1
|
Gong Z, Fan Y, Guan Y, Wu G, Mei L. Empirical Modal Decomposition Combined with Deep Learning for Photoacoustic Spectroscopy Detection of Mixture Gas Concentrations. Anal Chem 2024; 96:18528-18536. [PMID: 39506893 DOI: 10.1021/acs.analchem.4c04479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
In photoacoustic spectroscopy based multicomponent gas analysis, the overlap of the absorption spectra among different gases can affect the measurement accuracy of gas concentrations. We report a multicomponent gas analysis method based on empirical modal decomposition (EMD), convolutional neural networks (CNN), and long short-term memory (LSTM) networks that can extract the exact concentrations of mixed gases from the overlapping wavelength-modulated spectroscopy with second harmonic (WMS-2f) detection. The WMS-2f signals of 25 different concentration combinations of acetylene-ammonia mixtures are detected using a single distributed feedback laser (DFB) at 1531.5 nm. The acetylene concentrations range from 2.5 to 7.5 ppm and the ammonia concentrations from 12.5 to 37.5 ppm. The data set is enhanced by cyclic shifting and adding Gaussian noise. The classification accuracy of the test set reaches 99.89% after tuning. The mean absolute errors of the five additional sets of data measured under different conditions are 0.092 ppm for acetylene and 1.902 ppm for ammonia, within the above concentration ranges.
Collapse
Affiliation(s)
- Zhenfeng Gong
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yeming Fan
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yuchen Guan
- School of Dalian University of Technology and Belarusian State University Joint Institute, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Guojie Wu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Liang Mei
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
2
|
Gavrila AM, Diacon A, Iordache TV, Rotariu T, Ionita M, Toader G. Hazardous Materials from Threats to Safety: Molecularly Imprinted Polymers as Versatile Safeguarding Platforms. Polymers (Basel) 2024; 16:2699. [PMID: 39408411 PMCID: PMC11478541 DOI: 10.3390/polym16192699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Hazards associated with highly dangerous pollutants/contaminants in water, air, and land resources, as well as food, are serious threats to public health and the environment. Thus, it is imperative to detect or decontaminate, as risk-control strategies, the possible harmful substances sensitively and efficiently. In this context, due to their capacity to be specifically designed for various types of hazardous compounds, the synthesis and use of molecularly imprinted polymers (MIPs) have become widespread. By molecular imprinting, affinity sites with complementary shape, size, and functionality can be created for any template molecule. MIPs' unique functions in response to external factors have attracted researchers to develop a broad range of MIP-based sensors with increased sensitivity, specificity, and selectivity of the recognition element toward target hazardous compounds. Therefore, this paper comprehensively reviews the very recent progress of MIPs and smart polymer applications for sensing or decontamination of hazardous compounds (e.g., drugs, explosives, and biological or chemical agents) in various fields from 2020 to 2024, providing researchers with a rapid tool for investigating the latest research status.
Collapse
Affiliation(s)
- Ana-Mihaela Gavrila
- National Institute for Research, Development in Chemistry and Petrochemistry ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.-M.G.); (T.-V.I.)
| | - Aurel Diacon
- Military Technical Academy “Ferdinand I”, 39–49 George Cosbuc Boulevard, 050141 Bucharest, Romania; (A.D.); (T.R.)
| | - Tanta-Verona Iordache
- National Institute for Research, Development in Chemistry and Petrochemistry ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.-M.G.); (T.-V.I.)
| | - Traian Rotariu
- Military Technical Academy “Ferdinand I”, 39–49 George Cosbuc Boulevard, 050141 Bucharest, Romania; (A.D.); (T.R.)
| | - Mariana Ionita
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA Bucharest (UNSTPB), Gheorghe Polizu 1-7, 011061 Bucharest, Romania;
| | - Gabriela Toader
- Military Technical Academy “Ferdinand I”, 39–49 George Cosbuc Boulevard, 050141 Bucharest, Romania; (A.D.); (T.R.)
| |
Collapse
|
3
|
Shvalya V, Olenik J, Vengust D, Zavašnik J, Štrbac J, Modic M, Baranov O, Cvelbar U. Nanosculptured tungsten oxide: High-efficiency SERS sensor for explosives tracing. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135171. [PMID: 39002481 DOI: 10.1016/j.jhazmat.2024.135171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The accurate and rapid identification of explosives and their toxic by-products is an important aspect of safety protocols, forensic investigations and pollution studies. Herein, surface-enhanced Raman scattering (SERS) is used to detect different explosive molecules using an improved substrate design by controllable oxidation of the tungsten surface and deposition of Au layers. The resulting furrow-like morphology formed at the intersection of the tungsten Wulff facets increases nanoroughness and improves the SERS response by over 300 % compared to the untreated surface. The substrate showed excellent reproducibility with a relative standard deviation of less than 15 % and a signal recovery of over 95 % after ultrafast Ar/O2 plasma cleanings. The detection limit for the "dried on a surface" measurement case was better than 10-8 M using the moving scanning regime and an acquisition time of 10 s, while for the "water droplets on a surface" scenario the LoD is 10-7, which is up to 2 orders of magnitude better than the UV-Vis spectroscopy method. The substrates were successfully used to classify the molecular fingerprints of HMX, Tetryl, TNB and TNT, demonstrating the efficiency of a sensor for label-free SERS screening in the practice of monitoring traces of explosives in the water medium.
Collapse
Affiliation(s)
- Vasyl Shvalya
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Jaka Olenik
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; York Plasma Institute, School of Physics, Engineering & Technology, University of York, York YO10 5DD, UK.
| | - Damjan Vengust
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Janez Zavašnik
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Jelena Štrbac
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Martina Modic
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Oleg Baranov
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Plasma Laboratory, National Aerospace University, Kharkov, Ukraine.
| | - Uroš Cvelbar
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Cui F, Xie Z, Yang R, Zhang Y, Liu Y, Zheng H, Han X. Aggregation-induced emission enhancement (AIEE) active bispyrene-based fluorescent probe: "turn-off" fluorescence for the detection of nitroaromatics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124222. [PMID: 38565053 DOI: 10.1016/j.saa.2024.124222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
The detection of nitroaromatic explosives in real samples is essential for environmental monitoring because of their strongly powerful nature and wide applications in industries. Aggregation-induced emission enhancement (AIEE) active fluorescent probe has been widely employed to detect nitroaromatic explosives. Hereby, a simple V-shaped bispyrene-based fluorescent probe (called py-o) with AIEE properties was designed and synthesized, which was fully charactered by 1D NMR, ESI, FTIR, and 2D NOESY spectra. The py-o displayed bright blue-green fluorescence excimer emission at 480 nm in DMF/H2O (v/v 1:1). It is observed that the fluorescence excimer emission of py-o at 480 nm was quenched by PA in solution with a quenching constant of 5.45 × 104 M-1, and the limit of detection was approximately 0.139 μM. The details of the sensing mechanism were explained using 1H NMR titrations, Job's plot and Bensi-Hildebrand methods, which revealed a 1:1 binding ratio via the π-π interactions between PA and py-o. Meanwhile, it exhibited outstanding anti-interference ability in the detection of PA when interfering analytes were added under the same conditions. Furthermore, low-cost thin-layer chromatography (TLC) plates coated with py-o were developed as fluorescent tools for naked-eye detection of PA in the solid state. Therefore, this work provides a new method for constructing an AIEE fluorescent probe for the detection of nitroaromatic explosives to utilize in environmental monitoring.
Collapse
Affiliation(s)
- Fengjuan Cui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China.
| | - Zhiyu Xie
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China
| | - Rui Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China
| | - Yu Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China
| | - Yue Liu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China
| | - Huiyuan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China
| | - Xue Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China
| |
Collapse
|
5
|
Bratu AM, Bojan M, Popa C, Petrus M. Infrared to terahertz identification of chemical substances used for the production of IEDs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124055. [PMID: 38422931 DOI: 10.1016/j.saa.2024.124055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
In our modern times, improvised explosive devices (IEDs) have become more sophisticated than ever, capable of causing destruction and loss of life. The creative use of homemade substances for IEDs manufactures has led to efforts in developing sensitive detection methods that can anticipate, identify and protect against improvised attacks. Laser-based spectroscopic techniques provide rapid and accurate detection of chemicals in improvised explosives, but no single method can detect all components of all explosives. In this study, two spectroscopic methods are used for the sensitive identification of 8 explosive chemical substances in the form of powders and vapors. Absorption spectra of benzene, toluene, acetone and ethylene glycol were examined with CO2 laser photoacoustic spectroscopy. The photoacoustic signals of the samples were recorded in the CO2 laser emission range from 9.2 to 10.8 µm and a different spectral behavior was observed for each analyzed substance. Time-domain spectroscopy with THz radiation was used to analyze ammonium nitrate, potassium chlorate, dinitrobenzene, hexamethylenetetramine transmission spectra in the 0.1-3 THz range, and it was observed that they have characteristic THz fingerprint spectra. CO2 laser photoacoustic spectroscopy and THz time domain spectroscopy have met the criterion of proven effectiveness in identifying explosive components. The combination of these spectroscopic methods is innovative, giving a promising new approach for detection of a large number of IED components.
Collapse
Affiliation(s)
- A M Bratu
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., PO Box MG-36, 077125 Bucharest, Romania.
| | - M Bojan
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., PO Box MG-36, 077125 Bucharest, Romania
| | - C Popa
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., PO Box MG-36, 077125 Bucharest, Romania
| | - M Petrus
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., PO Box MG-36, 077125 Bucharest, Romania
| |
Collapse
|
6
|
Singh K, Aalam U, Mishra A, Dixit N, Bandyopadhyay A, Sengupta A. Spectroscopic and imaging considerations of THz-TDS and ULF-Raman techniques towards practical security applications. OPTICS EXPRESS 2024; 32:1314-1324. [PMID: 38297686 DOI: 10.1364/oe.507941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/16/2023] [Indexed: 02/02/2024]
Abstract
Nitrogen-containing high-energy organic compounds represent a class of materials with critical implications in various fields, including military, aerospace, and chemical industries. The precise characterization and analysis of these compounds are essential for both safety and performance considerations. Spectroscopic characterization in the far-infrared region has great potential for non-destructive investigation of high energetic and related compounds. This research article presents a comprehensive study of common organic energetic materials in the far-infrared region (5-200 cm-1), aiming to enhance security measures through the utilization of cutting-edge spectroscopic techniques. Broadband terahertz time-domain spectroscopy and ultra-low frequency Raman spectroscopy are employed as powerful tools to probe the vibrational and rotational modes of various explosive materials. One of the key objectives of this present work is unveiling the characteristic spectral features and optical parameters of five common nitrogen based high energy organic compounds towards rapid and accurate identification. Further, we have explored the potential of terahertz reflection imaging for non-contact through barrier sensing, a critical requirement in security applications. Based on the spectral features obtained from the spectroscopic studies and using advanced imaging algorithms we have been able to detect these compounds under various barriers including paper, cloth, backpack, etc. Subsequently, this study highlights the capabilities of the two techniques offering a pathway to enhance their utility over a wide range of practical security applications.
Collapse
|
7
|
Sharma B, Gadi R. Analytical Tools and Methods for Explosive Analysis in Forensics: A Critical Review. Crit Rev Anal Chem 2023:1-27. [PMID: 37934616 DOI: 10.1080/10408347.2023.2274927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
This review summarizes (i) compositions and types of improvised explosive devices; (ii) the process of collection, extraction and analysis of explosive evidence encountered in explosive and related cases; (iii) inter-comparison of analytical techniques; (iv) the challenges and prospects of explosive detection technology. The highlights of this study include extensive information regarding the National & International standards specified by USEPA, ASTM, and so on, for explosives detection. The holistic development of analytical tools for explosive analysis ranging from conventional methods to advanced analytical tools is also covered in this article. The most important aspect of this review is to make forensic scientists familiar with the challenges during explosive analysis and the steps to avoid them. The problems during analysis can be analyte-based, that is, interferences due to matrix or added molding/stabilizing agents, trace amount of parent explosives in post-blast samples and many more. Others are techniques-based challenges viz. specificity, selectivity, and sensitivity of the technique. Thus, it has become a primary concern to adopt rapid, field deployable, and highly sensitive techniques.
Collapse
Affiliation(s)
- Bhumika Sharma
- Department of Applied Sciences & Humanities, Indira Gandhi Delhi Technical University for Women, Delhi, India
| | - Ranu Gadi
- Department of Applied Sciences & Humanities, Indira Gandhi Delhi Technical University for Women, Delhi, India
| |
Collapse
|
8
|
Wang Y, Xiong Y, Chen M, Liu F, He H, Ma Q, Gao P, Xiang G, Zhang L. The biological effects of terahertz wave radiation-induced injury on neural stem cells. iScience 2023; 26:107418. [PMID: 37771661 PMCID: PMC10523010 DOI: 10.1016/j.isci.2023.107418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/26/2023] [Accepted: 07/14/2023] [Indexed: 09/30/2023] Open
Abstract
Terahertz (THz) is an electromagnetic wave with a radiation wavelength range of 30-3000 μm and a frequency of 0.1-10 THz. With the development of new THz sources and devices, THz has been widely applied in various fields. However, there are few studies on biological effects of THz irradiation on the human neural stem cells (hNSCs) and mouse neural stem cells (mNSCs), which need to be further studied. We studied the biological effects of THz radiation on hNSCs and mNSCs. The effects of THz irradiation time and average output power on the proliferation, apoptosis, and DNA damage of NSCs were analyzed by flow cytometry and immunofluorescence. The results showed that the proliferation and apoptosis of NSCs were dose-dependently affected by THz irradiation time and average output power. The proliferation of hNSCs was more vulnerable to damage and apoptosis was more serious under the same terahertz irradiation conditions compared to those of mNSCs.
Collapse
Affiliation(s)
- Yunxia Wang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yu Xiong
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Man Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Fei Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Haiyan He
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Qinlong Ma
- Department of Occupational Health, Faculty of Preventive Medicine, Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education of China, Army Medical University, Chongqing 400038, China
| | - Peng Gao
- Department of Occupational Health, Faculty of Preventive Medicine, Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education of China, Army Medical University, Chongqing 400038, China
| | - Guiming Xiang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Liqun Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
9
|
Szyposzyńska M, Spławska A, Ceremuga M, Kot P, Maziejuk M. Stationary Explosive Trace Detection System Using Differential Ion Mobility Spectrometry (DMS). SENSORS (BASEL, SWITZERLAND) 2023; 23:8586. [PMID: 37896679 PMCID: PMC10610698 DOI: 10.3390/s23208586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Detecting trace amounts of explosives is important for maintaining national security due to the growing threat of terror attacks. Particularly challenging is the increasing use of homemade explosives. Therefore, there is a constant need to improve existing technologies for detecting trace amounts of explosives. This paper describes the design of a stationary device (a gate) for detecting trace amounts of explosives and explosive taggants and the design of differential ion mobility spectrometers with a focus on the gas system. Nitromethane (NM), trimeric acetone peroxide (TATP), hexamine peroxide (HMTD), and explosive taggants 2,3-dimethyl-2,3-dinitrobutane (DMDNB) and 4-nitrotoluene (4NT) were used in this study. Gate measurements were carried out by taking air from the hands, pocket area, and shoes of the tested person. Two differential ion mobility spectrometers operating in two different modes were used as explosive detectors: a mode with a semi-permeable membrane to detect explosives with high vapor pressures (such as TATP) and a mode without a semi-permeable membrane (using direct introduction of the sample into the measuring chamber) to detect explosives with low vapor pressures (such as HMTD). The device was able to detect trace amounts of selected explosives/explosive taggants in 5 s.
Collapse
Affiliation(s)
- Monika Szyposzyńska
- Military Institute of Chemistry and Radiometry, al. gen. A. Chruściela “Montera” 105, 00-910 Warsaw, Poland; (A.S.); (P.K.); (M.M.)
| | - Aleksandra Spławska
- Military Institute of Chemistry and Radiometry, al. gen. A. Chruściela “Montera” 105, 00-910 Warsaw, Poland; (A.S.); (P.K.); (M.M.)
| | - Michał Ceremuga
- Military Institute of Armoured and Automotive Technology, Okuniewska 1, 05-070 Sulejówek, Poland;
| | - Piotr Kot
- Military Institute of Chemistry and Radiometry, al. gen. A. Chruściela “Montera” 105, 00-910 Warsaw, Poland; (A.S.); (P.K.); (M.M.)
| | - Mirosław Maziejuk
- Military Institute of Chemistry and Radiometry, al. gen. A. Chruściela “Montera” 105, 00-910 Warsaw, Poland; (A.S.); (P.K.); (M.M.)
| |
Collapse
|
10
|
Altenhof AR, Kaseman DC, Mason HE, Alvarez MA, Malone MW, Williams RF. On the effects of quadrupolar relaxation in Earth's field NMR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 355:107540. [PMID: 37722217 DOI: 10.1016/j.jmr.2023.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/20/2023]
Abstract
There is growing interest in using low-field magnetic resonance experiments for routine chemical characterization. Earth's field NMR is one such technique that can garner structural information and enable sample differentiation with low cost and highly portable designs. The resulting NMR spectra are primarily influenced by J-couplings, resulting in so-called J-coupled spectra (JCS). Many small molecules include atoms with NMR-active nuclei that are quadrupolar either at natural abundance or are often isotopically enriched (e.g.,2H, 6Li, 11B, 14N, 17O, etc.) where the effects of quadrupolar J-couplings and relaxation on JCS of strongly- and weakly-coupled spin systems have not been explored to date. Herein, using a set of seven fluoropyridine samples with unique substitution and J-couplings, we demonstrate that the 14N relaxation rates can induce drastic line-broadening in the JCS. This includes a previously unexplored unique line broadening mechanism enabled by strongly coupled spins at low-field. Numerical simulations are used to model and refine the magnitudes and signs of J-couplings, as well as indirectly determine the 14N relaxation rates in a single 1D experiment that has a higher fidelity than observed in high-field NMR experiments.
Collapse
Affiliation(s)
- Adam R Altenhof
- MPA-Q, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | - Harris E Mason
- C-IIAC, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Marc A Alvarez
- B-TEK, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Michael W Malone
- MPA-Q, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | |
Collapse
|
11
|
Ranasinghe S, Armson A, Lymbery AJ, Zahedi A, Ash A. Medicinal plants as a source of antiparasitics: an overview of experimental studies. Pathog Glob Health 2023; 117:535-553. [PMID: 36805662 PMCID: PMC10392325 DOI: 10.1080/20477724.2023.2179454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Despite advances in modern human and veterinary medicine, gastrointestinal (GI) parasitic infections remain a significant health issue worldwide, mainly in developing countries. Increasing evidence of the multi-drug resistance of these parasites and the side effects of currently available synthetic drugs have led to increased research on alternative medicines to treat parasitic infections. The exploration of potential botanical antiparasitics, which are inexpensive and abundant, may be a promising alternative in this context. This study summarizes the in vitro/in vivo antiparasitic efficacy of different medicinal plants and their components against GI parasites. Published literature from 1990-2020 was retrieved from Google Scholar, Web of Science, PubMed and Scopus. A total of 68 plant species belonging to 32 families have been evaluated as antiparasitic agents against GI parasites worldwide. The majority of studies (70%) were conducted in vitro. Most plants were from the Fabaceae family (53%, n = 18). Methanol (37%, n = 35) was the most used solvent. Leaf (22%, n = 16) was the most used plant part, followed by seed and rhizome (each 12%, n = 9). These studies suggest that herbal medicines hold a great scope for new drug discoveries against parasitic diseases and that the derivatives of these plants are useful structures for drug synthesis and bioactivity optimization.
Collapse
Affiliation(s)
- Sandamalie Ranasinghe
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Anthony Armson
- Exercise Science and Chiropractic, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Alan J. Lymbery
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Alireza Zahedi
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Amanda Ash
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
12
|
Wei K, Teng G, Wang Q, Xu X, Zhao Z, Liu H, Bao M, Zheng Y, Luo T, Lu B. Rapid Test for Adulteration of Fritillaria Thunbergii in Fritillaria Cirrhosa by Laser-Induced Breakdown Spectroscopy. Foods 2023; 12:foods12081710. [PMID: 37107505 PMCID: PMC10138139 DOI: 10.3390/foods12081710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Fritillaria has a long history in China, and it can be consumed as medicine and food. Owing to the high cost of Fritillaria cirrhosa, traders sometimes mix it with the cheaper Fritillaria thunbergii powder to make profit. Herein, we proposed a laser-induced breakdown spectroscopy (LIBS) technique to test the adulteration present in the sample of Fritillaria cirrhosa powder. Experimental samples with different adulteration levels were prepared, and their LIBS spectra were obtained. Partial least squares regression (PLSR) was adopted as the quantitative analysis model to compare the effects of four data standardization methods, namely, mean centring, normalization by total area, standard normal variable, and normalization by the maximum, on the performance of the PLSR model. Principal component analysis and least absolute shrinkage and selection operator (LASSO) were utilized for feature extraction and feature selection, and the performance of the PLSR model was determined based on its quantitative analysis. Subsequently, the optimal number of features was determined. The residuals were corrected using support vector regression (SVR). The mean absolute error and root mean square error of prediction obtained from the quantitative analysis results of the combined LASSO-PLSR-SVR model for the test set data were 5.0396% and 7.2491%, respectively, and the coefficient of determination R2 was 0.9983. The results showed that the LIBS technique can be adopted to test adulteration in the sample of Fritillaria cirrhosa powder and has potential applications in drug quality control.
Collapse
Affiliation(s)
- Kai Wei
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Geer Teng
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7LD, UK
| | - Qianqian Wang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314033, China
| | - Xiangjun Xu
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhifang Zhao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Haida Liu
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Mengyu Bao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yongyue Zheng
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Tianzhong Luo
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314033, China
| | - Bingheng Lu
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
13
|
Hassan MB, Abd-Ali IJ, Mahdi WH, Alkhayatt AHO. Terahertz wave excitation by nonlinear coupling of intense laser field with magnetized plasma. OPTICAL AND QUANTUM ELECTRONICS 2023; 55:275. [DOI: 10.1007/s11082-023-04557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/03/2023] [Indexed: 09/02/2023]
|
14
|
Schiff Base-functionalized Metal-organic Frameworks for Selective Sensing of Chromate and Dichromate in Water. J Fluoresc 2023; 33:61-75. [PMID: 36224478 DOI: 10.1007/s10895-022-03036-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 02/03/2023]
Abstract
In this research, Zn- or Cd-based metal-organic frameworks (coded ZnMOF-1 and CdMOF-1) containing benzene-1,4-dicarboxylic acid (H2bdc) and pyridyl-based Schiff base (4-pyridylcarboxaldehydeisonicotinoylhydrazone (L)) dual ligands were successfully assembled via a conventional solvothermal method. The photoluminescence quenching response of ZnMOF-1 and CdMOF-1 and their sensing sensitivity and selectivity towards various inorganic anions were evaluated in aqueous media. Crystallographic and thermogravimetric studies confirm the formation of both MOFs with good crystallinity and thermal stability. Photoluminescence studies also verify the selectivity of ZnMOF-1 and CdMOF-1 for efficient sensing of inorganic oxyanions (like chromate/dichromate: CrO42- and Cr2O72-). Further, it was noted that only chromate/dichromate (CrO42-/Cr2O72-) anions showed a significant turn-off quenching effect while other anions (like F-, Br-, I-, Cl-, ClO4-, SCN-, SO42-, NO3-, and NO2-) have a low/negligible effect on the photoluminescence intensity of both MOFs. The limit of detection (LOD) of chromate/dichromate by ZnMOF-1 and CdMOF-1 was 9.79/10.94 µM and 2.68/1.48 µM, respectively. A probable mechanism for turn-off quenching response towards chromate and dichromate anions could be attributed to the spectral overlap of both excitation and emission spectra of ZnMOF-1/CdMOF-1 with the absorption spectra of chromate/dichromate anions. As a result, the energy transfer from ZnMOF-1 or CdMOF-1 to the target chromate and dichromate anions decreased fluorescence intensity (i.e., fluorescence quenching effect).
Collapse
|
15
|
Hao R, Zhao J, Liu J, You H, Fang J. Remote Raman Detection of Trace Explosives by Laser Beam Focusing and Plasmonic Spray Enhancement Methods. Anal Chem 2022; 94:11230-11237. [PMID: 35921536 DOI: 10.1021/acs.analchem.2c01732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Remote Raman spectroscopy is a technique that can detect and identify different target molecules through Raman vibrational modes from a remote distance. However, the current remote Raman technique is restricted by poor detection sensitivity, and it is still extremely challenging for trace explosive detection. Here, in order to achieve trace explosive detection from a remote distance, we innovatively propose two enhanced Raman spectroscopy methods by using a plasmonic spray and a laser beam focusing/Raman signal collecting instrument. In brief, a facile convex lens can converge the laser beam and collect Raman scattering signals, and a plasmonic spray can be used for surface-enhanced Raman scattering. Under the combination of the above enhancement methods, we achieve remote Raman detection of a variety of trace explosives with a concentration of ∼1 μg/cm2 from a distance of 30 m. These novel methods demonstrate a simple approach that significantly improves the capability of remote detection of trace chemicals for further applications.
Collapse
Affiliation(s)
- Rui Hao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jiawei Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jiakai Liu
- College of Equipment Management and Support, Engineering University of PAP, Xi'an, Shaanxi 710049, China
| | - Hongjun You
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jixiang Fang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
16
|
Li L, Zhang T, Ge W, He X, Zhang Y, Wang X, Li P. Detection of Trace Explosives Using a Novel Sample Introduction and Ionization Method. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144551. [PMID: 35889424 PMCID: PMC9320169 DOI: 10.3390/molecules27144551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
A novel sample introduction and ionization method for trace explosives detection is proposed and investigated herein, taking into consideration real-world application requirements. A thermal desorption sampling method and dielectric barrier discharge ionization (DBDI) source, with air as the discharge gas, were developed. The counter flow method was adopted firstly into the DBDI source to remove the interference of ozone and other reactive nitrogen oxides. A separated reaction region with an ion guiding electric field was developed for ionization of the sample molecules. Coupled with a homemade miniature digital linear ion trap mass spectrometer, this compact and robust design, with further optimization, has the advantages of soft ionization, a low detection limit, is free of reagent and consumable gas, and is an easy sample introduction. A range of common nitro-based explosives including TNT, 2,4-DNT, NG, RDX, PETN, and HMX has been studied. A linear response in the range of two orders of magnitude with a limit of detection (LOD) of 0.01 ng for TNT has been demonstrated. Application to the detection of real explosives and simulated mixed samples has also been explored. The work paves the path to developing next generation mass spectrometry (MS) based explosive trace detectors (ETDs).
Collapse
Affiliation(s)
- Lingfeng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (W.G.); (X.H.); (Y.Z.)
| | - Tianyi Zhang
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (W.G.); (X.H.); (Y.Z.)
| | - Wei Ge
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (W.G.); (X.H.); (Y.Z.)
| | - Xingli He
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (W.G.); (X.H.); (Y.Z.)
| | - Yunjing Zhang
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (W.G.); (X.H.); (Y.Z.)
| | - Xiaozhi Wang
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China;
| | - Peng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (W.G.); (X.H.); (Y.Z.)
- Correspondence: ; Tel.: +86-13656249881
| |
Collapse
|
17
|
Singh K, Garg D, Bandyopadhyay A, Sengupta A. Dual spectroscopic detection of THz energy modes of critical chemical compounds. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120923. [PMID: 35121475 DOI: 10.1016/j.saa.2022.120923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Precise identification and sensing of organic and inorganic molecular systems are key factors in several applications in present industrial and scientific domains. While high energy modes, due to electronic interactions, are mostly impervious to the initial thermodynamic or chemical conditions, the low energy modes are sensitive to such alterations which makes them suitable for quality control purpose with sensitive spectral identification methods. Here we report for the first time, several low frequency peaks of specific nitrogen-based compounds and their derivatives, using the dual spectroscopic approach of Terahertz Time-Domain Spectroscopy (THz-TDS) and THz Raman Spectroscopy (THz-RS). Two different isomeric molecular systems have also been investigated to assess both the selectivity and specificity of low energy modes in their identification and spectral correlation in terms of molecular interactions. This information of low frequency modes can be utilized readily by pharmaceutical and agri-food industries, chemical engineering and crystal growth communities in identification, detection, quality control and industrial waste management.
Collapse
Affiliation(s)
- Khushboo Singh
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Diksha Garg
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Aparajita Bandyopadhyay
- Joint Advanced Technology Center - Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Amartya Sengupta
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India; School of IT and Electrical Engineering, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
18
|
Gao Y, Chu F, Chen W, Wang X, Pan Y. Arc-Induced Nitrate Reagent Ion for Analysis of Trace Explosives on Surfaces Using Atmospheric Pressure Arc Desorption/Ionization Mass Spectrometry. Anal Chem 2022; 94:5463-5468. [PMID: 35357149 DOI: 10.1021/acs.analchem.1c05650] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study presents the rapid surface detection of explosives by employing atmospheric pressure arc desorption/ionization mass spectrometry (APADI-MS) using point-to-plane arc discharge. In APADI, neutral explosives readily bind to the gas-phase nitrate ion, NO3-, induced by arc discharge to form anionic adducts [M+NO3]-. This avoids the need for inorganic anionic additives such as NO3-, NO2-, Cl-, acetate, and trifluoroacetate for unique explosive ionization pathways and simplifies mass spectra. The analytical performance of APADI was thoroughly evaluated for the rapid detection of 10 explosives at levels in the range of 800 fg-1 μg. Arc-induced nitrogen oxide anions promoted the formation of characteristic adducts, such as [M+NO3]-, and improved the instrument response for all the explosives tested. APADI showed considerable sensitivity in the negative ion mode with limits of detection in the low picogram range, particularly when explosives were analyzed on a copper or aluminum foil substrate. APADI coupled with an Orbitrap mass spectrometer displayed a good linear response for the studied explosives. The linearity and intraday and interday precisions were evaluated, demonstrating the feasibility and robustness of APADI-MS for the detection of trace explosives on solid surfaces. The mechanisms of APADI for explosive ionization and desorption were examined and verified by performing density functional theory calculations.
Collapse
Affiliation(s)
- Yuanji Gao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China.,College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, P. R. China
| | - Fengjian Chu
- Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Weiwei Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Xiaozhi Wang
- Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| |
Collapse
|
19
|
Qi M, Liu R, Li B, Wang S, Fan R, Zhao X, Xu D. Behavioral Effect of Terahertz Waves in C57BL/6 Mice. BIOSENSORS 2022; 12:79. [PMID: 35200340 PMCID: PMC8869163 DOI: 10.3390/bios12020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Terahertz is a new radiation source with many unique advantages. In recent years, its application has rapidly expanded to various fields, but there are few studies on the individual effects of terahertz. In this study, we investigated the behavioral effects of terahertz radiation on C57BL/6 mice, and we conducted an open field test, an elevated plus maze test, a light-dark box test, a three-chamber social test, and a forced swim test to explore the effects of terahertz radiation on mice from a behavioral perspective. The results show that terahertz wave may increase anti-anxiety, anti-depression, and social interaction in mice.
Collapse
Affiliation(s)
- Miao Qi
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (R.L.); (B.L.); (S.W.); (R.F.); (X.Z.)
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Rong Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (R.L.); (B.L.); (S.W.); (R.F.); (X.Z.)
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Bing Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (R.L.); (B.L.); (S.W.); (R.F.); (X.Z.)
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Shuai Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (R.L.); (B.L.); (S.W.); (R.F.); (X.Z.)
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Runze Fan
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (R.L.); (B.L.); (S.W.); (R.F.); (X.Z.)
| | - Xinyi Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (R.L.); (B.L.); (S.W.); (R.F.); (X.Z.)
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (R.L.); (B.L.); (S.W.); (R.F.); (X.Z.)
| |
Collapse
|
20
|
Meng Z, Mirica KA. Covalent organic frameworks as multifunctional materials for chemical detection. Chem Soc Rev 2021; 50:13498-13558. [PMID: 34787136 PMCID: PMC9264329 DOI: 10.1039/d1cs00600b] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 12/17/2022]
Abstract
Sensitive and selective detection of chemical and biological analytes is critical in various scientific and technological fields. As an emerging class of multifunctional materials, covalent organic frameworks (COFs) with their unique properties of chemical modularity, large surface area, high stability, low density, and tunable pore sizes and functionalities, which together define their programmable properties, show promise in advancing chemical detection. This review demonstrates the recent progress in chemical detection where COFs constitute an integral component of the achieved function. This review highlights how the unique properties of COFs can be harnessed to develop different types of chemical detection systems based on the principles of chromism, luminescence, electrical transduction, chromatography, spectrometry, and others to achieve highly sensitive and selective detection of various analytes, ranging from gases, volatiles, ions, to biomolecules. The key parameters of detection performance for target analytes are summarized, compared, and analyzed from the perspective of the detection mechanism and structure-property-performance correlations of COFs. Conclusions summarize the current accomplishments and analyze the challenges and limitations that exist for chemical detection under different mechanisms. Perspectives on how future directions of research can advance the COF-based chemical detection through innovation in novel COF design and synthesis, progress in device fabrication, and exploration of novel modes of detection are also discussed.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
21
|
|
22
|
|
23
|
Traces under nails in clinical forensic medicine: not just DNA. Int J Legal Med 2021; 135:1709-1715. [PMID: 33587179 DOI: 10.1007/s00414-021-02519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
When dealing with complex crimes such as rape and assault, every trace takes on an essential role. The hands are often the only means of defence and offence for the victim as well as a frequent area of contact with the environment; fingernails of a victim are a well-known possible source of DNA of the aggressor; nevertheless, they are more rarely treated as an area of interest for non-genetic material, particularly on living victims. The hyponychium, because of its physiological protective function, lends itself ideally to retaining different kinds of traces representative of an environment or various products and substrates that could shed light on the environment and objects involved in the event. We therefore tested how far this capability of the hyponychium could go by simulating the dynamics of contamination of the nail through scratching on different substrates (brick and mortar, painted wood, ivy leaves, cotton and woollen fabric, soil) and persistence of any contaminant at different time intervals. We have thus shown how these traces may remain in the living for up to 24 h after the event using inexpensive and non-destructive techniques such as the episcopic and optical microscope.
Collapse
|
24
|
Partial Least-Squares Regression as a Tool to Retrieve Gas Concentrations in Mixtures Detected Using Quartz-Enhanced Photoacoustic Spectroscopy. Anal Chem 2020; 92:11035-11043. [PMID: 32674566 PMCID: PMC8009469 DOI: 10.1021/acs.analchem.0c00075] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
We
report on a statistical tool based on partial least-squares
regression (PLSR) able to retrieve single-component concentrations
in a multiple-gas mixture characterized by spectrally overlapping
absorption features. Absorption spectra of mixtures of CO–N2O and mixtures of C2H2–CH4–N2O, both diluted in N2, were
detected in the mid-IR range by exploiting quartz-enhanced photoacoustic
spectroscopy (QEPAS) and using two quantum cascade lasers as light
sources. Single-gas reference spectra of each target molecule were
acquired and used as PLSR-based algorithm training data set. The concentration
range explored in the analysis varies from a few parts-per-million
(ppm) to thousands of ppm. Within this concentration range, the influence
of the gas matrix on nonradiative relaxation processes can be neglected.
Exploiting the ability of PLSR to deal with correlated data, these
spectra were used to generate new simulated spectra, i.e., linear
combinations of the reference ones. A Gaussian noise distribution
was added to the created data set, simulating the real QEPAS signal
fluctuations around the peak value. Compared with standard multilinear
regression, PLSR predicted gas concentrations with a calibration error
up to 5 times better, even with absorption features with spectral
overlap greater than 97%.
Collapse
|
25
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of detection and characterization of explosives and explosives residues 2016-2019. Forensic Sci Int Synerg 2020; 2:670-700. [PMID: 33385149 PMCID: PMC7770463 DOI: 10.1016/j.fsisyn.2020.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
This review paper covers the forensic-relevant literature for the analysis and detection of explosives and explosives residues from 2016-2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/Resources/Documents#Publications.
Collapse
Affiliation(s)
- Douglas J. Klapec
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
26
|
Abstract
This work comprehensively reviews some fundamental concepts about explosives and their two commonly used classifications based on either their velocity of detonation or their application. These classifications are highly useful in the military/legal field, but completely useless for the chemical determination of explosives. Because of this reason, a classification of explosives based on their chemical composition is comprehensively revised, discussed and updated. This classification seeks to merge those dispersed chemical classifications of explosives found in literature into a unique general classification, which might be useful for every researcher dealing with the analytical chemical identification of explosives. In the knowledge of the chemical composition of explosives, the most adequate analytical techniques to determine them are finally discussed.
Collapse
Affiliation(s)
- Félix Zapata
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University Institute of Research in Police Sciences (IUICP); and CINQUIFOR# research group, University of Alcalá, Ctra. Madrid-Barcelona km 33.600, Alcalá de Henares, (Madrid) 28871, Spain
| | - Carmen García-Ruiz
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University Institute of Research in Police Sciences (IUICP); and CINQUIFOR# research group, University of Alcalá, Ctra. Madrid-Barcelona km 33.600, Alcalá de Henares, (Madrid) 28871, Spain
| |
Collapse
|
27
|
Fellner L, Kraus M, Gebert F, Walter A, Duschek F. Multispectral LIF-Based Standoff Detection System for the Classification of CBE Hazards by Spectral and Temporal Features. SENSORS 2020; 20:s20092524. [PMID: 32365598 PMCID: PMC7249005 DOI: 10.3390/s20092524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022]
Abstract
Laser-induced fluorescence (LIF) is a well-established technique for monitoring chemical processes and for the standoff detection of biological substances because of its simple technical implementation and high sensitivity. Frequently, standoff LIF spectra from large molecules and bio-agents are only slightly structured and a gain of deeper information, such as classification, let alone identification, might become challenging. Improving the LIF technology by recording spectral and additionally time-resolved fluorescence emission, a significant gain of information can be achieved. This work presents results from a LIF based detection system and an analysis of the influence of time-resolved data on the classification accuracy. A multi-wavelength sub-nanosecond laser source is used to acquire spectral and time-resolved data from a standoff distance of 3.5 m. The data set contains data from seven different bacterial species and six types of oil. Classification is performed with a decision tree algorithm separately for spectral data, time-resolved data and the combination of both. The first findings show a valuable contribution of time-resolved fluorescence data to the classification of the investigated chemical and biological agents to their species level. Temporal and spectral data have been proven as partly complementary. The classification accuracy is increased from 86% for spectral data only to more than 92%.
Collapse
|
28
|
Loch AS, Stoltzfus DM, Burn PL, Shaw PE. High-Sensitivity Poly(dendrimer)-Based Sensors for the Detection of Explosives and Taggant Vapors. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Alex S. Loch
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dani M. Stoltzfus
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul L. Burn
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul E. Shaw
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
29
|
Kayhomayun Z, Ghani K, Zargoosh K. Template-directed synthesis of Sm 2Ti 2O 7 nanoparticles: a FRET-based fluorescent chemosensor for the fast and selective determination of picric acid. NEW J CHEM 2020. [DOI: 10.1039/d0nj04219f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorescence “turn off” detection of picric acid using a Sm2Ti2O7 nanoprobe.
Collapse
Affiliation(s)
- Zohreh Kayhomayun
- Department of Chemistry
- Malek-Ashtar University of Technology
- Shahin-Shahr
- Iran
| | - Kamal Ghani
- Department of Chemistry
- Malek-Ashtar University of Technology
- Shahin-Shahr
- Iran
| | - Kiomars Zargoosh
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Iran
| |
Collapse
|
30
|
Ye X, Wang H, Yu L, Zhou J. Aggregation-Induced Emission (AIE)-Labeled Cellulose Nanocrystals for the Detection of Nitrophenolic Explosives in Aqueous Solutions. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E707. [PMID: 31067707 PMCID: PMC6567080 DOI: 10.3390/nano9050707] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/30/2022]
Abstract
Aggregation-induced emission (AIE) active cellulose nanocrystals (TPE-CNCs) were synthesized by attaching tetraphenylethylene (TPE) to cellulose nanocrystals (CNCs). The structure and morphology of TPE-CNCs were characterized by FT-IR, XRD, ζ-potential measurements, elemental analysis, TEM, atomic force microscopy (AFM), and dynamic laser light scattering (DLS). Fluorescent properties of TPE-CNCs were also further studied. Unlike aggregation-caused quenching (ACQ), TPE-CNCs emitted weak fluorescence in the dilute suspensions, while emitting efficiently in the aggregated states. The AIE mechanism of TPE-CNCs was attributed to the restriction of an intramolecular rotation (RIR) process in the aggregated states. TPE-CNCs displayed good dispersity in water and stable fluorescence, which was reported through the specific detection of nitrophenolic explosives in aqueous solutions by a fluorescence quenching assay. The fluorescence emissions of TPE-CNCs showed quantitative and sensitive responses to picric acid (PA), 2,4-dinitro-phenol (DNP), and 4-nitrophenol (NP), and the detection limits were 220, 250, and 520 nM, respectively. Fluorescence quenching occurred through a static mechanism via the formation of a nonfluorescent complex between TPE-CNCs and nitrophenolic analytes. A fluorescence lifetime measurement revealed that the quenching was a static process. The results demonstrated that TPE-CNCs were excellent sensors for the detection of nitrophenolic explosives in aqueous systems, which has great potential applications in chemosensing and bioimaging.
Collapse
Affiliation(s)
- Xiu Ye
- Department of Chemistry, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Haoying Wang
- Department of Chemistry, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Lisha Yu
- Department of Chemistry, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Jinping Zhou
- Department of Chemistry, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China.
| |
Collapse
|