggishness of the βNb5Si3 to αNb5Si3 transformation during solidification. After the heat treatment the transformation of βNb5Si3 to αNb5Si3 had been completed in all three alloys. Fine precipitates were observed inside some αNb5Si3 grains in the alloys ZX5 and ZX7. In the latter alloys the A15-Nb3X (X = Al, Si, and Sn) formed after the heat treatment, i.e., the synergy of Al and Sn promoted the stability of A15-Nb3X intermetallic in these Nb-silicide-based alloys even at this low Sn concentration. A Nbss + Nb5Si3 eutectic formed in all three alloys and there was evidence of anomalous eutectic in the parts of the alloys ZX3 and ZX7 that had solidified under high cooling rate and/or high melt undercooling. A very fine ternary Nbss + Nb5Si3 + NbCr2 eutectic was also observed in parts of the alloy ZX3 that had solidified under high cooling rate. At 800 °C none of the alloys suffered from catastrophic pest oxidation; ZX7 had a smaller oxidation rate constant. A thin Sn-rich layer formed continuously between the scale and Nbss in the alloys ZX3 and ZX5. At 1200 °C the scales formed on all three alloys spalled off, the alloys exhibited parabolic oxidation in the early stages followed by linear oxidation; the alloy ZX5 gave the smallest rate constant values. A thicker continuous Sn-rich zone formed between the scale and substrate in all three alloys. This Sn-rich zone was noticeably thicker near the corners of the specimen of the alloy ZX7 and continuous around the whole specimen. The Nb3Sn, Nb5Sn2Si, and NbSn2 compounds were observed in the Sn-rich zone. At both temperatures the scales formed on all three alloys consisted of Nb-rich and Nb and Si-rich oxides, and Ti-rich oxide also was formed in the scales of the alloys ZX3 and ZX7 at 1200 °C. The formation of a Sn-rich layer/zone did not prevent the contamination of the bulk of the specimens by oxygen, as both Nbss and Nb5Si3 were contaminated by oxygen, the former more severely than the latter.
Collapse
|
27
|
A Study of the Effects of Al, Cr, Hf, and Ti Additions on the Microstructure and Oxidation of Nb-24Ti-18Si Silicide Based Alloys. MATERIALS 2018; 11:ma11091579. [PMID: 30200433 PMCID: PMC6164265 DOI: 10.3390/ma11091579] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/09/2018] [Accepted: 08/22/2018] [Indexed: 11/28/2022]
Abstract
In Nb-silicide based alloys Al, Cr, Hf, and Ti additions are crucial for achieving balance of properties. It is not known how the simultaneous addition of Hf with Al and Ti, or Hf with Al, Cr, and Ti affects macrosegregation, and how the alloying affects hardness, Young’s modulus and bulk alloy oxidation, and contamination of the solid solution Nbss and the Nb5Si3 compound by oxygen. Two alloys with nominal compositions (at.%) Nb-24Ti-18Si-5Al-5Hf (alloy NbSiTiHf-5Al) and Nb-24Ti-18Si-5Al-5Cr-5Hf (alloy NbSiTiHf-5Al-5Cr) were studied in the as-cast and heat-treated conditions and after isothermal oxidation at 800 and 1200 °C and were compared with similar alloys without Hf. In both alloys there was macrosegregation of Si and Ti, which was more severe in NbSiTiHf-5Al. Both alloys formed Nbss+βNb5Si3 eutectic. The Nbss was stable and its Al and Cr concentrations increased with increasing Ti concentration. In both conditions the βNb5Si3 was observed in the alloys NbSiTiHf-5Al and NbSiTiHf-5Al-5Cr, and the γNb5Si3 only in the alloy NbSiTiHf-5Al. In both heat-treated alloys, separate Hf-rich Nb5Si3 grains were formed. The Si and Al concentrations in Nb5Si3 respectively decreased and increased with increasing Ti concentration. Al and Cr had a stronger hardening effect in the Nbss than Al, Cr, and Hf. Al, Cr, and Ti had a stronger negative effect on the Young’s modulus of the Nbss compared with Al, Cr, Hf, and Ti. When Nb was substituted by Ti, Cr, and Hf, and Si by Al in the βNb5Si3, the Young’s modulus was reduced compared with the unalloyed silicide. At 800 °C both alloys did not exhibit catastrophic pest-oxidation after 100 h. The Nbss and Nb5Si3 were contaminated by oxygen in both alloys, the former more severely. At 1200 °C the scales spalled-off, more severely in the alloy NbSiTiHf-5Al, where substrate that was heavily contaminated by oxygen below the scale also spalled-off. In both alloys the contamination of Nb5Si3 and Nbss by oxygen was more severe compared with 800 °C, but the silicides were not contaminated by oxygen in their bulk. The Nbss was not contaminated by oxygen only in the bulk of the alloy NbSiTiHf-5Al-5Cr.
Collapse
|