1
|
Quigley RM, Kearney M, Kennedy OD, Duncan HF. Tissue engineering approaches for dental pulp regeneration: The development of novel bioactive materials using pharmacological epigenetic inhibitors. Bioact Mater 2024; 40:182-211. [PMID: 38966600 PMCID: PMC11223092 DOI: 10.1016/j.bioactmat.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
The drive for minimally invasive endodontic treatment strategies has shifted focus from technically complex and destructive root canal treatments towards more conservative vital pulp treatment. However, novel approaches to maintaining dental pulp vitality after disease or trauma will require the development of innovative, biologically-driven regenerative medicine strategies. For example, cell-homing and cell-based therapies have recently been developed in vitro and trialled in preclinical models to study dental pulp regeneration. These approaches utilise natural and synthetic scaffolds that can deliver a range of bioactive pharmacological epigenetic modulators (HDACis, DNMTis, and ncRNAs), which are cost-effective and easily applied to stimulate pulp tissue regrowth. Unfortunately, many biological factors hinder the clinical development of regenerative therapies, including a lack of blood supply and poor infection control in the necrotic root canal system. Additional challenges include a need for clinically relevant models and manufacturing challenges such as scalability, cost concerns, and regulatory issues. This review will describe the current state of bioactive-biomaterial/scaffold-based engineering strategies to stimulate dentine-pulp regeneration, explicitly focusing on epigenetic modulators and therapeutic pharmacological inhibition. It will highlight the components of dental pulp regenerative approaches, describe their current limitations, and offer suggestions for the effective translation of novel epigenetic-laden bioactive materials for innovative therapeutics.
Collapse
Affiliation(s)
- Ross M. Quigley
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
| | - Oran D. Kennedy
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| | - Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| |
Collapse
|
2
|
Tao Y, Jia M, Shao-Qiang Y, Lai CT, Hong Q, Xin Y, Hui J, Qing-Gang C, Jian-Da X, Ni-Rong B. A novel fluffy PLGA/HA composite scaffold for bone defect repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:16. [PMID: 38489121 PMCID: PMC10943150 DOI: 10.1007/s10856-024-06782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
Treatment of bone defects remains crucial challenge for successful bone healing, which arouses great interests in designing and fabricating ideal biomaterials. In this regard, the present study focuses on developing a novel fluffy scaffold of poly Lactide-co-glycolide (PLGA) composites with hydroxyapatite (HA) scaffold used in bone defect repair in rabbits. This fluffy PLGA/HA composite scaffold was fabricated by using multi-electro-spinning combined with biomineralization technology. In vitro analysis of human bone marrow mesenchymal stem cells (BMSCs) seeded onto fluffy PLGA/HA composite scaffold showed their ability to adhere, proliferate and cell viability. Transplant of fluffy PLGA/HA composite scaffold in a rabbit model showed a significant increase in mineralized tissue production compared to conventional and fluffy PLGA/HA composite scaffold. These findings are promising for fluffy PLGA/HA composite scaffolds used in bone defects.
Collapse
Affiliation(s)
- Yuan Tao
- Department of Orthopaedics, Jinling Hospital, Nanjing university, School of Medicine, Nanjing, China
| | - Meng Jia
- Department of Orthopaedics, Jinling Hospital, Nanjing university, School of Medicine, Nanjing, China
| | - Yang Shao-Qiang
- Department of Orthopaedics, Jinling Hospital, Nanjing university, School of Medicine, Nanjing, China
| | - Cheng-Teng Lai
- Department of Orthopaedics, Jinling Hospital, Nanjing university, School of Medicine, Nanjing, China
| | - Qian Hong
- Department of Orthopaedics, Jinling Hospital, Nanjing university, School of Medicine, Nanjing, China
| | - Yu Xin
- Department of Orthopaedics, Jinling Hospital, Nanjing university, School of Medicine, Nanjing, China
| | - Jiang Hui
- Department of Orthopaedics, Jinling Hospital, Nanjing university, School of Medicine, Nanjing, China
| | - Cao Qing-Gang
- Department of Orthopaedics, Jinling Hospital, Nanjing university, School of Medicine, Nanjing, China
| | - Xu Jian-Da
- Department of Orthopaedics, Changzhou Traditional Chinese medical hospital, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, Changzhou, China.
| | - Bao Ni-Rong
- Department of Orthopaedics, Jinling Hospital, Nanjing university, School of Medicine, Nanjing, China.
| |
Collapse
|
3
|
Esen M, Guven Y, Seyhan MF, Ersev H, Tuna-Ince EB. Evaluation of the genotoxicity, cytotoxicity, and bioactivity of calcium silicate-based cements. BMC Oral Health 2024; 24:119. [PMID: 38245737 PMCID: PMC10799466 DOI: 10.1186/s12903-024-03891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND As calcium silicate-based cements (CSCs) have found success in various vital pulp therapy applications, several new CSC products have emerged. This study aimed to assess the genotoxicity, cytotoxicity, and bioactivity of four CSCs by comparing the newly introduced materials Bio MTA+ and MTA Cem with previously studied materials, Biodentine and NeoMTA. METHODS Genotoxicity was evaluated using the micronucleus (MN) assay in human peripheral blood lymphocyte cells, measuring MN frequency and nuclear division index (NDI). Cytotoxicity was assessed in human dental pulp stem cells through the Water-Soluble Tetrazolium Salt-1 (WST-1) colorimetric assay. Bioactivity was determined by ELISA, measuring the levels of angiogenic and odontogenic markers (BMP-2, FGF-2, VEGF, and ALP). Statistical analyses included ANOVA, Dunnet and Sidak tests, and Wald chi-square test. (p < .05). RESULTS The MN frequency in the groups was significantly lower than that in the positive control group (tetraconazole) (p < .05). NDI values decreased with increasing concentration (p < .05). Bio MTA+ and NeoMTA showed decreased cell viability at all concentrations in 7-day cultures (p < .01). All materials increased BMP-2, FGF-2, and VEGF levels, with Biodentine and NeoMTA showing the highest levels of BMP-2 and FGF-2 on day 7. Biodentine displayed the highest VEGF levels on day 7. Biodentine and NeoMTA groups exhibited significantly higher ALP activity than the Bio MTA+ and MTA Cem groups by day 7. CONCLUSION Bio MTA+ and MTA Cem demonstrated no genotoxic or cytotoxic effects. Moreover, this study revealed bioactive potentials of Bio MTA+ and MTA Cem by enhancing the expression of angiogenic and osteogenic growth factors.
Collapse
Affiliation(s)
- Merve Esen
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Yeliz Guven
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey.
| | - Mehmet Fatih Seyhan
- Department of Molecular Biology and Genetics, Faculty of Art and Sciences, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Handan Ersev
- Department of Endodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Elif Bahar Tuna-Ince
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| |
Collapse
|
4
|
Saber SM, Gomaa SM, Elashiry MM, El-Banna A, Schäfer E. Comparative biological properties of resin-free and resin-based calcium silicate-based endodontic repair materials on human periodontal ligament stem cells. Clin Oral Investig 2023; 27:6757-6768. [PMID: 37796335 PMCID: PMC10630253 DOI: 10.1007/s00784-023-05288-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVES To investigate the effect of three different calcium silicate-based materials (CSBM) on the biological behavior of human periodontal ligament stem cells (hPDLSCs). METHODS Eluates of Biodentine, NeoPutty and TheraCal PT prepared at 1:1, 1:2, and 1:4 ratios were extracted under sterile conditions. The cytotoxicity of the extracts to the hPDLSCs was assessed using the MTT assay. Scratch wound healing assay was utilized for assessing cell migration. Scanning electron microscopy was used to detect cell attachment and morphology. Calcium ion release was measured using inductively coupled plasma-optical emission spectrometry; the pH-value was evaluated with a pH-meter. ANOVA with post hoc Tukey test was used for statistical analysis. RESULTS Cell viability was significantly higher for Biodentine and NeoPutty at day 1 with all dilutions (p < 0.05), while at day 3 and day 7 with dilutions 1:2 and 1:4; all materials showed similar behavior (p > 0.05). Biodentine had the highest percentage of cell migration into the scratched area at day 1 for all dilutions (p < 0.05). Stem cells were attached favorably on Biodentine and NeoPutty with evident spreading, and intercellular communications; however, this was not shown for TheraCal PT. Biodentine showed the highest pH values and calcium ion release (p < 0.05). CONCLUSIONS The resin-free CSBM showed better performance and favorable biological effects on hPDLSCs and were therefore considered promising for usage as endodontic repair materials. CLINICAL SIGNIFICANCE Proper selection of materials with favorable impact on the host stem cells is crucial to ensure outcome in different clinical scenarios.
Collapse
Affiliation(s)
- Shehabeldin M Saber
- Department of Endodontics, Faculty of Dentistry, The British University in Egypt (BUE), Cairo, Egypt
- Dental Science Research Group, Health Research Centre of Excellence, The British University in Egypt (BUE), Cairo, Egypt
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Egypt, Cairo, Egypt
| | - Shaimaa M Gomaa
- Dental Science Research Group, Health Research Centre of Excellence, The British University in Egypt (BUE), Cairo, Egypt
| | - Mohamed M Elashiry
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Egypt, Cairo, Egypt
- Department of Endodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ahmed El-Banna
- Department of Biomaterials, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Edgar Schäfer
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, Münster, Germany.
| |
Collapse
|
5
|
Bai X, Cao R, Wu D, Zhang H, Yang F, Wang L. Dental Pulp Stem Cells for Bone Tissue Engineering: A Literature Review. Stem Cells Int 2023; 2023:7357179. [PMID: 37868704 PMCID: PMC10586346 DOI: 10.1155/2023/7357179] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/03/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Bone tissue engineering (BTE) is a promising approach for repairing and regenerating damaged bone tissue, using stem cells and scaffold structures. Among various stem cell sources, dental pulp stem cells (DPSCs) have emerged as a potential candidate due to their multipotential capabilities, ability to undergo osteogenic differentiation, low immunogenicity, and ease of isolation. This article reviews the biological characteristics of DPSCs, their potential for BTE, and the underlying transcription factors and signaling pathways involved in osteogenic differentiation; it also highlights the application of DPSCs in inducing scaffold tissues for bone regeneration and summarizes animal and clinical studies conducted in this field. This review demonstrates the potential of DPSC-based BTE for effective bone repair and regeneration, with implications for clinical translation.
Collapse
Affiliation(s)
- Xiaolei Bai
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Ruijue Cao
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Danni Wu
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Huicong Zhang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Fan Yang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Linhong Wang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
6
|
Li X, Wang Y, Huang D, Jiang Z, He Z, Luo M, Lei J, Xiao Y. Nanomaterials Modulating the Fate of Dental-Derived Mesenchymal Stem Cells Involved in Oral Tissue Reconstruction: A Systematic Review. Int J Nanomedicine 2023; 18:5377-5406. [PMID: 37753067 PMCID: PMC10519211 DOI: 10.2147/ijn.s418675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/03/2023] [Indexed: 09/28/2023] Open
Abstract
The critical challenges in repairing oral soft and hard tissue defects are infection control and the recovery of functions. Compared to conventional tissue regeneration methods, nano-bioactive materials have become the optimal materials with excellent physicochemical properties and biocompatibility. Dental-derived mesenchymal stem cells (DMSCs) are a particular type of mesenchymal stromal cells (MSCs) with great potential in tissue regeneration and differentiation. This paper presents a review of the application of various nano-bioactive materials for the induction of differentiation of DMSCs in oral and maxillofacial restorations in recent years, outlining the characteristics of DMSCs, detailing the biological regulatory effects of various nano-materials on stem cells and summarizing the material-induced differentiation of DMSCs into multiple types of tissue-induced regeneration strategies. Nanomaterials are different and complementary to each other. These studies are helpful for the development of new nanoscientific research technology and the clinical transformation of tissue reconstruction technology and provide a theoretical basis for the application of nanomaterial-modified dental implants. We extensively searched for papers related to tissue engineering bioactive constructs based on MSCs and nanomaterials in the databases of PubMed, Medline, and Google Scholar, using keywords such as "mesenchymal stem cells", "nanotechnology", "biomaterials", "dentistry" and "tissue regeneration". From 2013 to 2023, we selected approximately 150 articles that align with our philosophy.
Collapse
Affiliation(s)
- Xingrui Li
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yue Wang
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
| | - Denghao Huang
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
| | - Zhonghao Jiang
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
| | - Zhiyu He
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
| | - Maoxuan Luo
- Department of Orthodontics, the Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Jie Lei
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Orthodontics, the Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yao Xiao
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Orthodontics, the Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Department of Chengbei Outpatient, the Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
7
|
Jiang W, Wang G, Wu W, Shao C, Pan H, Chen Z, Tang R, Chen Z, Xie Z. The effect of calcium phosphate ion clusters in enhancing enamel conditions versus Duraphat and Icon. AUST ENDOD J 2023; 49 Suppl 1:46-57. [PMID: 36127810 DOI: 10.1111/aej.12689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 07/25/2022] [Accepted: 09/03/2022] [Indexed: 12/14/2022]
Abstract
This study aimed to evaluate and compare the remineralisation, mechanical, anti-aging, acid resistance and antibacterial properties of calcium phosphate ion clusters (CPICs) materials with those of Duraphat and Icon. The remineralisation and mechanical properties were investigated using scanning electron microscopy, Fourier-transform infrared (FTIR) spectroscopy and nanoindentation. CPICs induced epitaxial crystal growth on the enamel surface, where the regrown enamel-like apatite layers had a similar hardness and elastic modulus to natural enamel (p > 0.05). Acid resistance and anti-aging properties were tested based on ion dissolution and surface roughness. CPICs exhibited similar calcium and phosphate ion dissolution to the control (p > 0.05), and its roughness decreased after thermocycling (p < 0.05), thereby decreasing the risk of enamel surface demineralisation. The minimum inhibitory concentration was 0.1 mg/ml, and the minimum bactericidal concentration ranged from 0.05 to 0.1 mg/ml. Overall, this biomimetic CPICs is a promising alternative to dental demineralisation.
Collapse
Affiliation(s)
- Wen Jiang
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Gang Wang
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenzhi Wu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Changyu Shao
- Department of Chemistry, Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haihua Pan
- Department of Chemistry, Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Ruikang Tang
- Department of Chemistry, Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhuo Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhijian Xie
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Sekhar V, Shobana S, Kavitha M. Comparative Evaluation of Fluoride Release and Compressive Strength of Biodentine Modified Using Sodium Fluorosilicate and Hydrofluoric Acid: An In-Vitro Study. Cureus 2023; 15:e45852. [PMID: 37881398 PMCID: PMC10595395 DOI: 10.7759/cureus.45852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 10/27/2023] Open
Abstract
Introduction Calcium trisilicate derivatives have widely been used as dentin and enamel substitutes recently. These cements have excellent biological properties, but they do not show fluoride release. The release of fluoride from dental materials is a very important property of a material in restorative applications as fluoride confers antibacterial and anti-cariogenic properties. This study thus attempts to incorporate fluoride in the form of sodium fluorosilicate and hydrofluoric acid into Biodentine to assess its fluoride-releasing properties. Methods Biodentine was modified by adding 7% sodium fluorosilicate in the powder and 10% hydrofluoric acid to the liquid. Fluoride release was measured using a sodium 2-(parasulfophenylazo)-1,8-dihydroxy-3,6-naphthalenedisulfonate (SPADNS) spectrophotometer after 1, 3, 7, 14, 21, and 28 days. The compressive strength of the modified material was measured using a universal testing machine. Results Fluoride release was found to be higher in the group that had both powder and liquid modified than in groups in which either of the components were modified. The difference was found to be statistically significant (p<0.001). Conclusion Incorporation of fluoride in Biodentine is feasible with acceptable release of fluoride without adversely affecting the compressive strength of the Biodentine.
Collapse
Affiliation(s)
- Velayudham Sekhar
- Conservative Dentistry and Endodontics, Tamilnadu Government Dental College and Hospital, The Tamil Nadu Dr. M.G.R. Medical University, Chennai, IND
| | - Shekar Shobana
- Conservative Dentistry and Endodontics, Tagore Dental College, The Tamil Nadu Dr. M.G.R. Medical University, Chennai, IND
| | - Mahendran Kavitha
- Conservative Dentistry and Endodontics, Tamilnadu Government Dental College and Hospital, The Tamil Nadu Dr. M.G.R. Medical University, Chennai, IND
| |
Collapse
|
9
|
Indra A, Razi R, Jasmayeti R, Fauzan A, Wahyudi D, Handra N, Subardi A, Susanto I, Purnomo MJ. The practical process of manufacturing poly(methyl methacrylate)-based scaffolds having high porosity and high strength. J Mech Behav Biomed Mater 2023; 142:105862. [PMID: 37086523 DOI: 10.1016/j.jmbbm.2023.105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
Poly(methyl methacrylate) (PMMA)-based scaffolds have been produced using the granule casting method with grain sizes M80-100 and M100-140. The novelty of this study was the application of the cold-cutting method (CCm) to reduce the PMMA granule size. PMMA granule shape, granule size (mesh), and sintering temperature were the primary variables in manufacturing PMMA scaffolds. CCm was applied to reduce the granule size of commercial PMMA, which was originally solid cylindrical, by lowering the temperature to 3.5 °C, 0 °C, and-8.3 °C. PMMA granules that had been reduced were sieved with mesh sizes M80-100 and M100-140. Green bodies were made by the granule casting method using an aluminum mold measuring 8 × 8 × 8 mm3. The sintering process was carried out at temperatures varying from 115 °C to 140 °C, a heating rate of 5 °C/min, and a holding time of 2 h, the cooling process was carried out in a furnace. The characterization of the PMMA-based scaffolds' properties was carried out by observing the microstructure with SEM, analyzing the distribution of pore sizes with ImageJ software, and testing the porosity, the phase, with XRD, and the compressive strength. The best results from the overall analysis were the M80-100 PMMA scaffold treated at a sintering temperature of 130 °C with compressive strength, porosity, and pore size distribution values of 8.2 MPa, 62.0%, and 121-399 μm, respectively, and the M100-140 one treated at a sintering temperature of 135 °C with compressive strength, porosity, and pore size distribution values of 12.1 MPa, 61.2%, and 140-366 μm, respectively. There were interconnected pores in the PMMA scaffolds, as evidenced by the SEM images. There was no PMMA phase change between before and after the sintering process.
Collapse
Affiliation(s)
- Ade Indra
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia.
| | - Rivaldo Razi
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Riri Jasmayeti
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Alfi Fauzan
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Didi Wahyudi
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Nofriady Handra
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Adi Subardi
- Department of Mechanical Engineering, Institut Teknologi Nasional Yogyakarta, Sleman, 55281, Daerah Istimewa Yogyakarta, Indonesia
| | - Iwan Susanto
- Department of Mechanical Engineering, Politeknik Negeri Jakarta, West Java, 16425, Indonesia
| | - M Jalu Purnomo
- Department of Aeronautics, Institut Teknologi Dirgantara Adisutjipto, Yogyakarta, 55198, Indonesia
| |
Collapse
|
10
|
Metwally WM, El-Habashy SE, El-Nekhily NA, Mahmoud HE, Eltaher HM, El-Khordagui L. Nano zinc oxide-functionalized nanofibrous microspheres: A bioactive hybrid platform with antimicrobial, regenerative and hemostatic activities. Int J Pharm 2023; 638:122920. [PMID: 37011829 DOI: 10.1016/j.ijpharm.2023.122920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
Bioactive hybrid constructs are at the cutting edge of innovative biomaterials. PLA nanofibrous microspheres (NF-MS) were functionalized with zinc oxide nanoparticles (nZnO) and DDAB-modified nZnO (D-nZnO) for developing inorganic/nano-microparticulate hybrid constructs (nZnO@NF-MS and D-nZnO@NF-MS) merging antibacterial, regenerative, and haemostatic functionalities. The hybrids appeared as three-dimensional NF-MS frameworks made-up entirely of interconnecting nanofibers embedding nZnO or D-nZnO. Both systems achieved faster release of Zn2+ than their respective nanoparticles and D-nZnO@NF-MS exhibited significantly greater surface wettability than nZnO@NF-MS. Regarding bioactivity, D-nZnO@NF-MS displayed a significantly greater and fast-killing effect against Staphylococcus aureus. Both nZnO@NF-MS and D-nZnO@NF-MS showed controllable concentration-dependent cytotoxicity to human gingival fibroblasts (HGF) compared with pristine NF-MS. They were also more effective than pristine NF-MS in promoting migration of human gingival fibroblasts (HGF) in the in vitro wound healing assay. Although D-nZnO@NF-MS showed greater in vitro hemostatic activity than nZnO@NF-MS, (blood-clotting index 22.82 ± 0.65% vs.54.67 ±2.32%) both structures exhibited instant hemostasis (0 s) with no blood loss (0 mg) in the rat-tail cutting technique. By merging the multiple therapeutic bioactivities of D-nZnO and the 3D-structural properties of NF-MS, the innovative D-nZnO@NF-MS hybrid construct provides a versatile bioactive material platform for different biomedical applications.
Collapse
|
11
|
Cahyanto A, Liemidia M, Karlina E, Zakaria MN, Shariff KA, Sukotjo C, El-Ghannam A. Bioactive Carbonate Apatite Cement with Enhanced Compressive Strength via Incorporation of Silica Calcium Phosphate Composites and Calcium Hydroxide. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2071. [PMID: 36903186 PMCID: PMC10003863 DOI: 10.3390/ma16052071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Carbonate apatite (CO3Ap) is a bioceramic material with excellent properties for bone and dentin regeneration. To enhance its mechanical strength and bioactivity, silica calcium phosphate composites (Si-CaP) and calcium hydroxide (Ca(OH)2) were added to CO3Ap cement. The aim of this study was to investigate the effect of Si-CaP and Ca(OH)2 on the mechanical properties in terms of the compressive strength and biological characteristics of CO3Ap cement, specifically the formation of an apatite layer and the exchange of Ca, P, and Si elements. Five groups were prepared by mixing CO3Ap powder consisting of dicalcium phosphate anhydrous and vaterite powder added by varying ratios of Si-CaP and Ca(OH)2 and 0.2 mol/L Na2HPO4 as a liquid. All groups underwent compressive strength testing, and the group with the highest strength was evaluated for bioactivity by soaking it in simulated body fluid (SBF) for one, seven, 14, and 21 days. The group that added 3% Si-CaP and 7% Ca(OH)2 had the highest compressive strength among the groups. SEM analysis revealed the formation of needle-like apatite crystals from the first day of SBF soaking, and EDS analysis indicated an increase in Ca, P, and Si elements. XRD and FTIR analyses confirmed the presence of apatite. This combination of additives improved the compressive strength and showed the good bioactivity performance of CO3Ap cement, making it a potential biomaterial for bone and dental engineering applications.
Collapse
Affiliation(s)
- Arief Cahyanto
- Department of Dental Materials Science and Technology, Faculty of Dentistry, Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Jatinangor 45363, Indonesia
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
- Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Michella Liemidia
- Faculty of Dentistry, Padjajaran University, Jl. Raya Bandung Sumedang KM 21, Jatinangor 45363, Indonesia
| | - Elin Karlina
- Department of Dental Materials Science and Technology, Faculty of Dentistry, Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Jatinangor 45363, Indonesia
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Myrna Nurlatifah Zakaria
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
- Department of Endodontology and Operative Dentistry, Faculty of Dentistry, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi 40531, Indonesia
| | - Khairul Anuar Shariff
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ahmed El-Ghannam
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
12
|
Rafikova G, Piatnitskaia S, Shapovalova E, Chugunov S, Kireev V, Ialiukhova D, Bilyalov A, Pavlov V, Kzhyshkowska J. Interaction of Ceramic Implant Materials with Immune System. Int J Mol Sci 2023; 24:4200. [PMID: 36835610 PMCID: PMC9959507 DOI: 10.3390/ijms24044200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
The immuno-compatibility of implant materials is a key issue for both initial and long-term implant integration. Ceramic implants have several advantages that make them highly promising for long-term medical solutions. These beneficial characteristics include such things as the material availability, possibility to manufacture various shapes and surface structures, osteo-inductivity and osteo-conductivity, low level of corrosion and general biocompatibility. The immuno-compatibility of an implant essentially depends on the interaction with local resident immune cells and, first of all, macrophages. However, in the case of ceramics, these interactions are insufficiently understood and require intensive experimental examinations. Our review summarizes the state of the art in variants of ceramic implants: mechanical properties, different chemical modifications of the basic material, surface structures and modifications, implant shapes and porosity. We collected the available information about the interaction of ceramics with the immune system and highlighted the studies that reported ceramic-specific local or systemic effects on the immune system. We disclosed the gaps in knowledge and outlined the perspectives for the identification to ceramic-specific interactions with the immune system using advanced quantitative technologies. We discussed the approaches for ceramic implant modification and pointed out the need for data integration using mathematic modelling of the multiple ceramic implant characteristics and their contribution for long-term implant bio- and immuno-compatibility.
Collapse
Affiliation(s)
- Guzel Rafikova
- Laboratory of Immunology, Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Svetlana Piatnitskaia
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Elena Shapovalova
- Department of Chemistry, Tomsk State University, 634050 Tomsk, Russia
| | | | - Victor Kireev
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
- Department of Applied Physics, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Daria Ialiukhova
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Azat Bilyalov
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | | | - Julia Kzhyshkowska
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
- Department of Chemistry, Tomsk State University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciecnes (MI3), Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg, 68167 Mannheim, Germany
| |
Collapse
|
13
|
Estivalet MS, de Araújo LP, Immich F, da Silva AF, Ferreira NDS, da Rosa WLDO, Piva E. Bioactivity Potential of Bioceramic-Based Root Canal Sealers: A Scoping Review. Life (Basel) 2022; 12:1853. [PMID: 36430988 PMCID: PMC9697500 DOI: 10.3390/life12111853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Bioceramic-based root canal sealers are novel materials with a bioactivity potential that stands out compared with conventional root canal sealers. However, the term bioactivity may be overused and is often misunderstood. Hence, the objective of this study was to synthesize and map key concepts related to the bioactivity analysis of bioceramic-based root canal sealers. METHODS The present scoping review is reported in accordance with the PRISMA-ScR Statement and is registered in the Open Science Framework. Two blinded reviewers carried out a comprehensive search in six databases up to January 10th, 2022: MEDLINE, Scopus, Embase, Web of Science, Cochrane Library, and Lilacs/BBO. Eligibility was considered for in vitro and in vivo studies that evaluated the bioactivity potential of bioceramic-based root canal sealers. RESULTS A total of 53 studies were included in the qualitative synthesis. In vitro bioactivity was evaluated through the mineralization potential, formation of carbonated apatite on the surface, and the gene expression related to proteins involved in the mineralization process. Meanwhile, for in vivo studies, staining techniques associated with immunohistochemical tests were mainly used to detect mineralization on the material-host tissue interface. CONCLUSIONS According to the methodology used, the most prevalent methods to assess bioactivity in acellular form were the immersion of the material in Hank's balanced salt solution, followed by surface observation with scanning electron microscopy and energy dispersive X-ray. In cell cultures, the chosen method was usually Alizarin Red staining, followed by the evaluation of alkaline phosphatase enzymatic activity and the use of molecular biology tests.
Collapse
Affiliation(s)
- Mauro Schmitz Estivalet
- Program in Dentistry, School of Dentistry, Federal University of Pelotas (UFPEL), Pelotas 96010-610, RS, Brazil
| | - Lucas Peixoto de Araújo
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba 13083-970, SP, Brazil
| | - Felipe Immich
- Program in Dentistry, School of Dentistry, Federal University of Pelotas (UFPEL), Pelotas 96010-610, RS, Brazil
| | - Adriana Fernandes da Silva
- Program in Dentistry, School of Dentistry, Federal University of Pelotas (UFPEL), Pelotas 96010-610, RS, Brazil
- Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas (UFPEL), Pelotas 96015-560, RS, Brazil
| | - Nadia de Souza Ferreira
- Program in Dentistry, School of Dentistry, Federal University of Pelotas (UFPEL), Pelotas 96010-610, RS, Brazil
- Department of Semiology and Clinics, School of Dentistry, Federal University of Pelotas (UFPEL), Pelotas 96015-560, RS, Brazil
| | - Wellington Luiz de Oliveira da Rosa
- Program in Dentistry, School of Dentistry, Federal University of Pelotas (UFPEL), Pelotas 96010-610, RS, Brazil
- Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas (UFPEL), Pelotas 96015-560, RS, Brazil
| | - Evandro Piva
- Program in Dentistry, School of Dentistry, Federal University of Pelotas (UFPEL), Pelotas 96010-610, RS, Brazil
- Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas (UFPEL), Pelotas 96015-560, RS, Brazil
| |
Collapse
|
14
|
ASSADIAN H, KHOJASTEH A, EBRAHIMIAN Z, AHMADINEJAD F, BOROOJENI HSH, BOHLOULI M, NEKOOFAR MH, MH DUMMER P, NOKHBATOLFOGHAHAEI H. Comparative evaluation of the effects of three hydraulic calcium silicate cements on odontoblastic differentiation of human dental pulp stem cells: an in vitro study. J Appl Oral Sci 2022; 30:e20220203. [PMID: 36350874 PMCID: PMC9651926 DOI: 10.1590/1678-7757-2022-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/02/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE The study aimed to compare the response of human dental pulp stem cells (hDPSCs) towards three hydraulic calcium silicate cements (HCSCs) by measuring cytotoxicity and expression of dentinogenic genes. METHODOLOGY Dental pulps of five impacted mandibular third molars were extirpated as a source for hDPSCs. Next to culturing, hDPSCs were subjected to fluorescence-activated cell sorting after the third passage to validate stemness of the cells. Human DPSCs were exposed to diluted supernatants of OrthoMTA (OMTA), Biodentine (BD) and Calcium-Enriched Mixture (CEM) at concentrations 10, 25, 50 and 100% at the first, third and fifth day of culture. Then, cells were exposed to 10% concentrations supernatant of HCSCs to determine DSPP and DMP1 gene expression, using a quantitative polymerase-chain reaction. Data were analyzed using one-way and three-way ANOVA, followed by Tukey post hoc statistical tests. RESULTS Optimal cell proliferation was observed in all groups, regardless of concentration and time-point. HCSC supernatants were non-cytotoxic to hDPSCs at all three time-points, except for 100% Biodentine on day five. On day seven, OMTA group significantly upregulated the expression of DSPP and DMP1 genes. On day 14, expression of DMP1 and DSPP genes were significantly higher in BD and OMTA groups, respectively. CONCLUSION Biodentine significantly upregulated DMP1 gene expression over 14 days, whereas CEM was associated with only minimal expression of DSPP and DMP1 .
Collapse
Affiliation(s)
- Hadi ASSADIAN
- Tehran University of Medical SciencesSchool of DentistryDepartment of EndodonticsTehranIranTehran University of Medical Sciences, School of Dentistry, Department of Endodontics, Tehran, Iran.
| | - Arash KHOJASTEH
- Shahid Beheshti University of Medical SciencesResearch Institute of Dental SciencesDental Research CenterTehranIranShahid Beheshti University of Medical Sciences, Research Institute of Dental Sciences, Dental Research Center, Tehran, Iran.
| | | | - Fereshteh AHMADINEJAD
- Shahrekord University of Medical ScienceCellular and Molecular Research CenterShahrekordIranShahrekord University of Medical Science, Cellular and Molecular Research Center, Shahrekord, Iran.
| | - Helia Sadat Haeri BOROOJENI
- Shahid Beheshti University of Medical SciencesResearch Institute of Dental SciencesDental Research CenterTehranIranShahid Beheshti University of Medical Sciences, Research Institute of Dental Sciences, Dental Research Center, Tehran, Iran.
| | - Mahboubeh BOHLOULI
- Shahid Beheshti University of Medical SciencesSchool of Advanced Technologies in MedicineDepartment of Tissue Engineering and Applied Cell SciencesTehranIranShahid Beheshti University of Medical Sciences, School of Advanced Technologies in Medicine, Department of Tissue Engineering and Applied Cell Sciences, Tehran, Iran.
| | - Mohammad Hossein NEKOOFAR
- Tehran University of Medical SciencesSchool of DentistryDepartment of EndodonticsTehranIranTehran University of Medical Sciences, School of Dentistry, Department of Endodontics, Tehran, Iran.
| | - Paul MH DUMMER
- Cardiff UniversityCollege of Biomedical and Life SciencesSchool of DentistryCardiffUKCardiff University, College of Biomedical and Life Sciences, School of Dentistry, Cardiff, UK.
| | - Hanieh NOKHBATOLFOGHAHAEI
- Shahid Beheshti University of Medical SciencesResearch Institute of Dental SciencesDental Research CenterTehranIranShahid Beheshti University of Medical Sciences, Research Institute of Dental Sciences, Dental Research Center, Tehran, Iran.
| |
Collapse
|
15
|
Maciel Pires P, Ionescu AC, Pérez-Gracia MT, Vezzoli E, Soares IPM, Brambilla E, de Almeida Neves A, Sauro S. Assessment of the remineralisation induced by contemporary ion-releasing materials in mineral-depleted dentine. Clin Oral Investig 2022; 26:6195-6207. [PMID: 35670863 DOI: 10.1007/s00784-022-04569-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/29/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Evaluate the ability of current ion-releasing materials to remineralise bacteria-driven artificial caries lesions. MATERIALS AND METHODS Standardised class I cavities were obtained in 60 extracted human molars. Specimens underwent a microbiological cariogenic protocol (28 days) to generate artificial caries lesions and then were randomly divided into four restorative groups: adhesive + composite (negative control); glass ionomer cement (GIC); calcium silicate cement (MTA); and resin-modified calcium silicate cement (RMTA). Microhardness analysis (ΔKHN) was performed on 40 specimens (10/group, t = 30 days, 45 days, 60 days in artificial saliva, AS). Micro-CT scans were acquired (3/group, t = 0 days, 30 days, and 90 days in AS). Confocal microscopy was employed for interfacial ultra-morphology analysis (2/group, t = 0 days and 60 days in AS). Additional specimens were prepared and processed for scanning electron microscopy (SEM) and FTIR (n = 3/group + control) to analyse the ability of the tested materials to induce apatite formation on totally demineralised dentine discs (60 days in AS). Statistical analyses were performed with a significance level of 5%. RESULTS Adhesive + composite specimens showed the lowest ΔKHN values and the presence of gaps at the interface when assessed through micro-CT even after storage in AS. Conversely, all the tested ion-releasing materials presented an increase in ΔKHN after storage (p < 0.05), while MTA best reduced the demineralised artificial carious lesions gap at the interface. MTA and RMTA also showed apatite deposition on totally demineralised dentine surfaces (SEM and FTIR). CONCLUSIONS All tested ion-releasing materials expressed mineral precipitation in demineralised dentine. Additionally, calcium silicate-based materials induced apatite precipitation and hardness recovery of artificial carious dentine lesions over time. CLINICAL RELEVANCE Current ion-releasing materials can induce remineralisation of carious dentine. MTA shows enhanced ability of nucleation/precipitation of hydroxyapatite compared to RMTA and GIC, which may be more appropriate to recover severe mineral-depleted dentine.
Collapse
Affiliation(s)
- Paula Maciel Pires
- Department of Pediatric Dentistry, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Dental Biomaterials and Minimally Invasive Dentistry, Department of Dentistry, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Andrei Cristian Ionescu
- Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Maria Teresa Pérez-Gracia
- Microbiology, Departamento de Farmacia, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Elena Vezzoli
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milan, Italy
| | - Igor Paulino Mendes Soares
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University UNESP, Araraquara, Brazil
| | - Eugenio Brambilla
- Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Aline de Almeida Neves
- Department of Pediatric Dentistry, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Salvatore Sauro
- Dental Biomaterials and Minimally Invasive Dentistry, Department of Dentistry, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain.
| |
Collapse
|
16
|
Strategies of Bioceramics, Bioactive Glasses in Endodontics: Future Perspectives of Restorative Dentistry. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2530156. [PMID: 35941984 PMCID: PMC9356887 DOI: 10.1155/2022/2530156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Prevalently, there is a primary strategy to cure caries using restorative materials notably bioceramics. Existing synthetic materials stimulate natural tooth structure with acceptable interfacial bonding and esthetic and biomechanical qualities with better durability. Several bioceramics have been introduced and investigated for their potentialities as restorative materials. Biomineralization of tooth initiates repair and regeneration of natural dental tissue and reinstating the integrity of periodontium. In the evolution of bioceramics in the aspects of different essential composition for dental application, recent technology and modern strategies revolutionize the restorative dentistry. Bioglass is one among the important bioceramics as a restorative material, and by regulating the properties of the material, it is possible to construct improved formulation towards restoration. This article reviews the current revolution of endodontics, existing restorative materials, and technologies to be achieve for engineering materials with the better design.
Collapse
|
17
|
Guerrero-Gironés J, Forner L, Sanz JL, Rodríguez-Lozano FJ, Ghilotti J, Llena C, Lozano A, Melo M. Scientific production on silicate-based endodontic materials: evolution and current state: a bibliometric analysis. Clin Oral Investig 2022; 26:5611-5624. [PMID: 35776202 DOI: 10.1007/s00784-022-04605-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 06/20/2022] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To perform a bibliometric analysis on silicate-based biomaterials in endodontics; to elucidate the evolution and distribution of scientific production regarding research on these biomaterials, the authors and institutions involved, and the most used descriptors/keywords in this field. MATERIALS AND METHODS A general advanced broad search was performed in Web of Science Core Collection, using the terms "Silicate" and "Endod*." By means of the "Analyze Results" and "Citation Analysis" tools from Web of Science, bibliometric data were extracted. Bibliometric networks on co-authorship and keyword co-occurrence were illustrated using VOSviewer software tool. RESULTS Research in the field of silicate-based endodontic materials in endodontics has followed an exponential crescent tendency over the period between 1995 and 2020. Two major co-authorship networks lead the research production in the field, headed by Gandolfi MG and Prati C, and Rodríguez-Lozano FJ and Forner L; respectively. "Mineral trioxide aggregate," "MTA", "Biocompatibility," "Biodentine," and "In vitro" were the terms with the highest occurrence. The modal study type in this research area are laboratory studies, representing 77.7% of the total number of records. The relationship between keywords illustrates the recent tendency to assess biological properties of MTA and Biodentine, which could be extrapolated to other silicate-based materials. CONCLUSIONS The results from the present study highlight the exponential increase and distribution of scientific production on silicate-based materials in endodontics, along with the modal keywords used as descriptors and the major authorship networks involved. The predominance of laboratory studies in this research field reinforces the need for clinical studies, to extrapolate the reported performance and characteristics of silicate-based materials into the clinical setting. CLINICAL RELEVANCE The present study may aid the clinician's continuing education and evidence-based practice by providing knowledge and facilitating the literature search on the field of silicate-based biomaterials in endodontics.
Collapse
Affiliation(s)
- Julia Guerrero-Gironés
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100, Murcia, Spain
| | - Leopoldo Forner
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, C. Gascó Oliag, 1, 46010, Valencia, Spain
| | - José Luis Sanz
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, C. Gascó Oliag, 1, 46010, Valencia, Spain.
| | - Francisco Javier Rodríguez-Lozano
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100, Murcia, Spain.,Cellular Therapy and Hematopoietic Transplant Research Group, Biomedical Research Institute, Virgen de la Arrixaca Clinical University Hospital, IMIB-Arrixaca, University of Murcia, 30120, Murcia, Spain
| | - James Ghilotti
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, C. Gascó Oliag, 1, 46010, Valencia, Spain
| | - Carmen Llena
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, C. Gascó Oliag, 1, 46010, Valencia, Spain
| | - Adrián Lozano
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, C. Gascó Oliag, 1, 46010, Valencia, Spain
| | - María Melo
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, C. Gascó Oliag, 1, 46010, Valencia, Spain
| |
Collapse
|
18
|
Özdemir O, Kopac T. Cytotoxicity and biocompatibility of root canal sealers: A review on recent studies. J Appl Biomater Funct Mater 2022; 20:22808000221076325. [PMID: 35164598 DOI: 10.1177/22808000221076325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Many types of endodontic root canal sealers have been employed for the purpose of filling voids and irregularities in root canals, as well as reducing/removing bacterial remnants/remains. Sealers are available in various formulations, and research work to find the most appropriate ones is still ongoing. Recently, many kinds of novel root canal sealers have been introduced under various commercial names. However, most sealers are known to exhibit different levels of cytotoxicity on tissues which would result in prolonged wound healing, inflammation, and bone resorption. Preferably, sealers need to have tolerable biological and physico-chemical properties along with biocompatibility. Additives promoting the biocompatibility and bioactivity of sealers are of major concern in clinical applications. The aim of this review was to compare, evaluate, and analyze comparatively the cytotoxic effects, biocompatibility, and antimicrobial properties of recently used root canal sealers. A comprehensive literature search was made to identify their properties involving biocompatibility and cytotoxicity. In general, the sealers reported in recent literature exhibited favorable biological features in comparison to conventional ones. They promoted better cell viability and biocompatibility. The incorporation of additives influences favorably the potential negative effects. However, it has been highlighted that there is a lack of well-designed long-term clinical applications, and more in vitro and in vivo research work would be helpful to confirm the sustainability of the sealers for further clinical practice.
Collapse
Affiliation(s)
- Olcay Özdemir
- Department of Pedodontics, Faculty of Dentistry, Zonguldak Bülent Ecevit University, Zonguldak, Turkey.,Department of Endodontics, Faculty of Dentistry, Karabük University, Karabük, Turkey
| | - Turkan Kopac
- Department of Chemistry, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
19
|
Palczewska-Komsa M, Kaczor-Wiankowska K, Nowicka A. New Bioactive Calcium Silicate Cement Mineral Trioxide Aggregate Repair High Plasticity (MTA HP)-A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4573. [PMID: 34443098 PMCID: PMC8398617 DOI: 10.3390/ma14164573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022]
Abstract
Bioactive calcium silicate cement Mineral Trioxide Aggregate (MTA) has been used for years as a gold standard in intravital pulp treatment and specialist endodontic procedures. Owing to flaws of the material, the manufacturers have been trying to enhance and produce materials showing improved physical, chemical and biological parameters. One of the new calcium-silicate cements based on mineral trioxide aggregate, however without some flaws exhibited by the cement, is Mineral Trioxide Aggregate Repair High Plasticity (MTA HP). The aim of the present paper was a systematic literature review concerning the MTA HP material used nowadays in dentistry, as a review of its specific features. The present paper is the first article providing a systematic literature review on MTA HP. The aim of the present article is the better understanding of MTA HP properties, which can aid the decision-making process in endodontic treatment.
Collapse
Affiliation(s)
| | - Kinga Kaczor-Wiankowska
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (M.P.-K.); (A.N.)
| | | |
Collapse
|
20
|
The Role of Biomaterials and Biocompatible Materials in Implant-Supported Dental Prosthesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3349433. [PMID: 34394378 PMCID: PMC8360736 DOI: 10.1155/2021/3349433] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022]
Abstract
The dental implant is one of the appropriate instances of the different dental materials and their application, which is the combined procedure of technology and science in physics, biomechanics, and surface chemistry from macroscale to nanoscale surface engineering and manufactured technologies. In recent decades, biomaterials in implant therapy promote bone response and biomechanical ability, which is long-term from surgical equipment to final prosthetic restoration. Biomaterials have a crucial role in rehabilitating the damaged structure of the tooth and supplying acceptable outcomes correlated with clinical performance. There are some challenges in implantation such as bleeding, mobility, peri-implant infections, and the solution associated with modern strategies which are regarded to biomaterials. Various materials have been known as promising candidates for coatings of dental implants which contain polyhydroxyalkanoates, calcium phosphate, carbon, bisphosphonates, hydroxyapatite, bone stimulating factors, bioactive glass, bioactive ceramics, collagen, chitosan, metal and their alloys, fluoride, and titanium/titanium nitride. It is pivotal that biomaterials should be biodegradable; for example, polyhydroxyalkanoates are biodegradable; also, they do not have bad effects on tissues and cells. Despite this, biomaterials have important roles in prosthetic conditions such as dental pulp regeneration, the healing process, and antibacterial and anti-inflammatory effects. In this review study, the role of biocompatible materials in dental implants is investigated in in vitro and in vivo studies.
Collapse
|
21
|
Sanz JL, Guerrero-Gironés J, Pecci-Lloret MP, Pecci-Lloret MR, Melo M. Biological interactions between calcium silicate-based endodontic biomaterials and periodontal ligament stem cells: A systematic review of in vitro studies. Int Endod J 2021; 54:2025-2043. [PMID: 34338339 DOI: 10.1111/iej.13600] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Most recently, the biological interactions, that is cytocompatibility, cell differentiation and mineralization potential, between calcium silicate-based biomaterials and periodontal ligament stem cells (PDLSCs) have been studied at an in vitro level, in order to predict their clinical behaviour during endodontic procedures involving direct contact with periodontal tissues, namely root canal treatment, endodontic surgery and regenerative endodontic treatment. OBJECTIVE The aim of the present systematic review was to present a qualitative synthesis of available in vitro studies assessing the biological interaction of PDLSCs and calcium silicate-based biomaterials. METHODOLOGY The present review followed PRISMA 2020 guidelines. An advanced database search was performed in Medline, Scopus, Embase, Web of Science and SciELO on 1 July 2020 and last updated on 22 April 2021. Studies assessing the biological interactions of PDLSCs with calcium silicate-based sealers (CSSs) and/or cements (CSCs) at an in vitro level were considered for inclusion. The evaluation of the 'biological interaction' was defined as any assay or test on the cytotoxicity, cytocompatibility, cell plasticity or differentiation potential, and bioactive properties of PDLSCs cultured in CSC or CSS-conditioned media. Quality (risk of bias) was assessed using a modified CONSORT checklist for in vitro studies of dental materials. RESULTS A total of 20 studies were included for the qualitative synthesis. CSCs and CSSs, as a group of endodontic materials, exhibit adequate cytocompatibility and favour the osteo/cementogenic differentiation and mineralization potential of PDLSCs, as evidenced from the in vitro studies included in the present systematic review. DISCUSSION The influence of the compositional differences, inclusion of additives, sample preparation, and varying conditions and manipulations on the biological properties of calcium silicate-based materials remain a subject for future research. CONCLUSIONS Within the limitations of the in vitro nature of the included studies, this work supports the potential use of calcium silicate-based endodontic materials in stem cell therapy and biologically based regenerative endodontic procedures. REGISTRATION OSF Registries; https://doi.org/10.17605/OSF.IO/SQ9UY.
Collapse
Affiliation(s)
- José Luis Sanz
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia, Spain
| | - Julia Guerrero-Gironés
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Faculty of Medicine, Morales Meseguer Hospital, University of Murcia, Murcia, Spain
| | - María P Pecci-Lloret
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Faculty of Medicine, Morales Meseguer Hospital, University of Murcia, Murcia, Spain
| | - Miguel R Pecci-Lloret
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Faculty of Medicine, Morales Meseguer Hospital, University of Murcia, Murcia, Spain
| | - María Melo
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia, Spain
| |
Collapse
|
22
|
Xu C, Xia Y, Wang L, Nan X, Hou J, Guo Y, Meng K, Lian J, Zhang Y, Wu F, Zhao B. Polydopamine-assisted immobilization of silk fibroin and its derived peptide on chemically oxidized titanium to enhance biological activity in vitro. Int J Biol Macromol 2021; 185:1022-1035. [PMID: 34197859 DOI: 10.1016/j.ijbiomac.2021.06.160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/12/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023]
Abstract
Biochemical modification can endow the surface of implants with superior biological activity. Herein, silk fibroin (SF) protein and its anionic derivative peptides (Cs) were covalently immobilized onto a titanium implant surface via a polydopamine layer. The successful conjugation of SF and Cs was revealed by X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and contact angle measurements. The addition of Cs prevented the conformational transition of silk fibroin to silk II. The deposition of apatite on its surface was significantly accelerated, and the bioactive composite coating was observed to enhance protein adsorption and cell proliferation. More importantly, it also promoted the osteogenic differentiation of bone marrow stem cells (BMSCs) for the quantitative and qualitative detection of alkaline phosphatase (ALP) and alizarin red (ARS). Overall, the stable performance and enhanced osteogenic property of the composite coating promote an extensive application for clinical titanium-based implants.
Collapse
Affiliation(s)
- Changzhen Xu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Yijing Xia
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Xiaoru Nan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Jiaxin Hou
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Yanqin Guo
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Kejing Meng
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Jing Lian
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Yufang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Feng Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.
| |
Collapse
|
23
|
Ren L, Guo L, Kou N, Lv J, Wang Z, Yang K. LncRNA LINC00963 promotes osteogenic differentiation of hBMSCs and alleviates osteoporosis progression by targeting miRNA-760/ETS1 axis. Autoimmunity 2021; 54:313-325. [PMID: 34184952 DOI: 10.1080/08916934.2021.1922890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Although long non-coding RNA LINC00963 has been reported to play a crucial regulatory role in osteoporosis (OP), its specific mechanism has not been well studied. Cell viability of human bone marrow mesenchymal stem cells (hBMSCs) transfected with short hairpin RNA targeting LINC00963 (sh-LINC00963) and negative control (sh-NC) was analysed by cell counting kit-8 (CCK-8) assay. Alkaline phosphatase (ALP) activity in hBMSCs transfected with sh-LINC00963 and sh-NC after induction by osteogenic medium (OM) on day 7 was detected. The protein expression levels of osteocalcin (OCN) and osteopontin (OPN) in hBMSCs transfected with sh-LINC00963 and sh-NC during OM induction on day 3 were detected by western blot. The relationship among LINC00963, miR-760, and E26 transformation specific-1 (ETS1) was determined by bioinformatics analysis, luciferase reporter assay, and RNA-binding protein immunoprecipitation (RIP) assay. A rat model with OP was established to confirm the role of LINC00963 in vivo. The expression level of LINC00963 was much lower in hBMSCs isolated from the discarded femoral head tissues of OP patients compared with that in health patients. Meanwhile, the expression level of LINC00963 was significantly increased and the expression level of miR-760 was decreased in hBMSCs during osteogenic induction. LINC00963 could bind to the 3'-untranslated region (3'-UTR) of miR-760 and negatively regulate the expression of miR-760, then promote the osteogenic differentiation in hBMSCs. ETS1 was identified as a target of miR-760. Moreover, overexpression of LINC00963 obviously reduced bone mineral density (BMD) of the left femur in OP rats and alleviated OP progression in vivo. Our results demonstrated that LINC00963 positively regulated the expression of ETS1 by directly targeting miR-760, and then promoted osteogenic differentiation of hBMSCs in vitro, and also attenuated OP progression in vivo, suggesting that LINC00963 might be a potential therapeutic target for OP.
Collapse
Affiliation(s)
- Lirong Ren
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, Dali City, PR China
| | - Limin Guo
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, PR China
| | - Nannan Kou
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, PR China
| | - Jia Lv
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, PR China
| | - Zhihua Wang
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, PR China
| | - Kaishun Yang
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, Dali City, PR China
| |
Collapse
|
24
|
Özcan M, Garcia LDFR, Volpato CAM. Bioactive Materials for Direct and Indirect Restorations: Concepts and Applications. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.647267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Currently, minimally invasive restorations could be made in dentistry applying adhesive materials and adhesion principles to the dental structures. Following this philosophy, endodontic interventions have been avoided largely, preserving hard tissues, and maintaining dental vitality. Advances in biologically favorable bioactive materials enabled clinicans to induce repair and regeneration of dental tissues. Such materials are primarily used for pulp protection and cementation of indirect restorations. This review highlights current bioactive materials available, principles of bioactivity and their mechanisms of action.
Collapse
|
25
|
Sanz JL, Rodríguez-Lozano FJ, Lopez-Gines C, Monleon D, Llena C, Forner L. Dental stem cell signaling pathway activation in response to hydraulic calcium silicate-based endodontic cements: A systematic review of in vitro studies. Dent Mater 2021; 37:e256-e268. [PMID: 33573840 DOI: 10.1016/j.dental.2021.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To present a qualitative synthesis of in vitro studies which analyzed human dental stem cell (DSC) molecular signaling pathway activation in response to hydraulic calcium silicate-based cements (HCSCs). METHODS A systematic electronic search was performed in Medline, Scopus, Embase, Web of Science and SciELO databases on January 20 and last updated on March 20, 2020. In vitro studies assessing the implication of signaling pathways in activity related marker (gene/protein) expression and mineralization induced by HCSCs in contact with human DSCs were included. RESULTS The search identified 277 preliminary results. After discarding duplicates, and screening of titles, abstracts, and full texts, 13 articles were considered eligible. All of the materials assessed by the included studies showed positive results in cytocompatibility and/or bioactivity assays. ProRoot MTA and Biodentine were the modal HCSCs studied, hDPSCs were the modal cell variant used, and the most studied signaling pathway was MAPK. In vitro assays measuring the expression of activity-related markers and mineralized nodule formation evidenced the involvement of MAPK (and its subfamilies ERK, JNK and P38), NF-κB, Wnt/β-catenin, BMP/Smad and CAMKII pathways in the biological response of DSCs to HCSCs. SIGNIFICANCE HCSCs considered in the present review elicited a favorable biological response from a variety of DSCs in vitro, thus supporting their use in biologically-based endodontic procedures. MAPK, NF-κβ, Wnt/β-catenin, BMP/Smad and CAMKII signaling pathways have been proposed as potential mediators in the biological interaction between DSCs and HCSCs. Understanding the signaling processes involved in tissue repair could lead to the development of new biomaterial compositions targeted at enhancing these mechanisms through biologically-based procedures.
Collapse
Affiliation(s)
- José Luis Sanz
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Francisco Javier Rodríguez-Lozano
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Concha Lopez-Gines
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Daniel Monleon
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Carmen Llena
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Leopoldo Forner
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain.
| |
Collapse
|
26
|
Singh S. From the Desk of the Editor: The New-Age Bioceramic Root Canal Sealers. J Conserv Dent 2021; 24:413-414. [PMID: 35399775 PMCID: PMC8989171 DOI: 10.4103/jcd.jcd_21_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 11/19/2022] Open
|
27
|
Maru V, Dixit U, Patil RSB, Parekh R. Cytotoxicity and Bioactivity of Mineral Trioxide Aggregate and Bioactive Endodontic Type Cements: A Systematic Review. Int J Clin Pediatr Dent 2021; 14:30-39. [PMID: 34326580 PMCID: PMC8311779 DOI: 10.5005/jp-journals-10005-1880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Knowledge of the cytotoxicity and bioactivity of endodontic materials may assist in understanding their ability to promote dental pulp stem cell activity and pulp healing in primary teeth. Materials and methods This systematic review was carried out by searching the electronic databases such as PubMed, Google Scholar, and Cochrane reviews for the articles published between January 2000 and December 2018 using the appropriate MeSH keywords. An independent investigator evaluated the abstracts and titles for possible inclusion, as per the stipulated inclusion and exclusion criteria. The topics considered for extracting data from each study were: cell lineage, cytotoxicity assay used, and type of material tested. Results Seven eligible studies were selected for assessing the quality of evidence on the bioactivity of bioactive endodontic cements (BECs) (1 human cell line, 2 animal cell lines, and 4 in vitro, animal, and human studies) and 13 studies were selected for reviewing the quality of evidence on cytotoxicity (7 human cell lines, 4 animal cell lines, and 2 animal model studies). Very limited studies had been conducted on the bioactivity of materials other than mineral trioxide aggregate (MTA). With regards to cytotoxicity, the studies were diverse and most of the studies were based on MTT assay. Mineral trioxide aggregate is the most frequently used as well as studied root-end filling cement, and the literature evidence corroborated its reduced cytotoxicity and enhanced bioavailability. Conclusion There was a lack of sufficient evidence to arrive at a consensus on the ideal material with minimal cytotoxicity and optimal bioactivity. More focused human/cell line-based studies are needed on the available root filling materials. Clinical significance The present systematic review provides an update on the available literature evidence on the cytotoxicity and bioactivity of various BECs including MTAs and their influence on the different cells with respect to their composition and strength. How to cite this article Maru V, Dixit U, Patil RSB, et al. Cytotoxicity and Bioactivity of Mineral Trioxide Aggregate and Bioactive Endodontic Type Cements: A Systematic Review. Int J Clin Pediatr Dent 2021;14(1):30–39.
Collapse
Affiliation(s)
- Viral Maru
- Department of Pediatric and Preventive Dentistry, DY Patil School of Dentistry, Nerul, Navi Mumbai, Maharashtra, India
| | - Uma Dixit
- Department of Pediatric and Preventive Dentistry, DY Patil School of Dentistry, Nerul, Navi Mumbai, Maharashtra, India
| | - Rucha Shivajirao Bhise Patil
- Department of Pediatric and Preventive Dentistry, DY Patil School of Dentistry, Nerul, Navi Mumbai, Maharashtra, India
| | - Rupanshi Parekh
- Department of Pediatric and Preventive Dentistry, DY Patil School of Dentistry, Nerul, Navi Mumbai, Maharashtra, India
| |
Collapse
|
28
|
Sanz JL, Forner L, Llena C, Guerrero-Gironés J, Melo M, Rengo S, Spagnuolo G, Rodríguez-Lozano FJ. Cytocompatibility and Bioactive Properties of Hydraulic Calcium Silicate-Based Cements (HCSCs) on Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs): A Systematic Review of In Vitro Studies. J Clin Med 2020; 9:jcm9123872. [PMID: 33260782 PMCID: PMC7761433 DOI: 10.3390/jcm9123872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
The implementation of hydraulic calcium silicate-based endodontic cements (HCSCs) in biologically based endodontic procedures for the primary dentition has been recently investigated, focusing on the biological response of stem cells from human exfoliated deciduous teeth (SHEDs) towards them. The present systematic review aimed to present a qualitative synthesis of the available literature consisting of in vitro assays, which assessed the cytocompatibility and bioactive properties of HCSCs in direct contact with SHEDs. Following the PRISMA statement, an electronic database search was carried out in Medline, Scopus, Embase, Web of Science, and SciELO on March 31st and updated on November 16th, 2020. In vitro studies evaluating the biological response of SHEDs to the treatment with HCSCs were eligible. Within the term biological response, assays assessing the cytocompatibility (i.e., cell viability, migration, proliferation), cell plasticity or differentiation (i.e., osteo/odontogenic marker expression), and bioactivity or biomineralization (i.e., mineralized nodule formation) were included. A total of seven studies were included after the selection process. The study sample comprised an extensive range of cell viability, migration, proliferation, adhesion, and bioactivity assays regarding the biological response of SHEDs towards five different commercially available HCSCs (MTA, ProRoot MTA, Biodentine, iRoot BP Plus, and Theracal LC). Biodentine, MTA, and iRoot BP Plus showed significant positive results in cytocompatibility and bioactivity assays when cultured with SHEDs. The results from in vitro assays assessing the cytocompatibility and bioactivity of the HCSCs MTA, Biodentine, and iRoot BP Plus towards SHEDs support their use in vital pulp treatment for the primary dentition.
Collapse
Affiliation(s)
- José Luis Sanz
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (C.L.); (M.M.)
| | - Leopoldo Forner
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (C.L.); (M.M.)
- Correspondence: ; Tel.: +34-963864175
| | - Carmen Llena
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (C.L.); (M.M.)
| | - Julia Guerrero-Gironés
- Cellular Therapy and Hematopoietic Transplant Research Group, Biomedical Research Institute, Virgen de la Arrixaca Clinical University Hospital, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain; (J.G.-G.); (F.J.R.-L.)
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - María Melo
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (C.L.); (M.M.)
| | - Sandro Rengo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80138 Napoli, Italy; (S.R.); (G.S.)
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80138 Napoli, Italy; (S.R.); (G.S.)
- Institute of Dentistry, I. M. Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | - Francisco Javier Rodríguez-Lozano
- Cellular Therapy and Hematopoietic Transplant Research Group, Biomedical Research Institute, Virgen de la Arrixaca Clinical University Hospital, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain; (J.G.-G.); (F.J.R.-L.)
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
29
|
Contemporary restorative ion-releasing materials: current status, interfacial properties and operative approaches. Br Dent J 2020; 229:450-458. [PMID: 33037365 DOI: 10.1038/s41415-020-2169-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
Minimally invasive (MI) concepts in restorative dentistry in the year 2020 request from the practitioner not only a scientifically supported rationale for carious tissue removal/excavation and defect-oriented, biological cavity preparation, but also a deep understanding of how to ensure a biomechanically stable and durable restoration in different clinical situations by applying different restorative options. Bio-interactive materials play an increasingly relevant role, as they not only replace diseased or lost tissue, but also optimise tissue mineral recovery (among other properties) when used in restorative and preventive dentistry. Indeed, this is of certain interest in MI restorative dentistry, especially in those cases where gap formation jeopardises the integrity of the margins along resin composite restorations, causing penetration of bacteria and eventually promoting the formation of secondary caries. Recently, the interest in whether ion-releasing materials may reduce such biofilm penetration into margin gaps and reduce such a risk for development and propagation of secondary caries is growing significantly among clinicians and scientists. The aim of this article was to explore mechanisms involved in the process that allow mineral deposition at the interface between such materials and dentine, and to describe how conventional 'bioactive' restorative materials currently available on the market may benefit treatments in MI dentistry.
Collapse
|
30
|
Zafar MS, Amin F, Fareed MA, Ghabbani H, Riaz S, Khurshid Z, Kumar N. Biomimetic Aspects of Restorative Dentistry Biomaterials. Biomimetics (Basel) 2020; 5:E34. [PMID: 32679703 PMCID: PMC7557867 DOI: 10.3390/biomimetics5030034] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Biomimetic has emerged as a multi-disciplinary science in several biomedical subjects in recent decades, including biomaterials and dentistry. In restorative dentistry, biomimetic approaches have been applied for a range of applications, such as restoring tooth defects using bioinspired peptides to achieve remineralization, bioactive and biomimetic biomaterials, and tissue engineering for regeneration. Advancements in the modern adhesive restorative materials, understanding of biomaterial-tissue interaction at the nano and microscale further enhanced the restorative materials' properties (such as color, morphology, and strength) to mimic natural teeth. In addition, the tissue-engineering approaches resulted in regeneration of lost or damaged dental tissues mimicking their natural counterpart. The aim of the present article is to review various biomimetic approaches used to replace lost or damaged dental tissues using restorative biomaterials and tissue-engineering techniques. In addition, tooth structure, and various biomimetic properties of dental restorative materials and tissue-engineering scaffold materials, are discussed.
Collapse
Affiliation(s)
- Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Faiza Amin
- Science of Dental Materials Department, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Muhmmad Amber Fareed
- Adult Restorative Dentistry, Dental Biomaterials and Prosthodontics Oman Dental College, Muscat 116, Sultanate of Oman;
| | - Hani Ghabbani
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
| | - Samiya Riaz
- School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudia Arabia;
| | - Naresh Kumar
- Department of Science of Dental Materials, Dow University of Health Sciences, Karachi 74200, Pakistan;
| |
Collapse
|
31
|
Sanz JL, López-García S, Lozano A, Pecci-Lloret MP, Llena C, Guerrero-Gironés J, Rodríguez-Lozano FJ, Forner L. Microstructural composition, ion release, and bioactive potential of new premixed calcium silicate-based endodontic sealers indicated for warm vertical compaction technique. Clin Oral Investig 2020; 25:1451-1462. [PMID: 32651645 DOI: 10.1007/s00784-020-03453-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the microstructural composition, ion release, cytocompatibility, and mineralization potential of Bio-C Sealer ION+ (BCI) and EndoSequence BC Sealer HiFlow (BCHiF), compared with AH Plus (AHP), in contact with human periodontal ligament cells (hPDLCs). MATERIALS AND METHODS The sealers' ionic composition and release were assessed using energy-dispersive spectroscopy (EDS) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. For the biological assays, hPDLCs were isolated from third molars, and sealer extracts were prepared (undiluted, 1:2, and 1:4 ratios). An MTT assay, wound-healing assay, and cell morphology and adhesion analysis were performed. Activity-related gene expression was determined using RT-qPCR, and mineralization potential was assessed using Alizarin Red staining (ARS). Statistical analyses were performed using one-way ANOVA and Tukey's post hoc test (α < 0.05). RESULTS The three sealers exhibited variable levels of silicon, calcium, zirconium, and tungsten release and in their composition. Both BCI and BCHiF groups showed positive results in cytocompatibility assays, unlike AHP. The BCHiF group showed an upregulation of CAP (p < 0.01), CEMP1, ALP, and RUNX2 (p < 0.001) compared with the negative control, while the BCI group showed an upregulation of CEMP1 (p < 0.01), CAP, and RUNX2 (p < 0.001). Both groups also exhibited a greater mineralization potential than the negative and positive controls (p < 0.001). CONCLUSIONS The calcium silicate-based sealers considered in the present in vitro study exhibited a high calcium ion release, adequate cytocompatibility, upregulated osteo/cementogenic gene expression, and increased mineralized nodule formation in contact with hPDLCs. CLINICAL RELEVANCE From a biological perspective, BCI and BCHiF could be clinically suitable for root canal filling.
Collapse
Affiliation(s)
- J L Sanz
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010, Valencia, Spain
| | - S López-García
- Cellular Therapy and Hematopoietic Transplant Research Group, Biomedical Research Institute, Virgen de la Arrixaca Clinical University Hospital, IMIB-Arrixaca, University of Murcia, 30120, Murcia, Spain.,Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100, Murcia, Spain
| | - A Lozano
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010, Valencia, Spain
| | - M P Pecci-Lloret
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100, Murcia, Spain
| | - C Llena
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010, Valencia, Spain
| | - J Guerrero-Gironés
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100, Murcia, Spain
| | - F J Rodríguez-Lozano
- Cellular Therapy and Hematopoietic Transplant Research Group, Biomedical Research Institute, Virgen de la Arrixaca Clinical University Hospital, IMIB-Arrixaca, University of Murcia, 30120, Murcia, Spain. .,Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100, Murcia, Spain.
| | - L Forner
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010, Valencia, Spain
| |
Collapse
|
32
|
Pedano MS, Li X, Yoshihara K, Landuyt KV, Van Meerbeek B. Cytotoxicity and Bioactivity of Dental Pulp-Capping Agents towards Human Tooth-Pulp Cells: A Systematic Review of In-Vitro Studies and Meta-Analysis of Randomized and Controlled Clinical Trials. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2670. [PMID: 32545425 PMCID: PMC7345102 DOI: 10.3390/ma13122670] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Background. In the era of biology-driven endodontics, vital pulp therapies are regaining popularity as a valid clinical option to postpone root-canal treatment. In this sense, many different materials are available in the market for pulp-capping purposes. Objectives. The main aim of this systematic review and meta-analysis was to examine literature regarding cytotoxicity and bioactivity of pulp-capping agents by exposure of human dental pulp cells of primary origin to these materials. A secondary objective was to evaluate the inflammatory reaction and reparative dentin-bridge formation induced by the different pulp-capping agents on human pulp tissue. Data sources. A literature search strategy was carried out on PubMed, EMBASE and the Web of Science databases. The last search was done on 1 May 2020. No filters or language restrictions were initially applied. Two researchers independently selected the studies and extracted the data. Study selection included eligibility criteria, participants and interventions, study appraisal and synthesis methods. In vitro studies were included when human dental pulp cells of primary origin were (in)directly exposed to pulp-capping agents. Parallel or split-mouth randomized or controlled clinical trials (RCT or CCT) were selected to investigate the effects of different pulp-capping agents on the inflammation and reparative bridge-formation capacity of human pulp tissue. Data were synthesized via odds ratios (95% confidence interval) with fixed or random effects models, depending on the homogeneity of the studies. The relative risks (95% confidence interval) were presented for the sake of interpretation. Results. In total, 26 in vitro and 30 in vivo studies were included in the systematic review and meta-analysis, respectively. The qualitative analysis of in vitro data suggested that resin-free hydraulic calcium-silicate cements promote cell viability and bioactivity towards human dental pulp cells better than resin-based calcium-silicate cements, glass ionomers and calcium-hydroxide cements. The meta-analysis of the in vivo studies indicated that calcium-hydroxide powder/saline promotes reparative bridge formation better than the popular commercial resin-free calcium-silicate cement Pro-Root MTA (Dentsply-Sirona), although the difference was borderline non-significant (p = 0.06), and better than calcium-hydroxide cements (p < 0.0001). Moreover, resin-free pulp-capping agents fostered the formation of a complete reparative bridge better than resin-based materials (p < 0.001). On the other hand, no difference was found among the different materials tested regarding the inflammatory effect provoked at human pulp tissue. Conclusions. Calcium-hydroxide (CH) powder and Pro-Root MTA (Dentsply-Sirona) have shown excellent biocompatibility in vitro and in vivo when tested on human cells and teeth. Their use after many years of research and clinical experience seems safe and proven for vital pulp therapy in healthy individuals, given that an aseptic environment (rubber dam isolation) is provided. Although in vitro evidence suggests that most modern hydraulic calcium-silicate cements promote bioactivity when exposed to human dental pulp cells, care should be taken when these new materials are clinically applied in patients, as small changes in their composition might have big consequences on their clinical efficacy. Key findings (clinical significance). Pure calcium-hydroxide powder/saline and the commercial resin-free hydraulic calcium-silicate cement Pro-Root MTA (Dentsply-Sirona) are the best options to provide a complete reparative bridge upon vital pulp therapy. Systematic review registration number. PROSPERO registration number: CRD42020164374.
Collapse
Affiliation(s)
- Mariano S. Pedano
- Department of Oral Health Sciences, KU Leuven (University of Leuven), BIOMAT—Biomaterials Research Group & UZ Leuven, University Hospitals Leuven, 3000 Leuven, Belgium; (M.S.P.); (X.L.); (K.V.L.)
| | - Xin Li
- Department of Oral Health Sciences, KU Leuven (University of Leuven), BIOMAT—Biomaterials Research Group & UZ Leuven, University Hospitals Leuven, 3000 Leuven, Belgium; (M.S.P.); (X.L.); (K.V.L.)
| | - Kumiko Yoshihara
- National Institute of Advanced Industrial Science and Technology (AIST), Health Research Institute, 2217-14 Hayashi-Cho, Takamaysu, Kagawa 761-0395, Japan;
- Department of Pathology & Experimental Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kirsten Van Landuyt
- Department of Oral Health Sciences, KU Leuven (University of Leuven), BIOMAT—Biomaterials Research Group & UZ Leuven, University Hospitals Leuven, 3000 Leuven, Belgium; (M.S.P.); (X.L.); (K.V.L.)
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, KU Leuven (University of Leuven), BIOMAT—Biomaterials Research Group & UZ Leuven, University Hospitals Leuven, 3000 Leuven, Belgium; (M.S.P.); (X.L.); (K.V.L.)
| |
Collapse
|
33
|
Li X, Pedano MS, Li S, Sun Z, Jeanneau C, About I, Hauben E, Chen Z, Van Landuyt K, Van Meerbeek B. Preclinical effectiveness of an experimental tricalcium silicate cement on pulpal repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111167. [PMID: 32806325 DOI: 10.1016/j.msec.2020.111167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVES To investigate the pulpal repair potential of an experimental zirconium-oxide containing tricalcium-silicate cement, referred to as 'TCS 50'. MATERIALS AND METHODS The effect of TCS 50 on viability, proliferation, migration, and odontoblastic differentiation of human dental pulp cells (HDPCs) was assessed using XTT assay, in-vitro wound healing assay and RT-PCR, respectively. Additionally, the pulp-capping potential was evaluated using a vital human tooth model. Statistical analysis was performed using non-parametric Kruskal-Wallis test and post-hoc test (Mann-Whitney U test). The tests were performed at a significance level of α = 0.05. RESULTS The effect of TCS 50 towards HDPCs was dose dependent. Undiluted TCS 50 extract showed no immediate adverse impact on cell viability (p > .05); however, it significantly inhibited proliferation and migration of HDPCs (p < .05). A 25% diluted TCS 50 extract showed no significant effect on cell viability, proliferation or migration (p > .05), and it significantly enhanced odontoblastic differentiation of HDPCs (p < .05). In pulps capped with TCS 50 for both 2 and 4 weeks, H&E staining revealed a normal morphology of pulp tissue; mineralized foci with cellular components entrapped in the matrix were formed underneath the exposure site. Collagen I expression was weak within the matrix of mineralized foci, while the expression of nestin was positive for entrapped cellular components within the mineralized foci, indicating that the formed mineralized foci corresponded to an initial form of reparative dentin formation. CONCLUSION TCS 50 is capable of generating an early pulp-healing reaction and therefore could serve as a promising pulp-capping agent.
Collapse
Affiliation(s)
- Xin Li
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Mariano Simón Pedano
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Shuchen Li
- Wuhan University, School and Hospital of Stomatology, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education, Wuhan, PR China
| | - Zheyi Sun
- Wuhan University, School and Hospital of Stomatology, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education, Wuhan, PR China
| | - Charlotte Jeanneau
- Wuhan University, School and Hospital of Stomatology, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education, Wuhan, PR China
| | - Imad About
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| | - Esther Hauben
- Laboratory for Pathology, UZ Leuven & Department of Imaging and Pathology, Translational Cell and Tissue Research, KU, Leuven, Belgium
| | - Zhi Chen
- Wuhan University, School and Hospital of Stomatology, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education, Wuhan, PR China
| | - Kirsten Van Landuyt
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium.
| |
Collapse
|
34
|
Jepsen K, Dommisch E, Jepsen S, Dommisch H. Vital root resection in severely furcation-involved maxillary molars: Outcomes after up to 7 years. J Clin Periodontol 2020; 47:970-979. [PMID: 32412133 DOI: 10.1111/jcpe.13306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
AIMS To introduce a novel therapeutic approach for the treatment of furcation-involved maxillary molars by vital root resection and report longer-term outcomes of a case series. METHODS Eleven patients with 15 maxillary molars affected by double/triple class II (n = 10) or single/double class III (n = 5) furcation defects and advanced vertical bone loss around one root participated. Teeth were treated with deep pulpotomy using a calcium silicate-based cement. After 4 weeks, the affected roots were removed by periodontal microsurgery and processed for histological evaluation of the pulp. All patients were enrolled into a supportive periodontal care programme. During the follow-up period, assessments of tooth sensitivity, response to percussion, mobility, pocket probing depth (PPD) and bleeding on probing (BOP) were made, periapical radiographs obtained and patient-reported outcomes collected. RESULTS All teeth remained sensitive to pulp testing. After 1 year and 3-7 years of follow-up, PD was ≤5 mm at all resected teeth. Furcation status was much improved. Neither increasing mobility nor clinical or radiographic signs of periapical pathology were observed throughout the individual observation period. All patients were pleased with the result of therapy. Histologic sections revealed a functional dentin-pulp complex. CONCLUSIONS This case series demonstrates the possibility of maintaining severely furcation-involved molars by vital root resection for up to 7 years. Root canal therapy and its associated costs and complications can thus be avoided.
Collapse
Affiliation(s)
- Karin Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | | | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - Henrik Dommisch
- Department of Periodontology and Synoptic Dentistry, Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
35
|
Comparative Surface Morphology, Chemical Composition, and Cytocompatibility of Bio-C Repair, Biodentine, and ProRoot MTA on hDPCs. MATERIALS 2020; 13:ma13092189. [PMID: 32397585 PMCID: PMC7254305 DOI: 10.3390/ma13092189] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/31/2022]
Abstract
Biocompatibility is an essential property for any vital pulp material that may interact with the dental pulp tissues. Accordingly, this study aimed to compare the chemical composition and ultrastructural morphology of Biodentine (Septodont, Saint Maur-des-Fosses, France), ProRoot MTA (Dentsply Tulsa Dental Specialties, Johnson City, TN, USA), and Bio-C Repair (Angelus, Londrina, PR, Brazil), as well as their biological effects on human dental pulp cells. Chemical element characterization of the materials was undertaken using scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX). The cytotoxicity was assessed by analyzing the cell viability (MTT assay), cell morphology (immunofluorescence assay), and cell attachment (flow cytometry assay). The results were statistically analyzed using ANOVA and Tukey’s test (p < 0.05). EDX revealed that ProRoot MTA and Biodentine were mostly composed of calcium, carbon, and oxygen (among others), whereas Bio-C Repair evidenced a low concentration of calcium and the highest concentration of zirconium. SEM showed adequate attachment of human dental pulp cells (hDPCS) to vital pulp materials and cytoskeletal alterations were not observed in the presence of material eluates. Remarkably, the undiluted Biodentine group showed higher viability than the control group cells (without eluates) at 24 h, 48 h, and 72 h (p < 0.001). Based on the evidence derived from an in vitro cellular study, it was concluded that Bio-C Repair showed excellent cytocompatibility that was similar to Biodentine and ProRoot MTA.
Collapse
|
36
|
Zhou Z, Ge X, Bian M, Xu T, Li N, Lu J, Yu J. Remineralization of dentin slices using casein phosphopeptide-amorphous calcium phosphate combined with sodium tripolyphosphate. Biomed Eng Online 2020; 19:18. [PMID: 32245476 PMCID: PMC7119276 DOI: 10.1186/s12938-020-0756-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background The remineralization approach mechanically occludes the exposed dentinal tubules mechanically, reduces the permeability of dentinal tubules and eliminates the symptoms of dentin hypersensitivity. The aim of the present study was to investigate the remineralization of demineralized dentin slices using CPP–ACP combined with TPP, and the research hypothesis was that CPP–ACP combined with TPP could result in extrafibrillar and intrafibrillar remineralization of dentin. Methods Demineralized dentin slices were prepared and randomly divided into the following groups: A (the CPP–ACP group), B (the CPP–ACP + TPP combination group), C (the artificial saliva group), D (the negative control group), and E (the positive control group). Dentin slice samples from groups A, B and C were remineralized and the remineralization effect was evaluated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection–Fourier transform infrared spectroscopy (ATR–FTIR) and X-ray diffraction (XRD). Results Treatment with CPP–ACP combined with TPP occluded the dentinal tubules and resulted in remineralization of collagen fibrils. The hydroxyapatite crystals formed via remineralization were found to closely resemble the natural dentin components. Conclusion CPP–ACP combined with TPP has a good remineralization effect on demineralized dentin slices.
Collapse
Affiliation(s)
- Zhou Zhou
- Institute of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Xingyun Ge
- Institute of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Minxia Bian
- Institute of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Tao Xu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Na Li
- Institute of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Jiamin Lu
- Institute of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Jinhua Yu
- Institute of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China. .,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
37
|
A Microstructure Insight of MTA Repair HP of Rapid Setting Capacity and Bioactive Response. MATERIALS 2020; 13:ma13071641. [PMID: 32252262 PMCID: PMC7178307 DOI: 10.3390/ma13071641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
Mineral trioxide aggregate (MTA) is considered a bioactive endodontic material, which promotes natural mineralization at the material-tooth tissue interface. MTA Repair HP stands out because of the short setting time and the quick and effective bioactive response in vitro. The bioactivity, depens on material composition and microstructure. This work is devoted to analyze MTA Repair HP microstructural features, of both the powder precursor and set material, to get insights into the material physicochemical parameters—functionality performance relationships. Transmission electron microscopy (TEM), and field emission gun scanning electron microscopy (FEG-SEM) coupled with energy-dispersive X-ray (EDX) analyses were performed. X-ray diffraction (XRD) measurements were carried out at different times to investigate setting process. Bioactivity evaluation in vitro was carried out by soaking the processed cement disk in simulated body fluid (SBF). The presented results point out those MTA Repair HP precursor material characteristics of tricalcium silicate particles of nanometric size and high aspect ratio, which provide an elevated surface area and maximized components dispersion of calcium silicate and very reactive calcium aluminate. The MTA Repair HP precursor powder nanostructure and formulation, allows a hydration process comprising silicate hydrate structures, which are very effective to achieve both fast setting and efficient bioactive response.
Collapse
|
38
|
Cytotoxicity and the Effect of Temperature on Physical Properties and Chemical Composition of a New Calcium Silicate–based Root Canal Sealer. J Endod 2020; 46:531-538. [DOI: 10.1016/j.joen.2019.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 12/10/2019] [Accepted: 12/22/2019] [Indexed: 11/17/2022]
|
39
|
Sanz JL, Forner L, Almudéver A, Guerrero-Gironés J, Llena C. Viability and Stimulation of Human Stem Cells from the Apical Papilla (hSCAPs) Induced by Silicate-Based Materials for Their Potential Use in Regenerative Endodontics: A Systematic Review. MATERIALS 2020; 13:ma13040974. [PMID: 32098171 PMCID: PMC7078727 DOI: 10.3390/ma13040974] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Blood clot formation in the apical third of the root canal system has been shown to promote further root development and reinforcement of dentinal walls by the deposition of mineralized tissue, resulting in an advancement from traditional apexification procedures to a regenerative endodontic treatment (RET) for non-vital immature permanent teeth. Silicate-based hydraulic biomaterials, categorized as bioactive endodontic cements, emerged as bright candidates for their use in RET as coronal barriers, sealing the previously induced blood clot scaffold. Human stem cells from the apical papilla (hSCAPs) surviving the infection may induce or at least be partially responsible for the regeneration or repair shown in RET. The aim of this study is to present a qualitative synthesis of available literature consisting of in vitro assays which analyzed the viability and stimulation of hSCAPs induced by silicate-based hydraulic biomaterials. A systematic electronic search was carried out in Medline, Scopus, Embase, Web of Science, Cochrane and SciELO databases, followed by a study selection, data extraction, and quality assessment following the PRISMA protocol. In vitro studies assessing the viability, proliferation, and/or differentiation of hSCAPs as well as their mineralization potential and/or osteogenic, odontogenic, cementogenic and/or angiogenic marker expression in contact with commercially available silicate-based materials were included in the present review. The search identified 73 preliminary references, of which 10 resulted to be eligible for qualitative synthesis. The modal materials studied were ProRoot MTA and Biodentine. Both bioceramic materials showed significant positive results when compared to a control for hSCAP cell viability, migration, and proliferation assays; a significant up-regulation of hSCAP odontogenic/osteogenic marker (ALP, DSPP, BSP, Runx2, OCN, OSX), angiogenic growth factor (VEGFA, FIGF) and pro-inflammatory cytokine (IL-1α, IL-1β, IL-6, TNF-α) expression; and a significant increase in hSCAP mineralized nodule formation assessed by Alizarin Red staining. Commercially available silicate-based materials considered in the present review can potentially induce mineralization and odontogenic/osteogenic differentiation of hSCAPs, thus prompting their use in regenerative endodontic procedures.
Collapse
Affiliation(s)
- José Luis Sanz
- Dental Pathology and Therapeutics Unit, Department of Stomatology, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (A.A.); (C.L.)
| | - Leopoldo Forner
- Dental Pathology and Therapeutics Unit, Department of Stomatology, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (A.A.); (C.L.)
- Correspondence: ; Tel.: +34-96386-4175
| | - Alicia Almudéver
- Dental Pathology and Therapeutics Unit, Department of Stomatology, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (A.A.); (C.L.)
| | - Julia Guerrero-Gironés
- Special Care and Gerodontology Unit, Department of Stomatology, University of Murcia, 30100 Murcia, Spain;
| | - Carmen Llena
- Dental Pathology and Therapeutics Unit, Department of Stomatology, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (A.A.); (C.L.)
| |
Collapse
|
40
|
Pedano MS, Li X, Camargo B, Hauben E, De Vleeschauwer S, Yoshihara K, Van Landuyt K, Yoshida Y, Van Meerbeek B. Injectable phosphopullulan-functionalized calcium-silicate cement for pulp-tissue engineering: An in-vivo and ex-vivo study. Dent Mater 2020; 36:512-526. [PMID: 32061443 DOI: 10.1016/j.dental.2020.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/04/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To evaluate, by means of an ex-vivo human tooth-culture model and in-vivo minipig animal study, the pulpal inflammatory reaction and reparative dentin-formation capacity of an injectable phosphopullulan-based calcium-silicate cement (GC, Tokyo, Japan) upon pulp capping, this in comparison with the commercial reference material Biodentine (Septodont). METHODS For the ex-vivo tooth model, 9 freshly-extracted teeth from 3 different patients were pulp-capped with the experimental biomaterial (n = 3), Biodentine (n = 3) or left uncapped (control; n = 3). The teeth were kept in fresh culture medium for 4 weeks and, upon fixation three-dimensional Micro-CT and histology were performed. For the in-vivo animal study, 40 teeth from 3 minipigs were exposed and pulp capped with the experimental biomaterial containing phosphopullulan (n = 24) or Biodentine (n = 16) for 7 or 70 days. The inflammatory reaction and the tissue-regenerative potential was qualitatively and semi-quantitatively characterized using three-dimensional micro-CT and histology. RESULTS Ex vivo, the treatment with the experimental phosphopullulan-based calcium-silicate cement and Biodentine stimulated the formation of fibrous tissue and mineralized foci. In vivo, early inflammatory reaction and regeneration of the pulp-tissue interface was promoted by both bioceramic materials after 7 and 70 days, respectively. SIGNIFICANCE Our findings bring new insights into calcium-silicate-mediated dental pulp repair and regeneration. The novel ready-to-use and self-adhering functionalized calcium-silicate cement revealed effective pulpal repair potential.
Collapse
Affiliation(s)
- Mariano Simón Pedano
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Xin Li
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium; Wuhan University, School and Hospital of Stomatology, Ministry of Education, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Wuhan, PR China
| | - Bernardo Camargo
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium; Federal University of Rio de Janeiro, Nuclear Engineering Program, Rio de Janeiro, Brazil
| | - Esther Hauben
- UZ Leuven (University Hospitals Leuven), Laboratory for Pathology & KU Leuven (University of Leuven), Department of Imaging and Pathology, Translational Cell and Tissue Research, Leuven, Belgium
| | | | - Kumiko Yoshihara
- Okayama University Hospital, Center for Innovative Clinical Medicine, Okayama, Japan; National Institute of Advanced Industrial Science and Technology (AIST), Health Research Institute, Takamatsu, Japan
| | - Kirsten Van Landuyt
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Yasuhiro Yoshida
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium.
| |
Collapse
|