1
|
Singh RK, Verma K, Kumar GCM, Jalageri MB. Potential of Graphene-Functionalized Polymer Surfaces for Dental Applications: A Systematic review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:191-211. [PMID: 39190630 DOI: 10.1080/09205063.2024.2396224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Graphene, a two-dimensional carbon nanomaterial, has garnered widespread attention across various fields due to its outstanding properties. In dental implantology, researchers are exploring the use of graphene-functionalized polymer surfaces to enhance both the osseointegration process and the long-term success of dental implants. This review consolidates evidence from in-vivo and in-vitro studies, highlighting graphene's capacity to improve bone-to-implant contact, exhibit antibacterial properties, and enhance mechanical strength. This research investigates the effects of incorporating graphene derivatives into polymer materials on tissue response and compatibility. Among 123 search results, 14 articles meeting the predefined criteria were analyzed. The study primarily focuses on assessing the impact of GO and rGO on cellular function and stability in implants. Results indicate promising improvements in cellular function and stability with the use of GO-coated or composited implants. However, it is noted that interactions between Graphene derivatives and polymers may alter the inherent properties of the materials. Therefore, further rigorous research is deemed imperative to fully elucidate their potential in human applications. Such comprehensive understanding is essential for unlocking the extensive benefits associated with the utilization of Graphene derivatives in biomedical contexts.
Collapse
Affiliation(s)
- Rohit Kumar Singh
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - Khyati Verma
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - G C Mohan Kumar
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - Mallikarjun B Jalageri
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| |
Collapse
|
2
|
Patiño Vidal C, Muñoz-Shugulí C, Guivier M, Puglia D, Luzi F, Rojas A, Velásquez E, Galotto MJ, López-de-Dicastillo C. PLA- and PHA-Biopolyester-Based Electrospun Materials: Development, Legislation, and Food Packaging Applications. Molecules 2024; 29:5452. [PMID: 39598841 PMCID: PMC11597656 DOI: 10.3390/molecules29225452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The high accumulation of plastic waste in the environment has led to great interest in biodegradable polymers, such as polylactic acid (PLA) or polyhydroxyalkanoates (PHAs). Their benefits, combined with the application of electrospinning technology, represent an innovative proposal for the food packaging industry. This article provides a comprehensive review of the latest developments of PLA- and PHA-biopolyester-based electrospun materials for food packaging applications, summarizing the reported technologies, material properties, applications, and invention patents. In addition, the legislation used to assess their biodegradability is also detailed. Electrospun packaging materials are largely developed through uniaxial, coaxial, emulsion, multiaxial, and needleless techniques. PLA- and PHA-biopolyester-based electrospun materials can be obtained as single and multilayer packaging structures, and the incorporation of natural extracts, organic compounds, and nanoparticles has become a great strategy for designing active food packaging systems. The biodegradability of electrospun materials has mainly been evaluated in soil, compost, and aquatic systems through ASTM and ISO normatives. In this review, the dependence of the biodegradation process on the polymer type, conditions, and test methods is clearly reviewed. Moreover, these biodegradable electrospun materials have shown excellent antioxidant and antimicrobial properties, resulting in a great method for extending the shelf life of fruits, bread, fish, and meat products.
Collapse
Affiliation(s)
- Cristian Patiño Vidal
- Safety and Resources Valorization Research Group (INVAGRO), Faculty of Engineering, Universidad Nacional de Chimborazo (UNACH), Av. Antonio José de Sucre Km 1 1/2, Riobamba 060108, Ecuador
- Group for Research and Innovation in Food Packaging, Riobamba 060107, Ecuador;
| | - Cristina Muñoz-Shugulí
- Group for Research and Innovation in Food Packaging, Riobamba 060107, Ecuador;
- Faculty of Sciences, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba 060106, Ecuador
| | - Manon Guivier
- Polymer Chemistry and Materials, Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland;
| | - Débora Puglia
- Materials Science and Technology Laboratory, Civil and Environmental Engineering Department, University of Perugia (UNIPG), 05100 Terni, Italy;
| | - Francesca Luzi
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Polytechnic University of Marche (UNIVPM), 60131 Ancona, Italy;
| | - Adrián Rojas
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago 9170201, Chile; (A.R.); (E.V.); (M.J.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago 9170201, Chile
| | - Eliezer Velásquez
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago 9170201, Chile; (A.R.); (E.V.); (M.J.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago 9170201, Chile
| | - María José Galotto
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago 9170201, Chile; (A.R.); (E.V.); (M.J.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago 9170201, Chile
| | - Carol López-de-Dicastillo
- Packaging Laboratory, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain
| |
Collapse
|
3
|
Borges JC, de Almeida Campos LA, Kretzschmar EAM, Cavalcanti IMF. Incorporation of essential oils in polymeric films for biomedical applications. Int J Biol Macromol 2024; 269:132108. [PMID: 38710258 DOI: 10.1016/j.ijbiomac.2024.132108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Natural and synthetic biodegradable polymers are widely used to obtain more sustainable films with biological, physicochemical, and mechanical properties for biomedical purposes. The incorporation of essential oils (EOs) in polymeric films can optimize the biological activities of these EOs, protect them from degradation, and serve as a prototype for new biotechnological products. This article aims to discuss updates over the last 10 years on incorporating EOs into natural and synthetic biodegradable polymer films for biomedical applications. Chitosan, alginates, cellulose, and proteins such as gelatine, silk, and zein are among the natural polymers most commonly used to prepare biodegradable films for release EOs. In addition to these, the most cited synthetic biodegradable polymers are poly(L-lactide) (PLA), poly(vinyl alcohol) (PVA), and poly(ε-caprolactone) (PCL). The EOs of clove, cinnamon, tea tree, eucalyptus, frankincense, lavender, thyme and oregano incorporated into polymeric films have been the most studied EOs in recent years in the biomedical field. Biomedical applications include antimicrobial activity against pathogenic bacteria and fungi, anticancer activity, potential for tissue engineering and regeneration with scaffolds and wound healing as dressings. Thus, this article reports on the importance of incorporating EOs into biodegradable polymer films, making these systems especially attractive for various biomedical applications.
Collapse
Affiliation(s)
- Joyce Cordeiro Borges
- Federal University of Pernambuco (UFPE), Keizo Asami Institute (iLIKA), Recife, Pernambuco, Brazil
| | | | | | - Isabella Macário Ferro Cavalcanti
- Federal University of Pernambuco (UFPE), Keizo Asami Institute (iLIKA), Recife, Pernambuco, Brazil; Federal University of Pernambuco (UFPE), Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Vitória de Santo Antão, Pernambuco, Brazil.
| |
Collapse
|
4
|
Giotopoulou I, Fotiadou R, Stamatis H, Barkoula NM. Development of Low-Density Polyethylene Films Coated with Phenolic Substances for Prolonged Bioactivity. Polymers (Basel) 2023; 15:4580. [PMID: 38232018 PMCID: PMC10707956 DOI: 10.3390/polym15234580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
The current study proposes an efficient coating methodology for the development of low-density polyethylene (LDPE) films with prolonged bioactivity for food packaging applications. Three natural phenolic-based substances were incorporated at optimized concentrations in methyl-cellulose-based solutions and used as coatings on LDPE films. The amount of surfactant/emulsifier was optimized to control the entrapment of the bioactive substances, minimizing the loss of the substances during processing, and offering prolonged bioactivity. As a result, the growth of Escherichia coli was substantially inhibited after interaction with the coated films, while coated films presented excellent antioxidant activities and maintained their mechanical performance after coating. Considerable bioactivity was observed after up to 7 days of storage in sealed bags in the case of carvacrol- and thymol-coated films. Interestingly, films coated with olive-leaf extract maintained a high level of antimicrobial and antioxidant properties, at least for 40 days of storage.
Collapse
Affiliation(s)
- Iro Giotopoulou
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Renia Fotiadou
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (H.S.)
| | - Haralambos Stamatis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (H.S.)
| | | |
Collapse
|
5
|
A Review on Antimicrobial Packaging for Extending the Shelf Life of Food. Processes (Basel) 2023. [DOI: 10.3390/pr11020590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Food packaging systems are continually impacted by the growing demand for minimally processed foods, changing eating habits, and food safety risks. Minimally processed foods are prone to the growth of harmful microbes, compromising quality and safety. As a result, the need for improved food shelf life and protection against foodborne diseases alongside consumer preference for minimally processed foods with no or lesser synthetic additives foster the development of innovative technologies such as antimicrobial packaging. It is a form of active packaging that can release antimicrobial substances to suppress the activities of specific microorganisms, thereby improving food quality and safety during long-term storage. However, antimicrobial packaging continues to be a very challenging technology. This study highlights antimicrobial packaging concepts, providing different antimicrobial substances used in food packaging. We review various types of antimicrobial systems. Emphasis is given to the effectiveness of antimicrobial packaging in various food applications, including fresh and minimally processed fruit and vegetables and meat and dairy products. For the development of antimicrobial packaging, several approaches have been used, including the use of antimicrobial sachets inside packaging, packaging films, and coatings incorporating active antimicrobial agents. Due to their antimicrobial activity and capacity to extend food shelf life, regulate or inhibit the growth of microorganisms and ultimately reduce the potential risk of health hazards, natural antimicrobial agents are gaining significant importance and attention in developing antimicrobial packaging systems. Selecting the best antimicrobial packaging system for a particular product depends on its nature, desired shelf life, storage requirements, and legal considerations. The current review is expected to contribute to research on the potential of antimicrobial packaging to extend the shelf life of food and also serves as a good reference for food innovation information.
Collapse
|
6
|
Akturk A. Enrichment of Cellulose Acetate Nanofibrous Scaffolds with Retinyl Palmitate and Clove Essential Oil for Wound Healing Applications. ACS OMEGA 2023; 8:5553-5560. [PMID: 36816664 PMCID: PMC9933185 DOI: 10.1021/acsomega.2c06881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The use of biocompatible materials and fabrication methods is of particular importance in the development of wound dressings. Cellulose acetate (CA) has excellent properties for wound dressing applications, but it is insufficient for the wound healing process due to its lack of bioactive and antibacterial properties. In this study, CA was electrospun with retinyl palmitate (RP) and clove essential oil (CLV) to fabricate a novel antibacterial and antioxidant biomaterial. The effects of RP and CLV incorporation on the surface morphology, fiber diameter, antioxidant activity, antibacterial activity, cell viability, and release behavior of the fabricated CA mats were investigated. In light of these studies, it was determined that the nanofiber mat, fabricated with a 15% w/v CA polymer concentration, a 1% w/w RP ratio, and a 5% w/w CLV ratio, was biocompatible with L929 fibroblast cells with antibacterial and antioxidant properties. Overall, results showed that this nanofiber offers promise for use as a wound dressing.
Collapse
|
7
|
A Novel Hydrophilic, Antibacterial Chitosan-Based Coating Prepared by Ultrasonic Atomization Assisted LbL Assembly Technique. J Funct Biomater 2023; 14:jfb14010043. [PMID: 36662091 PMCID: PMC9863527 DOI: 10.3390/jfb14010043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
To explore the potential applicability of chitosan (CTS), we prepared aldehyde chitosan (CTS-CHO) with chitosan and sodium periodate via oxidation reaction and then a chitosan-based hydrophilic and antibacterial coating on the surface of poly (lactic acid) (PLA) film was developed and characterized. The oxidation degree was determined by Elemental analyser to be 12.53%, and a Fourier transform infrared spectroscopy was used to characterize the structure of CTS-CHO. It was evident that CTS-CHO is a biocompatible coating biomaterial with more than 80% cell viability obtained through the Live/Dead staining assay and the alamarBlue assay. The hydrophilic and antibacterial CTS-CHO coating on the PLA surface was prepared by ultrasonic atomization assisted LbL assembly technique due to Schiff's base reaction within and between layers. The CTS-CHO coating had better hydrophilicity and transparency, a more definite industrialization potential, and higher antibacterial activity at experimental concentrations than the CTS coating. All of the results demonstrated that the ultrasonic atomization-assisted LbL assembly CTS-CHO coating is a promising alternative for improving hydrophilicity and antibacterial activity on the PLA surface. The functional groups of CTS-CHO could react with active components with amino groups via dynamic Schiff's base reaction and provide the opportunity to create a drug releasing surface for biomedical applications.
Collapse
|
8
|
Bauer M, Duerkop A, Baeumner AJ. Critical review of polymer and hydrogel deposition methods for optical and electrochemical bioanalytical sensors correlated to the sensor's applicability in real samples. Anal Bioanal Chem 2023; 415:83-95. [PMID: 36280625 PMCID: PMC9816278 DOI: 10.1007/s00216-022-04363-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 01/11/2023]
Abstract
Sensors, ranging from in vivo through to single-use systems, employ protective membranes or hydrogels to enhance sample collection or serve as filters, to immobilize or entrap probes or receptors, or to stabilize and enhance a sensor's lifetime. Furthermore, many applications demand specific requirements such as biocompatibility and non-fouling properties for in vivo applications, or fast and inexpensive mass production capabilities for single-use sensors. We critically evaluated how membrane materials and their deposition methods impact optical and electrochemical systems with special focus on analytical figures of merit and potential toward large-scale production. With some chosen examples, we highlight the fact that often a sensor's performance relies heavily on the deposition method, even though other methods or materials could in fact improve the sensor. Over the course of the last 5 years, most sensing applications within healthcare diagnostics included glucose, lactate, uric acid, O2, H+ ions, and many specific metabolites and markers. In the case of food safety and environmental monitoring, the choice of analytes was much more comprehensive regarding a variety of natural and synthetic toxicants like bacteria, pesticides, or pollutants and other relevant substances. We conclude that more attention must be paid toward deposition techniques as these may in the end become a major hurdle in a sensor's likelihood of moving from an academic lab into a real-world product.
Collapse
Affiliation(s)
- Meike Bauer
- grid.7727.50000 0001 2190 5763Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Axel Duerkop
- grid.7727.50000 0001 2190 5763Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Antje J. Baeumner
- grid.7727.50000 0001 2190 5763Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany ,grid.5386.8000000041936877XDepartment of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
9
|
Wu JH, Hu TG, Wang H, Zong MH, Wu H, Wen P. Electrospinning of PLA Nanofibers: Recent Advances and Its Potential Application for Food Packaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8207-8221. [PMID: 35775601 DOI: 10.1021/acs.jafc.2c02611] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Poly(lactic acid), also abbreviated as PLA, is a promising biopolymer for food packaging owing to its environmental-friendly characteristic and desirable physical properties. Electrospinning technology makes the production of PLA-based nanomaterials available with expected structures and enhanced barrier, mechanical, and thermal properties; especially, the facile process produces a high encapsulation efficiency and controlled release of bioactive agents for the purpose of extending the shelf life and promoting the quality of foodstuffs. In this study, different types of electrospinning techniques used for the preparation of PLA-based nanofibers are summarized, and the enhanced properties of which are also described. Moreover, its application in active and intelligent packaging materials by introducing different components into nanofibers is highlighted. In all, the review establishes the promising prospects of PLA-based nanocomposites for food packaging application.
Collapse
Affiliation(s)
- Jia-Hui Wu
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Teng-Gen Hu
- Sericultural&Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510640, China
| | - Hong Wang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Peng Wen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Munteanu BS, Vasile C. Encapsulation of Natural Bioactive Compounds by Electrospinning-Applications in Food Storage and Safety. Polymers (Basel) 2021; 13:3771. [PMID: 34771329 PMCID: PMC8588354 DOI: 10.3390/polym13213771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
Packaging is used to protect foods from environmental influences and microbial contamination to maintain the quality and safety of commercial food products, to avoid their spoilage and to extend their shelf life. In this respect, bioactive packaging is developing to additionally provides antibacterial and antioxidant activity with the same goals i.e., extending the shelf life while ensuring safety of the food products. New solutions are designed using natural antimicrobial and antioxidant agents such as essential oils, some polysaccharides, natural inorganic nanoparticles (nanoclays, oxides, metals as silver) incorporated/encapsulated into appropriate carriers in order to be used in food packaging. Electrospinning/electrospraying are receiving attention as encapsulation methods due to their cost-effectiveness, versatility and scalability. The electrospun nanofibers and electro-sprayed nanoparticles can preserve the functionality and protect the encapsulated bioactive compounds (BC). In this review are summarized recent results regarding applications of nanostructured suitable materials containing essential oils for food safety.
Collapse
Affiliation(s)
| | - Cornelia Vasile
- Laboratory of Physical Chemistry of Polymers, “P. Poni” Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
11
|
Dehghani S, Rezaei K, Hamishehkar H, Oromiehie A. The effect of electrospun polylactic acid/chitosan nanofibers on the low density polyethylene/ploy lactic acid film as bilayer antibacterial active packaging films. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Samira Dehghani
- Department of Food Science, Engineering and Technology University of Tehran Karaj Iran
| | - Karamatollah Rezaei
- Department of Food Science, Engineering and Technology University of Tehran Karaj Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center Tabriz University of Medical Science Tabriz Iran
| | | |
Collapse
|
12
|
Stoleru E, Vasile C, Irimia A, Brebu M. Towards a Bioactive Food Packaging: Poly(Lactic Acid) Surface Functionalized by Chitosan Coating Embedding Clove and Argan Oils. Molecules 2021; 26:4500. [PMID: 34361651 PMCID: PMC8348099 DOI: 10.3390/molecules26154500] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Here we introduce a new method aiming the immobilization of bioactive principles onto polymeric substrates, combining a surface activation and emulsion entrapment approach. Natural products with antimicrobial/antioxidant properties (essential oil from Syzygium aromaticum-clove and vegetal oil from Argania spinosa L-argan) were stabilized in emulsions with chitosan, a natural biodegradable polymer that has antimicrobial activity. The emulsions were laid on poly(lactic acid) (PLA), a synthetic biodegradable plastic from renewable resources, which was previously activated by plasma treatment. Bioactive materials were obtained, with low permeability for oxygen, high radical scavenging activity and strong inhibition of growth for Listeria monocytogenes, Salmonella Typhimurium and Escherichia coli bacteria. Clove oil was better dispersed in a more stable emulsion (no separation after six months) compared with argan oil. This leads to a compact and finely structured coating, with better overall properties. While both clove and argan oils are highly hydrophobic, the coatings showed increased hydrophilicity, especially for argan, due to preferential interactions with different functional groups in chitosan. The PLA films coated with oil-loaded chitosan showed promising results in retarding the food spoilage of meat, and especially cheese. Argan, and in particular, clove oil offered good UV protection, suitable for sterilization purposes. Therefore, using the emulsion stabilization of bioactive principles and immobilization onto plasma activated polymeric surfaces we obtained a bioactive material that combines the physical properties and the biodegradability of PLA with the antibacterial activity of chitosan and the antioxidant function of vegetal oils. This prevents microbial growth and food oxidation and could open new perspectives in the field of food packaging materials.
Collapse
Affiliation(s)
- Elena Stoleru
- Physical Chemistry of Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iaşi, Romania; (C.V.); (A.I.)
| | | | | | - Mihai Brebu
- Physical Chemistry of Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iaşi, Romania; (C.V.); (A.I.)
| |
Collapse
|
13
|
Velásquez E, Patiño Vidal C, Rojas A, Guarda A, Galotto MJ, López de Dicastillo C. Natural antimicrobials and antioxidants added to polylactic acid packaging films. Part I: Polymer processing techniques. Compr Rev Food Sci Food Saf 2021; 20:3388-3403. [PMID: 34118127 DOI: 10.1111/1541-4337.12777] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022]
Abstract
Currently, reducing packaging plastic waste and food losses are concerning topics in the food packaging industry. As an alternative for these challenges, antimicrobial and antioxidant materials have been developed by incorporating active agents (AAs) into biodegradable polymers to extend the food shelf life. In this context, developing biodegradable active materials based on polylactic acid (PLA) and natural compounds are a great alternative to maintain food safety and non-toxicity of the packaging. AAs, such as essential oils and polyphenols, have been added mainly as antimicrobial and antioxidant natural compounds in PLA packaging. In this review, current techniques used to develop active PLA packaging films were described in order to critically compare their feasibility, advantages, limitations, and relevant processing aspects. The analysis was focused on the processing conditions, such as operation variables and stages, and factors related to the AAs, such as their concentrations, weight losses during processing, and incorporation technique, among others. Recent developments of active PLA-based monolayers and bi- or multilayer films were also considered. In addition, patents on inventions and technologies on active PLA-based films for food packaging were reviewed. This review highlights that the selection of the processing technique and conditions to obtain active PLA depends on the type of the AA regarding its volatility, solubility, and thermosensitivity.
Collapse
Affiliation(s)
- Eliezer Velásquez
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile
| | - Cristian Patiño Vidal
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile
| | - Adrián Rojas
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile
| | - Abel Guarda
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Technological Faculty, Food Science and Technology Department, University of Santiago of Chile (USACH), Santiago, Chile
| | - María José Galotto
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Technological Faculty, Food Science and Technology Department, University of Santiago of Chile (USACH), Santiago, Chile
| | - Carol López de Dicastillo
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Technological Faculty, Food Science and Technology Department, University of Santiago of Chile (USACH), Santiago, Chile
| |
Collapse
|
14
|
Fu Y, Dudley EG. Antimicrobial-coated films as food packaging: A review. Compr Rev Food Sci Food Saf 2021; 20:3404-3437. [PMID: 34056844 DOI: 10.1111/1541-4337.12769] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022]
Abstract
Antimicrobial food packaging involves packaging the foods with antimicrobials to protect them from harmful microorganisms. In general, antimicrobials can be integrated with packaging materials via direct incorporation of antimicrobial agents into polymers or application of antimicrobial coating onto polymer surfaces. The former option is generally achieved through thermal film-making technology such as compression molding or film extrusion, which is primarily suitable for heat-stable antimicrobials. As a nonthermal technology, surface coating is more promising compared to molding or extrusion for manufacturing food packaging containing heat-sensitive antimicrobials. In addition, it also has advantages over direct incorporation to preserve the packaging materials' bulk properties (e.g., mechanical and physical properties) and minimize the amount of antimicrobials to reach sufficient efficacy. Herein, antimicrobial food packaging films achieved through surface coating is explored and discussed. The two components (i.e., film substrate and antimicrobials) consisting of the antimicrobial-coated films are reviewed as plastic/biopolymer films; and synthetic/naturally occurring antimicrobials. Furthermore, special emphasis is given to different coating technologies to deposit antimicrobials onto film substrate. Laboratory coating techniques (e.g., knife coating, bar coating, and spray coating) commonly applied in academic research are introduced briefly, and scalable coating methods (i.e., electrospinning/spraying, gravure roll coating, flexography coating) that have the potential to bring laboratory-developed antimicrobial-coated films to an industrial level are explained in detail. The migration profile, advantages/drawbacks of antimicrobial-coated films for food applications, and quantitative analyses of the reviewed antimicrobial-coated films from different aspects are also covered in this review. A conclusion is made with a discussion of the challenges that remain in bringing the production of antimicrobial-coated films to an industrial level.
Collapse
Affiliation(s)
- Yezhi Fu
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Edward G Dudley
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
15
|
Employing Nanoemulsions in Food Packaging: Shelf Life Enhancement. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09282-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
PLA-Based Materials Containing Bio-Plasticizers and Chitosan Modified with Rosehip Seed Oil for Ecological Packaging. Polymers (Basel) 2021; 13:polym13101610. [PMID: 34067539 PMCID: PMC8156353 DOI: 10.3390/polym13101610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
Several recipes based on PLA, bio-plasticizers, and active agents such as vitamin E and cold-pressed rosehip seed oil encapsulated into chitosan by the emulsion method named here as chitosan modified (CS-M) were elaborated by melt compounding for food packaging applications. Resulted biocomposites have been investigated from the point of view of physical-mechanical, thermal, barrier, antimicrobial, and antioxidant properties to select the formulations with the optimum features to produce food trays and films for packaging applications. The obtained results showed that the elaborated formulations exhibit tensile strength and flexibility dependent on their composition being either rigid or flexible, as well as antimicrobial and antioxidant activity, which will potentially lead to prolonged use for food packaging. The recipe with PLA matrix and 40:60 Lapol®108 as masterbarch/polyethylene glycol (MB/PEG) bio-plasticizers ratio was distinguished by an improvement of over 100 times in terms of flexibility compared with neat PLA, while the highest antioxidant activity (36.27%) was recorded for the sample containing a CS-M and MB/PEG ratio of 60:40. An enhancement of ~50% for the water vapor barrier was recorded for PLA/CS-M_100:0 material. By modulating the MB and PEG bio-plasticizers ratio, the design of new eco-friendly food packaging materials with antimicrobial/antioxidant characteristics by using the existing technologies for processing synthetic polymers (melt mixing, compounding, pressing, thermoforming) has been successfully realized.
Collapse
|
17
|
Villa CC, Sánchez LT, Valencia GA, Ahmed S, Gutiérrez TJ. Molecularly imprinted polymers for food applications: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Nilsen‐Nygaard J, Fernández EN, Radusin T, Rotabakk BT, Sarfraz J, Sharmin N, Sivertsvik M, Sone I, Pettersen MK. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Compr Rev Food Sci Food Saf 2021; 20:1333-1380. [DOI: 10.1111/1541-4337.12715] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Julie Nilsen‐Nygaard
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | | | - Tanja Radusin
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Bjørn Tore Rotabakk
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Jawad Sarfraz
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Nusrat Sharmin
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Morten Sivertsvik
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Izumi Sone
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Marit Kvalvåg Pettersen
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| |
Collapse
|
19
|
Bioactive Properties of Nanofibres Based on Concentrated Collagen Hydrolysate Loaded with Thyme and Oregano Essential Oils. MATERIALS 2020; 13:ma13071618. [PMID: 32244692 PMCID: PMC7178294 DOI: 10.3390/ma13071618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
This research aimed to obtain biocompatible and antimicrobial nanofibres based on concentrated collagen hydrolysate loaded with thyme or oregano essential oils as a natural alternative to synthesis products. The essential oils were successfully incorporated using electrospinning process into collagen resulting nanofibres with diameter from 471 nm to 580 nm and porous structure. The presence of essential oils in collagen nanofibre mats was confirmed by Attenuated Total Reflectance -Fourier Transform Infrared Spectroscopy (ATR-FTIR), Ultraviolet-visible spectroscopy (UV-VIS) and antimicrobial activity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy analyses allowed evaluating the morphology and constituent elements of the nanofibre networks. Microbiological tests performed against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans showed that the presence of essential oils supplemented the new collagen nanofibres with antimicrobial properties. The biocompatibility of collagen and collagen with essential oils was assessed by in vitro cultivation with NCTC clone 929 of fibroblastic cells and cell viability measurement. The results showed that the collagen and thyme or oregano oil composites have no cytotoxicity up to concentrations of 1000 μg·mL-1 and 500 μg mL-1, respectively. Optimization of electrospinning parameters has led to the obtaining of new collagen electrospun nanofibre mats loaded with essential oils with potential use for wound dressings, tissue engineering or protective clothing.
Collapse
|
20
|
Essential Oils-Loaded Electrospun Biopolymers: A Future Perspective for Active Food Packaging. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/9040535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The growth of global food demand combined with the increased appeal to access different foods from every corner of the globe is forcing the food industry to look for alternative technologies to increase the shelf life. Essential oils (EOs) as naturally occurring functional ingredients have shown great prospects in active food packaging. EOs can inhibit the growth of superficial food pathogens, modify nutritious values without affecting the sensory qualities of food, and prolong the shelf life when used in food packaging as an active ingredient. Since 2016, various reports have demonstrated that combinations of electrospun fibers and encapsulated EOs could offer promising results when used as food packaging. Such electrospun platforms have encapsulated either pure EOs or their complexation with other antibacterial agents to prolong the shelf life of food products through sustained release of active ingredients. This paper presents a comprehensive review of the essential oil-loaded electrospun fibers that have been applied as active food packaging material.
Collapse
|
21
|
Development and properties of new kojic acid and chitosan composite biodegradable films for active packaging materials. Int J Biol Macromol 2020; 144:483-490. [DOI: 10.1016/j.ijbiomac.2019.12.126] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 01/09/2023]
|
22
|
Vilchez A, Acevedo F, Cea M, Seeger M, Navia R. Applications of Electrospun Nanofibers with Antioxidant Properties: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E175. [PMID: 31968539 PMCID: PMC7022755 DOI: 10.3390/nano10010175] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 01/27/2023]
Abstract
Antioxidants can be encapsulated to enhance their solubility or bioavailability or to protect them from external factors. Electrospinning has proven to be an excellent option for applications in nanotechnology, as electrospun nanofibers can provide the necessary environment for antioxidant encapsulation. Forty-nine papers related to antioxidants loaded onto electrospun nanofibers were categorized and reviewed to identify applications and new trends. Medical and food fields were commonly proposed for the newly obtained composites. Among the polymers used as a matrix for the electrospinning process, synthetic poly (lactic acid) and polycaprolactone were the most widely used. In addition, natural compounds and extracts were identified as antioxidants that help to inhibit free radical and oxidative damage in tissues and foods. The most recurrent active compounds used were tannic acid (polyphenol), quercetin (flavonoid), curcumin (polyphenol), and vitamin B6 (pyridoxine). The incorporation of active compounds in nanofibers often improves their bioavailability, giving them increased stability, changing the mechanical properties of polymers, enhancing nanofiber biocompatibility, and offering novel properties for the required field. Although most of the polymers used were synthetic, natural polymers such as silk fibroin, chitosan, cellulose, pullulan, polyhydroxybutyrate, and zein have proven to be proper matrices for this purpose.
Collapse
Affiliation(s)
- Ariel Vilchez
- Doctoral Program in Sciences of Natural Resources, Universidad de La Frontera, Casilla 54-D, Temuco, Chile;
| | - Francisca Acevedo
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco, Chile;
- Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Casilla 54-D, Temuco, Chile;
| | - Mara Cea
- Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Casilla 54-D, Temuco, Chile;
- Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología (CBDAL), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile;
| | - Rodrigo Navia
- Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Casilla 54-D, Temuco, Chile;
- Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
- Centre for Biotechnology and Bioengineering (CeBiB), Faculty of Engineering and Sciences, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| |
Collapse
|
23
|
Munteanu SB, Vasile C. Vegetable Additives in Food Packaging Polymeric Materials. Polymers (Basel) 2019; 12:E28. [PMID: 31877858 PMCID: PMC7023556 DOI: 10.3390/polym12010028] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Plants are the most abundant bioresources, providing valuable materials that can be used as additives in polymeric materials, such as lignocellulosic fibers, nano-cellulose, or lignin, as well as plant extracts containing bioactive phenolic and flavonoid compounds used in the healthcare, pharmaceutical, cosmetic, and nutraceutical industries. The incorporation of additives into polymeric materials improves their properties to make them suitable for multiple applications. Efforts are made to incorporate into the raw polymers various natural biobased and biodegradable additives with a low environmental fingerprint, such as by-products, biomass, plant extracts, etc. In this review we will illustrate in the first part recent examples of lignocellulosic materials, lignin, and nano-cellulose as reinforcements or fillers in various polymer matrices and in the second part various applications of plant extracts as active ingredients in food packaging materials based on polysaccharide matrices (chitosan/starch/alginate).
Collapse
Affiliation(s)
| | - Cornelia Vasile
- “P. Poni” Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania;
| |
Collapse
|
24
|
Muñoz-Bonilla A, Echeverria C, Sonseca Á, Arrieta MP, Fernández-García M. Bio-Based Polymers with Antimicrobial Properties towards Sustainable Development. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E641. [PMID: 30791651 PMCID: PMC6416599 DOI: 10.3390/ma12040641] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/11/2022]
Abstract
This article concisely reviews the most recent contributions to the development of sustainable bio-based polymers with antimicrobial properties. This is because some of the main problems that humanity faces, nowadays and in the future, are climate change and bacterial multi-resistance. Therefore, scientists are trying to provide solutions to these problems. In an attempt to organize these antimicrobial sustainable materials, we have classified them into the main families; i.e., polysaccharides, proteins/polypeptides, polyesters, and polyurethanes. The review then summarizes the most recent antimicrobial aspects of these sustainable materials with antimicrobial performance considering their main potential applications in the biomedical field and in the food industry. Furthermore, their use in other fields, such as water purification and coating technology, is also described. Finally, some concluding remarks will point out the promise of this theme.
Collapse
Affiliation(s)
- Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Coro Echeverria
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Águeda Sonseca
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Marina P Arrieta
- Facultad de Ciencias Químicas, Universidad Complutense de Madrid (UCM), Av. Complutense s/n, Ciudad Universitaria, 28040 Madrid, Spain.
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|