1
|
Juma MW, Birech Z, Mwenze NM, Ondieki AM, Maaza M, Mokhotjwa SD. Localized surface plasmon resonance sensing of Trenbolone acetate dopant using silver nanoparticles. Sci Rep 2024; 14:5721. [PMID: 38459089 PMCID: PMC10923944 DOI: 10.1038/s41598-024-56456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Abstract
In this work, localized surface plasmon resonance (LSPR) sensing as applicable in the detection of Trenbolone acetate dopant is demonstrated. We show that the LSPR of the Trenbolone acetate/silver nanoparticle (Tren Ac/AgNPs) complex is sensitive to changes in the adsorbent concentration. The results show an average redshift of + 18 nm in the LSPR peak with variations in intensity and broadening behavior of the LSPR band of the Tren Ac/AgNPs complex. AgNPs were synthesized using laser ablation in liquid (LAL) technique with water as the solvent. UV-Vis spectroscopy was used for absorbance measurements and particle size and morphology were monitored using scanning electron microscopy (SEM). The aggregation behavior of the Tren Ac/AgNPs complex was monitored using energy-dispersive X-ray spectroscopy (EDS). Molecular Electrostatic Potential (MEP) and the HOMO-LUMO orbitals of the optimized Trenbolone acetate structure were obtained using Density Function Theory (DFT). The molecule was optimized at the B3LYP level of theory using the 6-311 basis set carried out using the Gaussian 09 software package. The results showed that O2- is Trenbolone acetate's active site that would interact with Ag+ to form a complex that would influence the plasmon behavior. The results presented in this work demonstrate the feasibility of LSPR for anabolic androgenic steroid detection.
Collapse
Affiliation(s)
- Moses Wabwile Juma
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa.
- NANOAFNET, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Cape Town, 7129, Western Cape, South Africa.
- Department of Physics, University of South Africa, Muckleneuk Ridge, Pretoria, 0001, South Africa.
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya.
| | - Zephania Birech
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - Nancy Mwikali Mwenze
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
- NANOAFNET, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Cape Town, 7129, Western Cape, South Africa
- Department of Physics, University of South Africa, Muckleneuk Ridge, Pretoria, 0001, South Africa
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - Annah Moraa Ondieki
- Laser Physics and Spectroscopy Research Group, Department of Physics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
- NANOAFNET, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Cape Town, 7129, Western Cape, South Africa
- Department of Physics, University of South Africa, Muckleneuk Ridge, Pretoria, 0001, South Africa
| | - Simon Dhlamini Mokhotjwa
- Department of Physics, University of South Africa, Muckleneuk Ridge, Pretoria, 0001, South Africa
| |
Collapse
|
2
|
Mukherjee S, Dhar S. Synchronous fluorescence techniques for the detection and monitoring of selected fluorescent dyes in binary and multifluorophoric mixtures. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
|
3
|
Madhu M, Chao CM, Ke CY, Hsieh MM, Tseng WL. Directed self-assembly of Ag+-deposited MoS2 quantum dots for colorimetric, fluorescent and fluorescence-lifetime sensing of alkaline phosphatase. Anal Bioanal Chem 2022; 414:1909-1919. [DOI: 10.1007/s00216-021-03826-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/06/2021] [Accepted: 12/02/2021] [Indexed: 11/28/2022]
|
4
|
Deng H, Ray PC, Ghann WE, Uddin J, Samokhvalov A, Yu H. Distance-dependent Fluorescence Quenching on a Silver Nanoparticle Surface. CHEM LETT 2019. [DOI: 10.1246/cl.190684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hua Deng
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Paresh C Ray
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, USA
| | - William E. Ghann
- Department of Natural Sciences, Coppin State University, Baltimore, MD, USA
| | - Jamal Uddin
- Department of Natural Sciences, Coppin State University, Baltimore, MD, USA
| | | | - Hongtao Yu
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| |
Collapse
|
5
|
Budhani S, Egboluche NP, Arslan Z, Yu H, Deng H. Phytotoxic effect of silver nanoparticles on seed germination and growth of terrestrial plants. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:330-355. [PMID: 31661365 PMCID: PMC7773158 DOI: 10.1080/10590501.2019.1676600] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Silver nanoparticles (AgNP) exhibit size and concentration dependent toxicity to terrestrial plants, especially crops. AgNP exposure could decrease seed germination, inhibit seedling growth, affect mass and length of roots and shoots. The phytotoxic pathway has been partly understood. Silver (as element, ion or AgNP) accumulates in roots/leaves and triggers the defense mechanism at cellular and tissue levels, which alters metabolism, antioxidant activities and related proteomic expression. Botanical changes (either increase or decrease) in response to AgNP exposure include reactive oxygen species generation, superoxide dismutase activities, H2O2 level, total chlorophyll, proline, carotenoid, ascorbate and glutathione contents, etc. Such processes lead to abnormal morphological changes, suppression of photosynthesis and/or transpiration, and other symptoms. Although neutral or beneficial effects are also reported depending on plant species, adverse effects dominate in majority of the studies. More in depth research is needed to confidently draw any conclusions and to guide legislation and regulations.
Collapse
Affiliation(s)
- Shruti Budhani
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, USA
| | - Nzube Prisca Egboluche
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, USA
| | - Zikri Arslan
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, USA
| | - Hongtao Yu
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, USA
| | - Hua Deng
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, USA
| |
Collapse
|