1
|
de Oliveira Filho JG, Duarte LGR, Bonfim DO, Salgaço MK, Mattoso LHC, Egea MB. Shaping the Future of Functional Foods: Using 3D Printing for the Encapsulation and Development of New Probiotic Foods. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10382-5. [PMID: 39419915 DOI: 10.1007/s12602-024-10382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Consumers have been demanding foods that, besides providing nutrition, bring some health benefits, known as functional foods. The insertion of probiotics in foods is a strategy for developing functional foods. Still, it has been a challenge because these matrices have different pHs and undergo different process temperatures and times that can reduce the viability of these microorganisms. In this sense, encapsulation using 3D printing emerges to protect probiotic microorganisms and ensure that they reach the intestine viable and carry out the expected beneficial action. Thus, this review evaluates the current advancements in 3D printing to encapsulate and develop novel probiotic foods. Research has shown that 3D printing effectively encapsulates probiotic microorganisms, preserving their viability throughout the gastrointestinal tract. Studies have proven the effectiveness of 3D printing encapsulation in protecting probiotics during processing, storage, and digestion. Innovative formulations for 3D bioprinted products with probiotics, such as food structures based on cereals, mashed potatoes, and cream, have been developed. Producing products with shelf life and combining applications of phytochemicals and probiotics aims to improve personalized nutrition, textural characteristics, and sensory attributes of the foods produced by this emerging approach. Therefore, 3D printing of foods with probiotics has the potential to create new products that meet this demand.
Collapse
Affiliation(s)
| | | | - Diego Oliveira Bonfim
- Department of Electrical and Computer Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Mateus Kawata Salgaço
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | | | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil.
| |
Collapse
|
2
|
Skopinska-Wisniewska J, Tuszynska M, Kaźmierski Ł, Bartniak M, Bajek A. Gelatin-Sodium Alginate Hydrogels Cross-Linked by Squaric Acid and Dialdehyde Starch as a Potential Bio-Ink. Polymers (Basel) 2024; 16:2560. [PMID: 39339023 PMCID: PMC11435377 DOI: 10.3390/polym16182560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Hydrogels as biomaterials possess appropriate physicochemical and mechanical properties that enable the formation of a three-dimensional, stable structure used in tissue engineering and 3D printing. The integrity of the hydrogel composition is due to the presence of covalent or noncovalent cross-linking bonds. Using various cross-linking methods and agents is crucial for adjusting the properties of the hydrogel to specific biomedical applications, e.g., for direct bioprinting. The research subject was mixtures of gel-forming polymers: sodium alginate and gelatin. The polymers were cross-linked ionically with the addition of CaCl2 solutions of various concentrations (10%, 5%, 2.5%, and 1%) and covalently using squaric acid (SQ) and dialdehyde starch (DAS). Initially, the polymer mixture's composition and the hydrogel cross-linking procedure were determined. The obtained materials were characterized by mechanical property tests, swelling degree, FTIR, SEM, thermal analysis, and biological research. It was found that the tensile strength of hydrogels cross-linked with 1% and 2.5% CaCl2 solutions was higher than after using a 10% solution (130 kPa and 80 kPa, respectively), and at the same time, the elongation at break increased (to 75%), and the stiffness decreased (Young Modulus is 169 kPa and 104 kPa, respectively). Moreover, lowering the concentration of the CaCl2 solution from 10% to 1% reduced the final material's toxicity. The hydrogels cross-linked with 1% CaCl2 showed lower degradation temperatures and higher weight losses than those cross-linked with 2.5% CaCl2 and therefore were less thermally stable. Additional cross-linking using SQ and DAS had only a minor effect on the strength of the hydrogels, but especially the use of 1% DAS increased the material's elasticity. All tested hydrogels possess a 3D porous structure, with pores of irregular shape and heterogenic size, and their swelling degree initially increased sharply to the value of approx. 1000% during the first 6 h, and finally, it stabilized at a level of 1200-1600% after 24 h. The viscosity of 6% gelatin and 2% alginate solutions with and without cross-linking agents was similar, and they were only slightly shear-thinning. It was concluded that a mixture containing 2% sodium alginate and 6% gelatin presented optimal properties after gel formation and lowering the concentration of the CaCl2 solution to 1% improved the hydrogel's biocompatibility and positively influenced the cross-linking efficiency. Moreover, chemical cross-linking by DAS or SQ additionally improved the final hydrogel's properties and the mixture's printability. In conclusion, among the tested systems, the cross-linking of 6% gelatin-2% alginate mixtures by 1% DAS addition and 1% CaCl2 solution is optimal for tissue engineering applications and potentially suitable for 3D printing.
Collapse
Affiliation(s)
- Joanna Skopinska-Wisniewska
- Chair of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7 Street, 87-100 Torun, Poland
| | - Marta Tuszynska
- Chair of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7 Street, 87-100 Torun, Poland
- Department of Tissue Engineering, Chair of Urology and Andrology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Łukasz Kaźmierski
- Department of Tissue Engineering, Chair of Urology and Andrology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Mateusz Bartniak
- Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland
| | - Anna Bajek
- Department of Oncology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Lukasiewicza 1, 85-821 Bydgoszcz, Poland
| |
Collapse
|
3
|
de Villiers M, Kotzé AF, du Plessis LH. Pneumatic extrusion bioprinting-based high throughput fabrication of a melanoma 3D cell culture model for anti-cancer drug screening. Biomed Mater 2024; 19:055034. [PMID: 39025118 DOI: 10.1088/1748-605x/ad651f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
The high incidence of malignant melanoma highlights the need forin vitromodels that accurately represent the tumour microenvironment, enabling developments in melanoma therapy and drug screening. Despite several advancements in 3D cell culture models, appropriate melanoma models for evaluating drug efficacy are still in high demand. The 3D pneumatic extrusion-based bioprinting technology offers numerous benefits, including the ability to achieve high-throughput capabilities. However, there is a lack of research that combines pneumatic extrusion-based bioprinting with analytical assays to enable efficient drug screening in 3D melanoma models. To address this gap, this study developed a simple and highly reproducible approach to fabricate a 3D A375 melanoma cell culture model using the pneumatic extrusion-based bioprinting technology. To optimise this method, the bioprinting parameters for producing 3D cell cultures in a 96-well plate were adjusted to improve reproducibility while maintaining the desired droplet size and a cell viability of 92.13 ± 6.02%. The cross-linking method was optimised by evaluating cell viability and proliferation of the 3D bioprinted cells in three different concentrations of calcium chloride. The lower concentration of 50 mM resulted in higher cell viability and increased cell proliferation after 9 d of incubation. The A375 cells exhibited a steadier proliferation rate in the 3D bioprinted cell cultures, and tended to aggregate into spheroids, whereas the 2D cell cultures generally formed monolayered cell sheets. In addition, we evaluated the drug responses of four different anti-cancer drugs on the A375 cells in both the 2D and 3D cell cultures. The 3D cell cultures exhibited higher levels of drug resistance in all four tested anti-cancer drugs. This method presents a simple and cost-effective method of producing and analysing 3D cell culture models that do not add additional complexity to current assays and shows considerable potential for advancing 3D cell culture models' drug efficacy evaluations.
Collapse
Affiliation(s)
- Maryke de Villiers
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Awie F Kotzé
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Lissinda H du Plessis
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
4
|
Kripamol R, Velayudhan S, Anil Kumar PR. Evaluation of allylated gelatin as a bioink supporting spontaneous spheroid formation of HepG2 cells. Int J Biol Macromol 2024; 274:133259. [PMID: 38908647 DOI: 10.1016/j.ijbiomac.2024.133259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
The spheroid culture system has gained significant attention as an effective in vitro model to mimic the in vivo microenvironment. Even though numerous studies were focused on developing spheroids, the structural organization of encapsulated cells within hydrogels remains a challenge. Allylated gelatin or GelAGE is used as a bioink due to its excellent physicochemical properties. In this study, GelAGE was evaluated for its capacity to induce spontaneous spheroid formation in encapsulated HepG2 cells. GelAGE was synthesized and characterized using 1HNMR spectroscopy and ninhydrin assay. Then the physicochemical and biological attributes of GelAGE hydrogel was examined. The results demonstrate that GelAGE has remarkable ability to induce the encapsulated cells to self-organize into spheroids.
Collapse
Affiliation(s)
- R Kripamol
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Shiny Velayudhan
- Division of Dental Products, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - P R Anil Kumar
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
5
|
Vettori L, Tran HA, Mahmodi H, Filipe EC, Wyllie K, Liu Chung Ming C, Cox TR, Tipper J, Kabakova IV, Rnjak-Kovacina J, Gentile C. Silk fibroin increases the elasticity of alginate-gelatin hydrogels and regulates cardiac cell contractile function in cardiac bioinks. Biofabrication 2024; 16:035025. [PMID: 38776895 DOI: 10.1088/1758-5090/ad4f1b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Silk fibroin (SF) is a natural protein extracted fromBombyx morisilkworm thread. From its common use in the textile industry, it emerged as a biomaterial with promising biochemical and mechanical properties for applications in the field of tissue engineering and regenerative medicine. In this study, we evaluate for the first time the effects of SF on cardiac bioink formulations containing cardiac spheroids (CSs). First, we evaluate if the SF addition plays a role in the structural and elastic properties of hydrogels containing alginate (Alg) and gelatin (Gel). Then, we test the printability and durability of bioprinted SF-containing hydrogels. Finally, we evaluate whether the addition of SF controls cell viability and function of CSs in Alg-Gel hydrogels. Our findings show that the addition of 1% (w/v) SF to Alg-Gel hydrogels makes them more elastic without affecting cell viability. However, fractional shortening (FS%) of CSs in SF-Alg-Gel hydrogels increases without affecting their contraction frequency, suggesting an improvement in contractile function in the 3D cultures. Altogether, our findings support a promising pathway to bioengineer bioinks containing SF for cardiac applications, with the ability to control mechanical and cellular features in cardiac bioinks.
Collapse
Affiliation(s)
- L Vettori
- University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Heart Research Institute, Newtown, NSW 2042, Australia
| | - H A Tran
- University of New South Wales, Kensington, NSW 2052, Australia
| | - H Mahmodi
- University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - E C Filipe
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, Sydney, NSW 2052, Australia
| | - K Wyllie
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, Sydney, NSW 2052, Australia
| | - C Liu Chung Ming
- University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Heart Research Institute, Newtown, NSW 2042, Australia
| | - T R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, Sydney, NSW 2052, Australia
| | - J Tipper
- University of Technology Sydney, Ultimo, NSW 2007, Australia
- Royal Melbourne Institute of Technology, Melbourne, VIC 3000, Australia
| | - I V Kabakova
- University of Technology Sydney, Ultimo, NSW 2007, Australia
| | | | - C Gentile
- University of Technology Sydney, Ultimo, NSW 2007, Australia
- University of Sydney, Camperdown, NSW 2050, Australia
- The Heart Research Institute, Newtown, NSW 2042, Australia
| |
Collapse
|
6
|
DeMel DC, Wagner GA, Maresca JA, Geibel JP. Application of a 3D bioprinter: jet technology for 'biopatch' development using cells on hydrogel supports. Biotechniques 2024; 76:52-62. [PMID: 38084384 DOI: 10.2144/btn-2023-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Additive manufacturing (3D printing) has been deployed across multiple platforms to fabricate bioengineered tissues. We demonstrate the use of a Thermal Inkjet Pipette System (TIPS) for targeted delivery of cells onto manufactured substrates to design bio-bandages. Two cell lines - HEK 293 (kidney) and K7M2 wt (bone) - were applied using TIPS. We demonstrate a novel means for targeted cell delivery to a hydrogel support structure. These cell/support constructs (bio-bandages) had a high viability for survival and growth over extended periods. Combining a flexible biosupport with application of cells via TIPS printing now for the first time allows for custom cell substrate constructs with various densities to be deployed for regenerative medicine applications.
Collapse
Affiliation(s)
- Derek C DeMel
- Yale School of Engineering & Applied Science, New Haven, CT 06519, USA
| | - Grayson A Wagner
- Yale School of Engineering & Applied Science, New Haven, CT 06519, USA
| | | | - John P Geibel
- John B. Pierce Laboratory, New Haven, CT 06519, USA
- Department of Surgery & Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
7
|
Kurowiak J, Klekiel T, Będziński R. Biodegradable Polymers in Biomedical Applications: A Review-Developments, Perspectives and Future Challenges. Int J Mol Sci 2023; 24:16952. [PMID: 38069272 PMCID: PMC10707259 DOI: 10.3390/ijms242316952] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Biodegradable polymers are materials that, thanks to their remarkable properties, are widely understood to be suitable for use in scientific fields such as tissue engineering and materials engineering. Due to the alarming increase in the number of diagnosed diseases and conditions, polymers are of great interest in biomedical applications especially. The use of biodegradable polymers in biomedicine is constantly expanding. The application of new techniques or the improvement of existing ones makes it possible to produce materials with desired properties, such as mechanical strength, controlled degradation time and rate and antibacterial and antimicrobial properties. In addition, these materials can take virtually unlimited shapes as a result of appropriate design. This is additionally desirable when it is necessary to develop new structures that support or restore the proper functioning of systems in the body.
Collapse
Affiliation(s)
| | | | - Romuald Będziński
- Department of Biomedical Engineering, Institute of Material and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Licealna 9 Street, 65-417 Zielona Gora, Poland; (J.K.); (T.K.)
| |
Collapse
|
8
|
Thasu Dinakaran V, Santhaseelan H, Krishnan M, Devendiran V, Dahms HU, Duraikannu SL, Rathinam AJ. Gracilaria salicornia as potential substratum for green synthesis of Cerium Oxide Nanoparticles coupled hydrogel: An effective antimicrobial thin film. Microb Pathog 2023; 184:106360. [PMID: 37722491 DOI: 10.1016/j.micpath.2023.106360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Sodium alginate based (SA) hydrogel supplemented Cerium Oxide nanoparticles (CeO2NPs) was produced to fabricate an antimicrobial thin film using an aqueous extract of G. salicornia (Gs). The Gs-CeO2NPs were characterized via SEM, FT-IR, EDX, XRD and DLS, the particle size was 200 nm, agreed with XRD. Gs-SA powder was extracted and incorporated with CeO2NPs. The Gs-SA and its composite thin film (Gs-CeO2NPs-SATF) were characterized including viscosity, FT-IR, TGA, and SEM. The adhesion of Gs-SA coating around Gs-CeO2NPs confirmed via FTIR. The antimicrobial properties of Gs-CeO2NPs and CeO2NPs-SATF were proved in MICs for E. coli and Candida albicans at 62.5 and 250.0 μg/mL. The biofilm inhibition efficiency of CeO2NPs-SATF was 74.67 ± 0.98% and 65.45 ± 0.40% for E. coli and Candida albicans. The CeO2NPs-SATF was polydisperse in nature and film structure gets fluctuated with NPs concentration. Increased NPs into SATF enhances pore size of gel and corroborated with viscous behaviour. The cytotoxicity of Gs-CeO2NP-SA in Artemia salina at higher concentration 100 μg/mL provides less lethal effect into the adult. The antioxidant activity of Gs-CeO2NP-SA in DPPH assay was noticed at 0.6 mg ml-1 with radical scavenging activity at 65.85 ± 0.81%. Thus the Gs-CeO2NP-SATF would be suitable in antimicrobial applications.
Collapse
Affiliation(s)
| | - Henciya Santhaseelan
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Muthukumar Krishnan
- Department of Petrochemical Technology, Bharathidasan Institute of Technology Campus, University College of Engineering, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Velmurugan Devendiran
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Hans Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | | | - Arthur James Rathinam
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
9
|
Hopson C, Rigual V, Alonso MV, Oliet M, Rodriguez F. Eucalyptus bleached kraft pulp-ionic liquid inks for 3D printing of ionogels and hydrogels. Carbohydr Polym 2023; 313:120897. [PMID: 37182980 DOI: 10.1016/j.carbpol.2023.120897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/22/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023]
Abstract
3D printing has been recently recognized as one of the most promising technologies due to the multiple options to fabricate cost-effective and customizable objects. However, the necessity to substitute fossil fuels as raw materials is increasing the research on bio-based inks with recyclable and eco-friendly properties. In this work, we formulated inks for the 3D printing of ionogels and hydrogels with bleached kraft pulp dissolved in [Emim][DMP] at different concentrations (1-4 wt%). We explored each ink's rheological properties and printability and compared the printability parameters with a commercial ink. The rheological results showed that the 3 % and 4 % cellulose-ionic liquid inks exhibited the best properties. Both had values of damping factor between 0.4 and 0.7 and values of yield stress between 1900 and 2500 Pa. Analyzing the printability, the 4 wt% ink was selected as the most promising because the printed ionogels and the hydrogels had the best print resolution and fidelity, similar to the reference ink. After printing, ionogels and hydrogels had values of the elastic modulus (G') between 103 and 104 Pa, and the ionogels are recyclables. Altogether, these 3D printed cellulose ionogels and hydrogels may have an opportunity in the electrochemical and medical fields, respectively.
Collapse
Affiliation(s)
- Cynthia Hopson
- Chemical Engineering and Materials Department, Complutense University of Madrid, Av. Complutense S/N, 28040 Madrid, Spain.
| | - Victoria Rigual
- Chemical Engineering and Materials Department, Complutense University of Madrid, Av. Complutense S/N, 28040 Madrid, Spain
| | - M Virginia Alonso
- Chemical Engineering and Materials Department, Complutense University of Madrid, Av. Complutense S/N, 28040 Madrid, Spain
| | - Mercedes Oliet
- Chemical Engineering and Materials Department, Complutense University of Madrid, Av. Complutense S/N, 28040 Madrid, Spain
| | - Francisco Rodriguez
- Chemical Engineering and Materials Department, Complutense University of Madrid, Av. Complutense S/N, 28040 Madrid, Spain
| |
Collapse
|
10
|
Asim S, Tabish TA, Liaqat U, Ozbolat IT, Rizwan M. Advances in Gelatin Bioinks to Optimize Bioprinted Cell Functions. Adv Healthc Mater 2023; 12:e2203148. [PMID: 36802199 PMCID: PMC10330013 DOI: 10.1002/adhm.202203148] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/31/2023] [Indexed: 02/21/2023]
Abstract
Gelatin is a widely utilized bioprinting biomaterial due to its cell-adhesive and enzymatically cleavable properties, which improve cell adhesion and growth. Gelatin is often covalently cross-linked to stabilize bioprinted structures, yet the covalently cross-linked matrix is unable to recapitulate the dynamic microenvironment of the natural extracellular matrix (ECM), thereby limiting the functions of bioprinted cells. To some extent, a double network bioink can provide a more ECM-mimetic, bioprinted niche for cell growth. More recently, gelatin matrices are being designed using reversible cross-linking methods that can emulate the dynamic mechanical properties of the ECM. This review analyzes the progress in developing gelatin bioink formulations for 3D cell culture, and critically analyzes the bioprinting and cross-linking techniques, with a focus on strategies to optimize the functions of bioprinted cells. This review discusses new cross-linking chemistries that recapitulate the viscoelastic, stress-relaxing microenvironment of the ECM, and enable advanced cell functions, yet are less explored in engineering the gelatin bioink. Finally, this work presents the perspective on the areas of future research and argues that the next generation of gelatin bioinks should be designed by considering cell-matrix interactions, and bioprinted constructs should be validated against currently established 3D cell culture standards to achieve improved therapeutic outcomes.
Collapse
Affiliation(s)
- Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
| | - Tanveer A. Tabish
- Cardiovascular Division, Radcliff Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Usman Liaqat
- Department of Materials Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Pakistan
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics, Penn State, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State, Hershey, PA 16802, USA
- Department of Medical Oncology, Cukurova University, Adana 01330, Turkey
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
- Health Research Institute, Michigan Technological University, Houghton, MI, 49931 USA
| |
Collapse
|
11
|
Budharaju H, Sundaramurthi D, Sethuraman S. Efficient dual crosslinking of protein-in-polysaccharide bioink for biofabrication of cardiac tissue constructs. BIOMATERIALS ADVANCES 2023; 152:213486. [PMID: 37302210 DOI: 10.1016/j.bioadv.2023.213486] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023]
Abstract
Myocardial infarction (MI) is a lethal cardiac disease that causes most of the mortality across the world. MI is a consequence of plaque in the arterial walls of heart, which eventually result in occlusion and ischemia to the myocardial tissues due to inadequate nutrient and oxygen supply. As an efficient alternative to the existing treatment strategies for MI, 3D bioprinting has evolved as an advanced tissue fabrication technique where the cell-laden bioinks are printed layer-by-layer to create functional cardiac patches. In this study, a dual crosslinking strategy has been utilized towards 3D bioprinting of myocardial constructs by using a combination of alginate and fibrinogen. Herein, pre-crosslinking of the physically blended alginate-fibrinogen bioinks with CaCl2 enhanced the shape fidelity and printability of the printed structures. Physicochemical properties of the bioinks such as rheology, fibrin distribution, swelling ratio and degradation behaviour, were determined post-printing for only ionically crosslinked & dual crosslinked constructs and found to be ideal for bioprinting of cardiac constructs. Human ventricular cardiomyocytes (AC 16) exhibited a significant increase in cell proliferation on day 7 and 14 in AF-DMEM-20 mM CaCl2 bioink when compared to A-DMEM-20 mM CaCl2 (p < 0.05). Furthermore, myocardial patches containing neonatal ventricular rat myocytes (NVRM) showed >80 % viability and also expressed sarcomeric alpha actinin & connexin 43. These results indicate that the dual crosslinking strategy was cytocompatible and also possess the potential to be used for biofabrication of thick myocardial constructs for regenerative medicine applications.
Collapse
Affiliation(s)
- Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| |
Collapse
|
12
|
Wang J, Cui Z, Maniruzzaman M. Bioprinting: a focus on improving bioink printability and cell performance based on different process parameters. Int J Pharm 2023; 640:123020. [PMID: 37149110 DOI: 10.1016/j.ijpharm.2023.123020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Three dimensional (3D) bioprinting is an emerging biofabrication technique that shows great potential in the field of tissue engineering, regenerative medicine and advanced drug delivery. Despite the current advancement of bioprinting technology, it faces several obstacles such as the challenge of optimizing the printing resolution of 3D constructs while retaining cell viability before, during, and after bioprinting. Therefore, it is of great significance to fully understand factors that influence the shape fidelity of printed structures and the performance of cells encapsulated in bioinks. This review presents a comprehensive analysis of bioprinting process parameters that influence bioink printability and cell performance, including bioink properties (composition, concentration, and component ratio), printing speed and pressure, nozzle charateristics (size, length, and geometry), and crosslinking parameters (crosslinker types, concentration, and crosslinking time). Key examples are provided to analyze how these parameters could be tailored to achieve the optimal printing resolution as well as cell performance. Finally, future prospects of bioprinting technology, including correlating process parameters to particular cell types with predefined applications, applying statistical analysis and artificial intelligence (AI)/machine learning (ML) technique in parameter screening, and optimizing 4D bioprinting process parameters, are highlighted.
Collapse
Affiliation(s)
- Jiawei Wang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
13
|
Kyser AJ, Masigol M, Mahmoud MY, Ryan M, Lewis WG, Lewis AL, Frieboes HB, Steinbach-Rankins JM. Fabrication and characterization of bioprints with Lactobacillus crispatus for vaginal application. J Control Release 2023; 357:545-560. [PMID: 37076014 PMCID: PMC10696519 DOI: 10.1016/j.jconrel.2023.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Bacterial vaginosis (BV) is characterized by low levels of lactobacilli and overgrowth of potential pathogens in the female genital tract. Current antibiotic treatments often fail to treat BV in a sustained manner, and > 50% of women experience recurrence within 6 months post-treatment. Recently, lactobacilli have shown promise for acting as probiotics by offering health benefits in BV. However, as with other active agents, probiotics often require intensive administration schedules incurring difficult user adherence. Three-dimensional (3D)-bioprinting enables fabrication of well-defined architectures with tunable release of active agents, including live mammalian cells, offering the potential for long-acting probiotic delivery. One promising bioink, gelatin alginate has been previously shown to provide structural stability, host compatibility, viable probiotic incorporation, and cellular nutrient diffusion. This study formulates and characterizes 3D-bioprinted Lactobacillus crispatus-containing gelatin alginate scaffolds for gynecologic applications. Different weight to volume (w/v) ratios of gelatin alginate were bioprinted to determine formulations with highest printing resolution, and different crosslinking reagents were evaluated for effect on scaffold integrity via mass loss and swelling measurements. Post-print viability, sustained-release, and vaginal keratinocyte cytotoxicity assays were conducted. A 10:2 (w/v) gelatin alginate formulation was selected based on line continuity and resolution, while degradation and swelling experiments demonstrated greatest structural stability with dual genipin and calcium crosslinking, showing minimal mass loss and swelling over 28 days. 3D-bioprinted L. crispatus-containing scaffolds demonstrated sustained release and proliferation of live bacteria over 28 days, without impacting viability of vaginal epithelial cells. This study provides in vitro evidence for 3D-bioprinted scaffolds as a novel strategy to sustain probiotic delivery with the ultimate goal of restoring vaginal lactobacilli following microbiological disturbances.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohammadali Masigol
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Mark Ryan
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Warren G Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA.
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
14
|
Fabrication of 3D Bioprinted Bi-Phasic Scaffold for Bone–Cartilage Interface Regeneration. Biomimetics (Basel) 2023; 8:biomimetics8010087. [PMID: 36975317 PMCID: PMC10046269 DOI: 10.3390/biomimetics8010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Treatments for osteochondral defects (OCDs) are mainly palliative and, with the increase in this pathology seen among both young and elderly people, an alternative treatment modality is sought. Many tissue-engineered strategies have been explored for regenerating the cartilage–bone interface; however, they generally fall short of being ideal. Although cell-laden hydrogel scaffolds are a common approach for bone and cartilage tissue regeneration, they usually lack homogenous cell dispersion and patient specificity. In this study, a biphasic 3D bioprinted composite scaffold was fabricated for cartilage–bone interface regeneration. To overcome the shortcoming of both materials, alginate–gelatin (A–G) hydrogel was used to confer a naturally occurring environment for the cells and polycaprolactone (PCL) was used to enhance mechanical stability, thus maximizing the overall performance. Hydroxyapatite fillers were added to the PCL in the bone phase of the scaffold to improve its bioactivity. Physical and biological evaluation of scaffolds in both phases was assessed. The scaffolds demonstrated a desirable biological response both singly and in the combined PCL/A-G scaffolds, in both the short term and longer term, showing promise as an interfacial material between cartilage and bone.
Collapse
|
15
|
Kakarla AB, Kong I, Nguyen TH, Kong C, Irving H. Boron nitride nanotubes reinforced gelatin hydrogel-based ink for bioprinting and tissue engineering applications. BIOMATERIALS ADVANCES 2022; 141:213103. [PMID: 36084352 DOI: 10.1016/j.bioadv.2022.213103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The rapid evolution of 3D bioprinting technique, very few biomaterials have been studied and utilised as ink solutions to produce structures. In this work, a polymeric nanocomposite hydrogel-based ink solution was developed using boron nitride nanotubes (BNNTs) reinforced gelatin for 3D bioprinting of scaffolds. The ink solutions and printed scaffolds were characterised for their printability, mechanical, thermal, water uptake, and biological properties (cell viability and inflammation). The viscoelastic behaviour of the scaffolds indicated the increase in storage modulus with an increase in BNNTs composition. Additionally, the compressive strength of the scaffolds increased from 9.43 ± 1.3 kPa to 30.09 ± 1.5 kPa with the addition of BNNTs. Similarly, the thermal stability of the scaffolds enhanced with an increase in BNNTs composition. Furthermore, the scaffolds with a higher concentration of BNNTs displayed resilience in cell culture media at 37 °C for up to 14 days compared with pure gelatin scaffolds. The cell viability results showed a decreased viability rate with an increased concentration of BNNTs scaffolds. However, BNNTs incubated with cells did not display cytokine inflammation. Therefore, this work provides a potential hydrogel-based ink solution for 3D bioprinting of biomimetic tissue constructs with adequate structural stability for a wide range of tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Akesh Babu Kakarla
- School of Computing Engineering and Mathematical Sciences, La Trobe University, Bendigo, Victoria 3350, Australia
| | - Ing Kong
- School of Computing Engineering and Mathematical Sciences, La Trobe University, Bendigo, Victoria 3350, Australia.
| | - Trang Hong Nguyen
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Sciences, Bendigo, Victoria 3550, Australia
| | - Cin Kong
- Department of Biomedical Sciences, University of Nottingham Malaysia Campus, Semenyih, Selangor 43500, Malaysia
| | - Helen Irving
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Sciences, Bendigo, Victoria 3550, Australia
| |
Collapse
|
16
|
Zineh BR, Roshangar L, Meshgi S, Shabgard M. 3D printing of alginate/thymoquinone/halloysite nanotube bio-scaffolds for cartilage repairs: experimental and numerical study. Med Biol Eng Comput 2022; 60:3069-3080. [DOI: 10.1007/s11517-022-02654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
|
17
|
Beheshtizadeh N, Gharibshahian M, Pazhouhnia Z, Rostami M, Zangi AR, Maleki R, Azar HK, Zalouli V, Rajavand H, Farzin A, Lotfibakhshaiesh N, Sefat F, Azami M, Webster TJ, Rezaei N. Commercialization and regulation of regenerative medicine products: Promises, advances and challenges. Biomed Pharmacother 2022; 153:113431. [DOI: 10.1016/j.biopha.2022.113431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022] Open
|
18
|
A Three-Dimensional Bioprinted Copolymer Scaffold with Biocompatibility and Structural Integrity for Potential Tissue Regeneration Applications. Polymers (Basel) 2022; 14:polym14163415. [PMID: 36015671 PMCID: PMC9413511 DOI: 10.3390/polym14163415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
The present study was to investigate the rheological property, printability, and cell viability of alginate−gelatin composed hydrogels as a potential cell-laden bioink for three-dimensional (3D) bioprinting applications. The 2 g of sodium alginate dissolved in 50 mL of phosphate buffered saline solution was mixed with different concentrations (1% (0.5 g), 2% (1 g), 3% (1.5 g), and 4% (2 g)) of gelatin, denoted as GBH-1, GBH-2, GBH-3, and GBH-4, respectively. The properties of the investigated hydrogels were characterized by contact angle goniometer, rheometer, and bioprinter. In addition, the hydrogel with a proper concentration was adopted as a cell-laden bioink to conduct cell viability testing (before and after bioprinting) using Live/Dead assay and immunofluorescence staining with a human corneal fibroblast cell line. The analytical results indicated that the GBH-2 hydrogel exhibited the lowest loss rate of contact angle (28%) and similar rheological performance as compared with other investigated hydrogels and the control group. Printability results also showed that the average wire diameter of the GBH-2 bioink (0.84 ± 0.02 mm (*** p < 0.001)) post-printing was similar to that of the control group (0.79 ± 0.05 mm). Moreover, a cell scaffold could be fabricated from the GBH-2 bioink and retained its shape integrity for 24 h post-printing. For bioprinting evaluation, it demonstrated that the GBH-2 bioink possessed well viability (>70%) of the human corneal fibroblast cell after seven days of printing under an ideal printing parameter combination (0.4 mm of inner diameter needle, 0.8 bar of printing pressure, and 25 °C of printing temperature). Therefore, the present study suggests that the GBH-2 hydrogel could be developed as a potential cell-laden bioink to print a cell scaffold with biocompatibility and structural integrity for soft tissues such as skin, cornea, nerve, and blood vessel regeneration applications.
Collapse
|
19
|
Investigation of Collagen-Incorporated Sodium Alginate Bioprinting Hydrogel for Tissue Engineering. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6080227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tissue engineering is a promising area that is aimed at tissue regeneration and wound repair. Sodium alginate (SA) has been widely used as one of the most biocompatible materials for tissue engineering. The cost-efficiency and rapid gel ability made SA attractive in would healing and regeneration area. To improve printability and elasticity, many hydrogel-based bioinks were developed by mixing SA with other natural or synthetic polymers. In this paper, composite SA/COL bioink was used for the bioprinting of artificial cartilage tissue mimicries. The results showed that the concentration of both SA and COL has significant effects on filament diameter and merging. A higher concentration of the bioink solution led to better printing fidelity and less deformation. Overall, a higher SA concentration and a lower COL concentration contributed to a lower shrinkage ratio after crosslinking. In summary, the SA/COL composite bioink has favorable rheological properties and this study provided material composition optimization for future bioprinting of engineered tissues.
Collapse
|
20
|
Marzi J, Fuhrmann E, Brauchle E, Singer V, Pfannstiel J, Schmidt I, Hartmann H. Non-Invasive Three-Dimensional Cell Analysis in Bioinks by Raman Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30455-30465. [PMID: 35777738 PMCID: PMC9284518 DOI: 10.1021/acsami.1c24463] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
3D bioprinting is an emerging biofabrication strategy using bioinks, comprising cells and biocompatible materials, to produce functional tissue models. Despite progress in building increasingly complex objects, biological analyses in printed constructs remain challenging. Especially, methods that allow non-invasive and non-destructive evaluation of embedded cells are largely missing. Here, we implemented Raman imaging for molecular-sensitive investigations on bioprinted objects. Different aspects such as culture formats (2D, 3D-cast, and 3D-printed), cell types (endothelial cells and fibroblasts), and the selection of the biopolymer (alginate, alginate/nanofibrillated cellulose, alginate/gelatin) were considered and evaluated. Raman imaging allowed for marker-independent identification and localization of subcellular components against the surrounding biomaterial background. Furthermore, single-cell analysis of spectral signatures, performed by multivariate analysis, demonstrated discrimination between endothelial cells and fibroblasts and identified cellular features influenced by the bioprinting process. In summary, Raman imaging was successfully established to analyze cells in 3D culture in situ and evaluate them with regard to the localization of different cell types and their molecular phenotype as a valuable tool for quality control of bioprinted objects.
Collapse
Affiliation(s)
- Julia Marzi
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
- Institute
of Biomedical Engineering, Department for Medical Technologies &
Regenerative Medicine, Eberhard Karls University, Tübingen 72074, Germany
- Cluster
of Excellence iFIT (EXC 2180) Image-Guided and Functionally Instructed
Tumor Therapies, University of Tübingen, Tübingen 72074, Germany
| | - Ellena Fuhrmann
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
| | - Eva Brauchle
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
- Institute
of Biomedical Engineering, Department for Medical Technologies &
Regenerative Medicine, Eberhard Karls University, Tübingen 72074, Germany
- Cluster
of Excellence iFIT (EXC 2180) Image-Guided and Functionally Instructed
Tumor Therapies, University of Tübingen, Tübingen 72074, Germany
| | - Verena Singer
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
| | - Jessica Pfannstiel
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
| | - Isabelle Schmidt
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
| | - Hanna Hartmann
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
- . Phone: +49712151530872
| |
Collapse
|
21
|
Alginate-Lysozyme Nanofibers Hydrogels with Improved Rheological Behavior, Printability and Biological Properties for 3D Bioprinting Applications. NANOMATERIALS 2022; 12:nano12132190. [PMID: 35808026 PMCID: PMC9268501 DOI: 10.3390/nano12132190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023]
Abstract
In this study, alginate nanocomposite hydrogel bioinks reinforced with lysozyme nanofibers (LNFs) were developed. Alginate-LNF (A-LNF) suspensions with different LNF contents (1, 5 and 10 wt.%) were prepared and pre-crosslinked with 0.5% (w/v) CaCl2 to formulate A-LNF inks. These inks exhibit proper shear-thinning behavior and good recovery properties (~90%), with the pre-crosslinking step playing a crucial role. A-LNF fully crosslinked hydrogels (with 2% (w/v) CaCl2) that mimic 3D printing scaffolds were prepared, and it was observed that the addition of LNFs improved several properties of the hydrogels, such as the morphology, swelling and degradation profiles, and mechanical properties. All formulations are also noncytotoxic towards HaCaT cells. The printing parameters and 3D scaffold model were then optimized, with A-LNF inks showing improved printability. Selected A-LNF inks (A-LNF0 and A-LNF5) were loaded with HaCaT cells (cell density 2 × 106 cells mL−1), and the cell viability within the bioprinted scaffolds was evaluated for 1, 3 and 7 days, with scaffolds printed with the A-LNF5 bioink showing the highest values for 7 days (87.99 ± 1.28%). Hence, A-LNF bioinks exhibited improved rheological performance, printability and biological properties representing a good strategy to overcome the main limitations of alginate-based bioinks.
Collapse
|
22
|
Teixeira MC, Lameirinhas NS, Carvalho JPF, Silvestre AJD, Vilela C, Freire CSR. A Guide to Polysaccharide-Based Hydrogel Bioinks for 3D Bioprinting Applications. Int J Mol Sci 2022; 23:6564. [PMID: 35743006 PMCID: PMC9223682 DOI: 10.3390/ijms23126564] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Three-dimensional (3D) bioprinting is an innovative technology in the biomedical field, allowing the fabrication of living constructs through an approach of layer-by-layer deposition of cell-laden inks, the so-called bioinks. An ideal bioink should possess proper mechanical, rheological, chemical, and biological characteristics to ensure high cell viability and the production of tissue constructs with dimensional stability and shape fidelity. Among the several types of bioinks, hydrogels are extremely appealing as they have many similarities with the extracellular matrix, providing a highly hydrated environment for cell proliferation and tunability in terms of mechanical and rheological properties. Hydrogels derived from natural polymers, and polysaccharides, in particular, are an excellent platform to mimic the extracellular matrix, given their low cytotoxicity, high hydrophilicity, and diversity of structures. In fact, polysaccharide-based hydrogels are trendy materials for 3D bioprinting since they are abundant and combine adequate physicochemical and biomimetic features for the development of novel bioinks. Thus, this review portrays the most relevant advances in polysaccharide-based hydrogel bioinks for 3D bioprinting, focusing on the last five years, with emphasis on their properties, advantages, and limitations, considering polysaccharide families classified according to their source, namely from seaweed, higher plants, microbial, and animal (particularly crustaceans) origin.
Collapse
Affiliation(s)
| | | | | | | | | | - Carmen S. R. Freire
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.T.); (N.S.L.); (J.P.F.C.); (A.J.D.S.); (C.V.)
| |
Collapse
|
23
|
Shams E, Barzad MS, Mohamadnia S, Tavakoli O, Mehrdadfar A. A review on alginate-based bioinks, combination with other natural biomaterials and characteristics. J Biomater Appl 2022; 37:355-372. [PMID: 35510845 DOI: 10.1177/08853282221085690] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The advent of three-dimensional (3D) Bioprinting increased the need for a suitable bioink in which Cells can live, proliferate and generate specific tissue and organ. Therefore, bioinks must have several physical and chemical characteristics that depend on the bioprinting modality and the target tissue. Alginate is considered a promising biomaterial for bioprinting due to its distinct physicochemical properties and diverse biological functions. However, some characteristics, such as cell adherence and biodegradability, are lacking, which can compensate when combined with other biomaterials, for example, gelatin, gelatin methacryloyl (GelMa), cellulose, silk fibroin, and hyaluronic acid. The alginate-gelatin blend receives considerable attention since gelatin has Arginine, Glycine, and Aspartate, the tripeptide Arg-Gly-Asp (RGD) sequence that could sustain cell attachment. Some parameters assist the optimization of bioink features like temperature, biomaterials' concentration, and crosslinking time. For instance, the viscosity of alginate increases by enhancing its concentration, and while it exhibits shear thinning property, it will be printed correctly. This review interprets the alginate-based bioink, focusing on its composite with other natural biomaterials, especially gelatin. Also, it discusses the parameters that affect bioink functionality and cell viability.
Collapse
Affiliation(s)
- Elika Shams
- School of Chemical Engineering, College of Engineering, 48425University of Tehran, Tehran, Iran.,Research and Development Department, Iranian National Algae Culture Collection, Tehran, Iran
| | - Mohammad Sadegh Barzad
- School of Chemical Engineering, College of Engineering, 48425University of Tehran, Tehran, Iran.,Research and Development Department, Iranian National Algae Culture Collection, Tehran, Iran
| | - Sonia Mohamadnia
- School of Chemical Engineering, College of Engineering, 48425University of Tehran, Tehran, Iran.,Research and Development Department, Iranian National Algae Culture Collection, Tehran, Iran
| | - Omid Tavakoli
- School of Chemical Engineering, College of Engineering, 48425University of Tehran, Tehran, Iran.,Research and Development Department, Iranian National Algae Culture Collection, Tehran, Iran
| | - Alireza Mehrdadfar
- School of Chemical Engineering, College of Engineering, 48425University of Tehran, Tehran, Iran.,Research and Development Department, Iranian National Algae Culture Collection, Tehran, Iran
| |
Collapse
|
24
|
Correlating Rheological Properties of a Gellan Gum-Based Bioink: A Study of the Impact of Cell Density. Polymers (Basel) 2022; 14:polym14091844. [PMID: 35567015 PMCID: PMC9102283 DOI: 10.3390/polym14091844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Here, for the production of a bioink-based gellan gum, an amino derivative of this polysaccharide was mixed with a mono-functionalized aldehyde polyethyleneglycol in order to improve viscoelastic macroscopic properties and the potential processability by means of bioprinting techniques as confirmed by the printing tests. The dynamic Schiff base linkage between amino and aldehyde groups temporally modulates the rheological properties and allows a reduction of the applied pressure during extrusion followed by the recovery of gellan gum strength. Rheological properties, often related to printing resolution, were extensively investigated confirming pseudoplastic behavior and thermotropic and ionotropic responses. The success of bioprinting is related to different parameters. Among them, cell density must be carefully selected, and in order to quantify their role on printability, murine preostoblastic cells (MC3T3-E1) and human colon tumor cells (HCT-116) were chosen as cell line models. Here, we investigated the effect of their density on the bioink’s rheological properties, showing a more significant difference between cell densities for MC3T3-E1 compared to HCT-116. The results suggest the necessity of not neglecting this aspect and carrying out preliminary studies to choose the best cell densities to have the maximum viability and consequently to set the printing parameters.
Collapse
|
25
|
Lin J, Jiao G, Kermanshahi-pour A. Algal Polysaccharides-Based Hydrogels: Extraction, Synthesis, Characterization, and Applications. Mar Drugs 2022; 20:306. [PMID: 35621958 PMCID: PMC9146341 DOI: 10.3390/md20050306] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrogels are three-dimensional crosslinked hydrophilic polymer networks with great potential in drug delivery, tissue engineering, wound dressing, agrochemicals application, food packaging, and cosmetics. However, conventional synthetic polymer hydrogels may be hazardous and have poor biocompatibility and biodegradability. Algal polysaccharides are abundant natural products with biocompatible and biodegradable properties. Polysaccharides and their derivatives also possess unique features such as physicochemical properties, hydrophilicity, mechanical strength, and tunable functionality. As such, algal polysaccharides have been widely exploited as building blocks in the fabrication of polysaccharide-based hydrogels through physical and/or chemical crosslinking. In this review, we discuss the extraction and characterization of polysaccharides derived from algae. This review focuses on recent advances in synthesis and applications of algal polysaccharides-based hydrogels. Additionally, we discuss the techno-economic analyses of chitosan and acrylic acid-based hydrogels, drawing attention to the importance of such analyses for hydrogels. Finally, the future prospects of algal polysaccharides-based hydrogels are outlined.
Collapse
Affiliation(s)
- Jianan Lin
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., Halifax, NS B3J 1Z1, Canada;
| | - Guangling Jiao
- AKSO Marine Biotech Inc., Suite 3, 1697 Brunswick St., Halifax, NS B3J 2G3, Canada;
| | - Azadeh Kermanshahi-pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., Halifax, NS B3J 1Z1, Canada;
| |
Collapse
|
26
|
High-cytocompatible semi-IPN bio-ink with wide molecular weight distribution for extrusion 3D bioprinting. Sci Rep 2022; 12:6349. [PMID: 35428800 PMCID: PMC9012805 DOI: 10.1038/s41598-022-10338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
The development of 3D printing has recently attracted significant attention on constructing complex three-dimensional physiological microenvironments. However, it is very challenging to provide a bio-ink with cell-harmless and high mold accuracy during extrusion in 3D printing. To overcome this issue, a technique improving the shear-thinning performance of semi-IPN bio-ink, which is universally applicable to all alginate/gelatin-based materials, was developed. Semi-IPN bio-ink prepared by cyclic heating–cooling treatment in this study can reduce the cell damage without sacrificing the accuracy of the scaffolds for its excellent shear-thinning performance. A more than 15% increase in post-printing Cell viability verified the feasibility of the strategy. Moreover, the bio-ink with low molecular weight and wide molecular weight distribution also promoted a uniform cell distribution and cell proliferation in clusters. Overall, this strategy revealed the effects of molecular parameters of semi-IPN bio-inks on printing performance, and the cell activity was studied and it could be widely applicable to construct the simulated extracellular matrix with various bio-inks.
Collapse
|
27
|
Geevarghese R, Somasekharan LT, Bhatt A, Kasoju N, Nair RP. Development and evaluation of a multicomponent bioink consisting of alginate, gelatin, diethylaminoethyl cellulose and collagen peptide for 3D bioprinting of tissue construct for drug screening application. Int J Biol Macromol 2022; 207:278-288. [PMID: 35257733 DOI: 10.1016/j.ijbiomac.2022.02.191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022]
Abstract
Three dimensional (3D) bioprinting technology has been making a progressive advancement in the field of tissue engineering to produce tissue constructs that mimic the shape, framework, and microenvironment of an organ. The technology has not only paved the way to organ development but has been widely studied for its application in drug and cosmetic testing using 3D bioprinted constructs. However, not much has been explored on the utilization of bioprinting technology for the development of tumor models to test anti-cancer drug efficacy. The conventional methodology involves a two dimensional (2D) monolayer model to test cellular drug response which has multiple limitations owing to its inability to mimic the natural tissue environment. The choice of bioink for 3D bioprinting is critical as cell morphology and proliferation depend greatly on the property of bioink. In this study, we developed a multicomponent bioink composed of alginate, diethylaminoethyl cellulose, gelatin, and collagen peptide to generate a 3D bioprinted construct. The bioink has been characterised and validated for its printability, shape fidelity and biocompatibility to be used for generating tumor models. Further, a bioprinted tumor model was developed using lung cancer cell line and the efficacy of 3D printed construct for drug screening application was established.
Collapse
Affiliation(s)
- Rency Geevarghese
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Lakshmi T Somasekharan
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Anugya Bhatt
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Naresh Kasoju
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Renjith P Nair
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India.
| |
Collapse
|
28
|
Jiao W, Li X, Shan J, Wang X. Study of Several Alginate-Based Hydrogels for In Vitro 3D Cell Cultures. Gels 2022; 8:147. [PMID: 35323260 PMCID: PMC8950797 DOI: 10.3390/gels8030147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
Hydrogel, a special system of polymer solutions, can be obtained through the physical/chemical/enzymic crosslinking of polymer chains in a water-based dispersion medium. Different compositions and crosslinking methods endow hydrogel with diverse physicochemical properties. Those hydrogels with suitable physicochemical properties hold manifold functions in biomedical fields, such as cell transplantation, tissue engineering, organ manufacturing, drug releasing and pathological model analysis. In this study, several alginate-based composite hydrogels, including gelatin/alginate (G-A), gelatin/alginate/agarose (G-A-A), fibrinogen/alginate (F-A), fibrinogen/alginate/agarose (F-A-A) and control alginate (A) and alginate/agarose (A-A), were constructed. We researched the advantages and disadvantages of these hydrogels in terms of their microscopic structure (cell living space), water holding capacity, swelling rate, swelling-erosion ratio, mechanical properties and biocompatibility. Briefly, alginate-based hydrogels can be used for three-dimensional (3D) cell culture alone. However, when mixed with other natural polymers in different proportions, a relatively stable network with a good cytocompatibility, mechanical strength and water holding capacity can be formed. The physical and chemical properties of the hydrogels can be adjusted by changing the composition, proportion and cross-linking methods of the polymers. Conclusively, the G-A-A and F-A-A hydrogels are the best hydrogels for the in vitro 3D cell cultures and pathological model construction.
Collapse
Affiliation(s)
- Weijie Jiao
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), Shenyang 110122, China; (W.J.); (X.L.); (J.S.)
| | - Xiaohong Li
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), Shenyang 110122, China; (W.J.); (X.L.); (J.S.)
| | - Jingxin Shan
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), Shenyang 110122, China; (W.J.); (X.L.); (J.S.)
- Department of Biomedical Engineering, HE University, Shenyang 110163, China
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), Shenyang 110122, China; (W.J.); (X.L.); (J.S.)
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Kurowiak J, Mackiewicz A, Klekiel T, Będziński R. Evaluation of Selected Properties of Sodium Alginate-Based Hydrogel Material—Mechanical Strength, μDIC Analysis and Degradation. MATERIALS 2022; 15:ma15031225. [PMID: 35161169 PMCID: PMC8839524 DOI: 10.3390/ma15031225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/25/2022]
Abstract
The search for ideal solutions for the treatment of urethral stenosis continues. This includes developing the material, design, while maintaining its optimal and desired properties. This paper presents the results of the research conducted on sodium alginate-based hydrogel material (AHM), which may be used as a material for stents dedicated to the treatment of pathologies occurring in the genitourinary system. In order to determine the selected parameters of the AHM samples, strength and degradation tests, as well as analysis of the micro changes occurring on the surface of the material using a digital image correlation (µDIC) system, were performed. This study shows that the material possessed good mechanical strength parameters, the knowledge of which is particularly important from the point of view of the stent-tissue interaction. The degradation analysis performed showed that the AHM samples degrade in an artificial urine environment, and that the degradation time mainly depends on the chemical composition of the material. The novel µDIC method performed allowed us to characterize the homogeneity of the material structure depending on the cross-linking agent used.
Collapse
|
30
|
Kakarla AB, Kong I, Kong C, Irving H. Extrusion-Based Bioprinted Boron Nitride Nanotubes Reinforced Alginate Scaffolds: Mechanical, Printability and Cell Viability Evaluation. Polymers (Basel) 2022; 14:polym14030486. [PMID: 35160475 PMCID: PMC8839966 DOI: 10.3390/polym14030486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Alginate (Alg) hydrogels are commonly used as bioinks in 3D bioprinting. However, one of the significant drawbacks of using Alg hydrogels is their unstable mechanical properties. In this study, a novel hydrogel-based ink composed of Alg reinforced with functionalised boron nitride nanotubes (f-BNNTs) was developed and systematic quantitative characterisation was conducted to validate its printability, physiochemical properties and biocompatibility. The printability, contact angle and mechanical test results indicated good structural stability of the scaffolds. The thermal stability of the scaffolds increased with the incorporation of f-BNNTs into Alg. Human embryonic kidney cells (HEK 293T) were seeded on the scaffolds and the cell viability was recorded for 24, 48 and 72 h. Quantitative studies showed a slight effect on toxicity with a higher concentration of BNNTs in scaffolds. The results suggest that the 3D printable f-BNNTs reinforced Alg could be used as bioink for tissue engineering applications with further studies on biocompatibility.
Collapse
Affiliation(s)
- Akesh Babu Kakarla
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3552, Australia;
| | - Ing Kong
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3552, Australia;
- Correspondence:
| | - Cin Kong
- Department of Biomedical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Semenyih 43500, Selangor, Malaysia;
| | - Helen Irving
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Sciences (LIMS), Bendigo, VIC 3552, Australia;
| |
Collapse
|
31
|
Preparation and Characterisation of Cellulose Nanocrystal/Alginate/Polyethylene Glycol Diacrylate (CNC/Alg/PEGDA) Hydrogel Using Double Network Crosslinking Technique for Bioprinting Application. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we aimed to prepare and characterise hydrogel formulations using cellulose nanocrystals (CNCs), alginate (Alg), and polyethylene glycol diacrylate (PEGDA). The CNC/Alg/PEGDA formulations were formed using a double network crosslinking approach. Firstly, CNC was extracted from oil palm trunk, and the size and morphology of the CNCs were characterised using TEM analysis. Secondly, different formulations were prepared using CNCs, Alg, and PEGDA. The mixtures were crosslinked with Ca2+ ions and manually extruded using a syringe before being subjected to UV irradiation at 365 nm. The shear-thinning properties of the formulations were tested prior to any crosslinking, while the determination of storage and loss modulus was conducted post extrusion after the Ca2+ ion crosslink using a rheometer. For the analysis of swelling behaviour, the constructs treated with UV were immersed in PBS solution (pH 7.4) for 48 h. The morphology of the UV crosslinked construct was analysed using SEM imaging. The extracted CNC exhibited rod-like structures with an average diameter and length of around 7 ± 2.4 and 113 ± 20.7 nm, respectively. Almost all CNC/Alg/PEGDA formulations (pre-gel formulation) displayed shear-thinning behaviour with the power-law index η < 1, and the behaviour was more prominent in the 1% [w/v] Alg formulations. The CNC/Alg/PEGDA with 2.5% and 4% [w/v] Alg displayed a storage modulus dominance over loss modulus (G′ > G″) which suggests good shape fidelity. After the hydrogel constructs were subjected to UV treatment at 365 nm, only the F8 construct [4% CNC: 4% Alg: 40% PEGDA] demonstrated tough and flexible characteristics that possibly mimic the native articular cartilage property due to a similar water content percentage (79.5%). In addition, the small swelling ratio of 4.877 might contribute to a minimal change of the 3D construct’s geometry. The hydrogel revealed a rough and wavy surface, and the pore size ranged from 3 to 20 µm. Overall, the presence of CNCs in the double network hydrogel demonstrated importance and showed positive effects towards the fabrication of a potentially ideal 3D bioprinted scaffold.
Collapse
|
32
|
Tsai MC, Wei SY, Fang L, Chen YC. Viscous Fingering as a Rapid 3D Pattering Technique for Engineering Cell-Laden Vascular-Like Constructs. Adv Healthc Mater 2022; 11:e2101392. [PMID: 34694752 DOI: 10.1002/adhm.202101392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/09/2021] [Indexed: 01/01/2023]
Abstract
Tissues are much larger than the diffusion limit distance, so rapidly providing blood vessels to supply embedded cells inside tissues with sufficient nutrients and oxygen is regarded as a major strategy for the success of bioengineered large and thick tissue constructs. Here, a patterning technique, viscous fingering, is developed to bioengineer vascularized-like tissues within a few minutes. By controlling viscosity, flow rate, and the volume of photo-cross-linkable prepolymer, macro- and microscale vascular network structures can be precisely engineered using the Hele-Shaw cell that is designed in this study. After cross-linking, a vascular-like gel with fingering structures is formed between the bottom and top base gels, creating a sandwich-like structure. Cells can be incorporated into the fingers, bases, or both gels. The spreading and growth direction of the embedded cells are successfully controlled and guided by manipulating the physical properties of the fingering and base gels individually. Moreover, fingering is generated, connected, and surrounded prepared cell-laden microgels in base prepolymers to form prevascularized tissue-like constructs. Taken together, the 3D cell patterning technique extends the potential for modeling and fabricating large and stackable vascularized tissue-like constructs for both ex vivo and in vivo applications.
Collapse
Affiliation(s)
- Min-Chun Tsai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shih-Yen Wei
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ling Fang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
33
|
Poongodi R, Chen YL, Yang TH, Huang YH, Yang KD, Lin HC, Cheng JK. Bio-Scaffolds as Cell or Exosome Carriers for Nerve Injury Repair. Int J Mol Sci 2021; 22:13347. [PMID: 34948144 PMCID: PMC8707664 DOI: 10.3390/ijms222413347] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Central and peripheral nerve injuries can lead to permanent paralysis and organ dysfunction. In recent years, many cell and exosome implantation techniques have been developed in an attempt to restore function after nerve injury with promising but generally unsatisfactory clinical results. Clinical outcome may be enhanced by bio-scaffolds specifically fabricated to provide the appropriate three-dimensional (3D) conduit, growth-permissive substrate, and trophic factor support required for cell survival and regeneration. In rodents, these scaffolds have been shown to promote axonal regrowth and restore limb motor function following experimental spinal cord or sciatic nerve injury. Combining the appropriate cell/exosome and scaffold type may thus achieve tissue repair and regeneration with safety and efficacy sufficient for routine clinical application. In this review, we describe the efficacies of bio-scaffolds composed of various natural polysaccharides (alginate, chitin, chitosan, and hyaluronic acid), protein polymers (gelatin, collagen, silk fibroin, fibrin, and keratin), and self-assembling peptides for repair of nerve injury. In addition, we review the capacities of these constructs for supporting in vitro cell-adhesion, mechano-transduction, proliferation, and differentiation as well as the in vivo properties critical for a successful clinical outcome, including controlled degradation and re-absorption. Finally, we describe recent advances in 3D bio-printing for nerve regeneration.
Collapse
Affiliation(s)
- Raju Poongodi
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ying-Lun Chen
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Tao-Hsiang Yang
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ya-Hsien Huang
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Kuender D. Yang
- Institute of Biomedical Science, Mackay Medical College, New Taipei City 25245, Taiwan;
- Department of Pediatrics, Mackay Memorial Hospital, Taipei 10449, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Jen-Kun Cheng
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| |
Collapse
|
34
|
García-Villén F, Ruiz-Alonso S, Lafuente-Merchan M, Gallego I, Sainz-Ramos M, Saenz-del-Burgo L, Pedraz JL. Clay Minerals as Bioink Ingredients for 3D Printing and 3D Bioprinting: Application in Tissue Engineering and Regenerative Medicine. Pharmaceutics 2021; 13:1806. [PMID: 34834221 PMCID: PMC8623235 DOI: 10.3390/pharmaceutics13111806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
The adaptation and progress of 3D printing technology toward 3D bioprinting (specifically adapted to biomedical purposes) has opened the door to a world of new opportunities and possibilities in tissue engineering and regenerative medicine. In this regard, 3D bioprinting allows for the production of tailor-made constructs and organs as well as the production of custom implants and medical devices. As it is a growing field of study, currently, the attention is heeded on the optimization and improvement of the mechanical and biological properties of the so-called bioinks/biomaterial inks. One of the strategies proposed is the use of inorganic ingredients (clays, hydroxyapatite, graphene, carbon nanotubes and other silicate nanoparticles). Clays have proven to be useful as rheological and mechanical reinforcement in a wide range of fields, from the building industry to pharmacy. Moreover, they are naturally occurring materials with recognized biocompatibility and bioactivity, revealing them as optimal candidates for this cutting-edge technology. This review deals with the use of clays (both natural and synthetic) for tissue engineering and regenerative medicine through 3D printing and bioprinting. Despite the limited number of studies, it is possible to conclude that clays play a fundamental role in the formulation and optimization of bioinks and biomaterial inks since they are able to improve their rheology and mechanical properties, thus improving printability and construct resistance. Additionally, they have also proven to be exceptionally functional ingredients (enhancing cellular proliferation, adhesion, differentiation and alignment), controlling biodegradation and carrying/releasing actives with tissue regeneration therapeutic activities.
Collapse
Affiliation(s)
- Fátima García-Villén
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Myriam Sainz-Ramos
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Laura Saenz-del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
35
|
Gao C, Lu C, Jian Z, Zhang T, Chen Z, Zhu Q, Tai Z, Liu Y. 3D bioprinting for fabricating artificial skin tissue. Colloids Surf B Biointerfaces 2021; 208:112041. [PMID: 34425531 DOI: 10.1016/j.colsurfb.2021.112041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 01/17/2023]
Abstract
As an organ in direct contact with the external environment, the skin is the first line of defense against external stimuli, so it is the most vulnerable to damage. In addition, there is an increasing demand for artificial skin in the fields of drug testing, disease research and cosmetic testing. Traditional skin tissue engineering has made encouraging progress after years of development. However, due to the complexity of the skin structures, there is still a big gap between existing artificial skin and natural skin in terms of function. Three-dimensional (3D) bioprinting is an advanced biological manufacturing method. It accurately deposits bioinks into pre-designed three-dimensional shapes to create complex biological tissues. This technology aims to print artificial tissues and organs with biological activities and complete physiological functions, thereby alleviating the problem of tissues and organs in short supply. Here, based on the introduction to skin structure and function, we systematically elaborate and analyze skin manufacturing methods, 3D bioprinting biomaterials and strategies, etc. Finally, the challenges and perspectives in 3D bioprinting skin field are summarized.
Collapse
Affiliation(s)
- Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Zhian Jian
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Tingrui Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China; Shanghai Engineering Research Center for External Chinese Medicine, Shanghai, 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for External Chinese Medicine, Shanghai, 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for External Chinese Medicine, Shanghai, 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for External Chinese Medicine, Shanghai, 200443, China
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
36
|
Kapr J, Petersilie L, Distler T, Lauria I, Bendt F, Sauter CM, Boccaccini AR, Rose CR, Fritsche E. Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Produce Distinct Neural 3D In Vitro Models Depending on Alginate/Gellan Gum/Laminin Hydrogel Blend Properties. Adv Healthc Mater 2021; 10:e2100131. [PMID: 34197049 PMCID: PMC11468953 DOI: 10.1002/adhm.202100131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Stable and predictive neural cell culture models are a necessary premise for many research fields. However, conventional 2D models lack 3D cell-material/-cell interactions and hence do not reflect the complexity of the in vivo situation properly. Here two alginate/gellan gum/laminin (ALG/GG/LAM) hydrogel blends are presented for the fabrication of human induced pluripotent stem cell (hiPSC)-based 3D neural models. For hydrogel embedding, hiPSC-derived neural progenitor cells (hiNPCs) are used either directly or after 3D neural pre-differentiation. It is shown that stiffness and stress relaxation of the gel blends, as well as the cell differentiation strategy influence 3D model development. The embedded hiNPCs differentiate into neurons and astrocytes within the gel blends and display spontaneous intracellular calcium signals. Two fit-for-purpose models valuable for i) applications requiring a high degree of complexity, but less throughput, such as disease modeling and long-term exposure studies and ii) higher throughput applications, such as acute exposures or substance screenings are proposed. Due to their wide range of applications, adjustability, and printing capabilities, the ALG/GG/LAM based 3D neural models are of great potential for 3D neural modeling in the future.
Collapse
Affiliation(s)
- Julia Kapr
- IUF – Leibniz Research Institute for Environmental MedicineDüsseldorf40225Germany
| | - Laura Petersilie
- Institute of NeurobiologyHeinrich Heine UniversityDüsseldorf40225Germany
| | - Thomas Distler
- Institute of BiomaterialsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐University Erlangen‐NurembergErlangen91054Germany
| | - Ines Lauria
- IUF – Leibniz Research Institute for Environmental MedicineDüsseldorf40225Germany
| | - Farina Bendt
- IUF – Leibniz Research Institute for Environmental MedicineDüsseldorf40225Germany
| | - Clemens M. Sauter
- IUF – Leibniz Research Institute for Environmental MedicineDüsseldorf40225Germany
| | - Aldo R. Boccaccini
- Institute of BiomaterialsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐University Erlangen‐NurembergErlangen91054Germany
| | - Christine R. Rose
- Institute of NeurobiologyHeinrich Heine UniversityDüsseldorf40225Germany
| | - Ellen Fritsche
- IUF – Leibniz Research Institute for Environmental MedicineDüsseldorf40225Germany
- Medical FacultyHeinrich Heine UniversityDüsseldorf40225Germany
| |
Collapse
|
37
|
Hong S, Song JM. A 3D cell printing-fabricated HepG2 liver spheroid model for high-content in situ quantification of drug-induced liver toxicity. Biomater Sci 2021; 9:5939-5950. [PMID: 34318795 DOI: 10.1039/d1bm00749a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
3D spheroid cultures are attractive candidates for application in in vitro drug-induced hepatotoxicity testing models to improve the reliability of biological information obtainable from a simple 2D culture model. Various 3D spheroid culture models exist for hepatotoxicity screening, but quantitative assays of spheroid response in situ are still challenging to achieve with the current 3D liver toxicity platforms. In this study, we developed a 3D printing-based HepG2 liver spheroid culture model for in situ quantitative evaluation and high-content monitoring of drug-induced hepatotoxicity. HepG2 liver spheroids grown in mini-fabricated hydrogel constructs using a 3D bioprinter were used to obtain the EC50 values and to measure the multi-parametric hepatotoxic effects, including mitochondrial permeability transition (MPT), cytosolic calcium levels, and apoptosis. Interestingly, the average fluorescence intensities of apoptotic and cell death markers, calculated for out-of-focus and in-focus spheroids, increased proportionally as a function of the drug concentration, allowing for the determination of the EC50 values. In addition, 3D HepG2 spheroids were more resistant to nefazodone-induced MPT than 2D HepG2 cells, indicating that the gelatin/alginate hydrogel culture system provides enhanced resistance to hepatotoxic drugs. The drug response of HepG2 liver spheroids was also found to be unrelated to the spheroid size. These results demonstrate that the present 3D cell-printing-based embedded HepG2 liver spheroid platform is a promising approach for screening and characterizing drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sera Hong
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea.
| | | |
Collapse
|
38
|
Physical and Mechanical Characterization of Fibrin-Based Bioprinted Constructs Containing Drug-Releasing Microspheres for Neural Tissue Engineering Applications. Processes (Basel) 2021. [DOI: 10.3390/pr9071205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Three-dimensional bioprinting can fabricate precisely controlled 3D tissue constructs. This process uses bioinks—specially tailored materials that support the survival of incorporated cells—to produce tissue constructs. The properties of bioinks, such as stiffness and porosity, should mimic those found in desired tissues to support specialized cell types. Previous studies by our group validated soft substrates for neuronal cultures using neural cells derived from human-induced pluripotent stem cells (hiPSCs). It is important to confirm that these bioprinted tissues possess mechanical properties similar to native neural tissues. Here, we assessed the physical and mechanical properties of bioprinted constructs generated from our novel microsphere containing bioink. We measured the elastic moduli of bioprinted constructs with and without microspheres using a modified Hertz model. The storage and loss modulus, viscosity, and shear rates were also measured. Physical properties such as microstructure, porosity, swelling, and biodegradability were also analyzed. Our results showed that the elastic modulus of constructs with microspheres was 1032 ± 59.7 Pascal (Pa), and without microspheres was 728 ± 47.6 Pa. Mechanical strength and printability were significantly enhanced with the addition of microspheres. Thus, incorporating microspheres provides mechanical reinforcement, which indicates their suitability for future applications in neural tissue engineering.
Collapse
|
39
|
Manita PG, Garcia-Orue I, Santos-Vizcaino E, Hernandez RM, Igartua M. 3D Bioprinting of Functional Skin Substitutes: From Current Achievements to Future Goals. Pharmaceuticals (Basel) 2021; 14:ph14040362. [PMID: 33919848 PMCID: PMC8070826 DOI: 10.3390/ph14040362] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to present 3D bioprinting of skin substitutes as an efficient approach of managing skin injuries. From a clinical point of view, classic treatments only provide physical protection from the environment, and existing engineered scaffolds, albeit acting as a physical support for cells, fail to overcome needs, such as neovascularisation. In the present work, the basic principles of bioprinting, together with the most popular approaches and choices of biomaterials for 3D-printed skin construct production, are explained, as well as the main advantages over other production methods. Moreover, the development of this technology is described in a chronological manner through examples of relevant experimental work in the last two decades: from the pioneers Lee et al. to the latest advances and different innovative strategies carried out lately to overcome the well-known challenges in tissue engineering of skin. In general, this technology has a huge potential to offer, although a multidisciplinary effort is required to optimise designs, biomaterials and production processes.
Collapse
Affiliation(s)
- Paula Gabriela Manita
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Itxaso Garcia-Orue
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (R.M.H.); (M.I.)
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (R.M.H.); (M.I.)
| |
Collapse
|
40
|
Curti F, Drăgușin DM, Serafim A, Iovu H, Stancu IC. Development of thick paste-like inks based on superconcentrated gelatin/alginate for 3D printing of scaffolds with shape fidelity and stability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111866. [DOI: 10.1016/j.msec.2021.111866] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 01/04/2023]
|
41
|
Roche CD, Sharma P, Ashton AW, Jackson C, Xue M, Gentile C. Printability, Durability, Contractility and Vascular Network Formation in 3D Bioprinted Cardiac Endothelial Cells Using Alginate-Gelatin Hydrogels. Front Bioeng Biotechnol 2021; 9:636257. [PMID: 33748085 PMCID: PMC7968457 DOI: 10.3389/fbioe.2021.636257] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/01/2021] [Indexed: 12/30/2022] Open
Abstract
Background 3D bioprinting cardiac patches for epicardial transplantation are a promising approach for myocardial regeneration. Challenges remain such as quantifying printability, determining the ideal moment to transplant, and promoting vascularisation within bioprinted patches. We aimed to evaluate 3D bioprinted cardiac patches for printability, durability in culture, cell viability, and endothelial cell structural self-organisation into networks. Methods We evaluated 3D-bioprinted double-layer patches using alginate/gelatine (AlgGel) hydrogels and three extrusion bioprinters (REGEMAT3D, INVIVO, BIO X). Bioink contained either neonatal mouse cardiac cell spheroids or free (not-in-spheroid) human coronary artery endothelial cells with fibroblasts, mixed with AlgGel. To test the effects on durability, some patches were bioprinted as a single layer only, cultured under minimal movement conditions or had added fibroblast-derived extracellular matrix hydrogel (AlloECM). Controls included acellular AlgGel and gelatin methacryloyl (GELMA) patches. Results Printability was similar across bioprinters. For AlgGel compared to GELMA: resolutions were similar (200-700 μm line diameters), printing accuracy was 45 and 25%, respectively (AlgGel was 1.7x more accurate; p < 0.05), and shape fidelity was 92% (AlgGel) and 96% (GELMA); p = 0.36. For durability, AlgGel patch median survival in culture was 14 days (IQR:10-27) overall which was not significantly affected by bioprinting system or cellular content in patches. We identified three factors which reduced durability in culture: (1) bioprinting one layer depth patches (instead of two layers); (2) movement disturbance to patches in media; and (3) the addition of AlloECM to AlgGel. Cells were viable after bioprinting followed by 28 days in culture, and all BIO X-bioprinted mouse cardiac cell spheroid patches presented contractile activity starting between day 7 and 13 after bioprinting. At day 28, endothelial cells in hydrogel displayed organisation into endothelial network-like structures. Conclusion AlgGel-based 3D bioprinted heart patches permit cardiomyocyte contractility and endothelial cell structural self-organisation. After bioprinting, a period of 2 weeks maturation in culture prior to transplantation may be optimal, allowing for a degree of tissue maturation but before many patches start to lose integrity. We quantify AlgGel printability and present novel factors which reduce AlgGel patch durability (layer number, movement, and the addition of AlloECM) and factors which had minimal effect on durability (bioprinting system and cellular patch content).
Collapse
Affiliation(s)
- Christopher David Roche
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia
| | - Poonam Sharma
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia.,Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Anthony Wayne Ashton
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Chris Jackson
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Meilang Xue
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Carmine Gentile
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
42
|
Łabowska MB, Cierluk K, Jankowska AM, Kulbacka J, Detyna J, Michalak I. A Review on the Adaption of Alginate-Gelatin Hydrogels for 3D Cultures and Bioprinting. MATERIALS (BASEL, SWITZERLAND) 2021; 14:858. [PMID: 33579053 PMCID: PMC7916803 DOI: 10.3390/ma14040858] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/12/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Sustaining the vital functions of cells outside the organism requires strictly defined parameters. In order to ensure their optimal growth and development, it is necessary to provide a range of nutrients and regulators. Hydrogels are excellent materials for 3D in vitro cell cultures. Their ability to retain large amounts of liquid, as well as their biocompatibility, soft structures, and mechanical properties similar to these of living tissues, provide appropriate microenvironments that mimic extracellular matrix functions. The wide range of natural and synthetic polymeric materials, as well as the simplicity of their physico-chemical modification, allow the mechanical properties to be adjusted for different requirements. Sodium alginate-based hydrogel is a frequently used material for cell culture. The lack of cell-interactive properties makes this polysaccharide the most often applied in combination with other materials, including gelatin. The combination of both materials increases their biological activity and improves their material properties, making this combination a frequently used material in 3D printing technology. The use of hydrogels as inks in 3D printing allows the accurate manufacturing of scaffolds with complex shapes and geometries. The aim of this paper is to provide an overview of the materials used for 3D cell cultures, which are mainly alginate-gelatin hydrogels, including their properties and potential applications.
Collapse
Affiliation(s)
- Magdalena B. Łabowska
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-370 Wroclaw, Poland; (M.B.Ł); (A.M.J.)
| | - Karolina Cierluk
- Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Agnieszka M. Jankowska
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-370 Wroclaw, Poland; (M.B.Ł); (A.M.J.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Jerzy Detyna
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-370 Wroclaw, Poland; (M.B.Ł); (A.M.J.)
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-370 Wroclaw, Poland;
| |
Collapse
|
43
|
Bashiri Z, Amiri I, Gholipourmalekabadi M, Falak R, Asgari H, Maki CB, Moghaddaszadeh A, Koruji M. Artificial testis: a testicular tissue extracellular matrix as a potential bio-ink for 3D printing. Biomater Sci 2021; 9:3465-3484. [DOI: 10.1039/d0bm02209h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A summary of the study design showing the extraction of extracellular matrix of testicular tissue and the printing of hydrogel scaffolds and the interaction of testicular cells on three-dimensional scaffolds.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem Cell and Regenerative Medicine Research Center
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Anatomy
| | - Iraj Amiri
- Research Center for Molecular Medicine
- Hamadan University of Medical Sciences
- Hamadan
- Iran
- Endometrium and Research Center
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research center
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Tissue Engineering & Regenerative Medicine
| | - Reza Falak
- Immunology Research Center (IRC)
- Institute of Immunology and Infectious Diseases
- Iran University of Medical Sciences
- Tehran
- Iran
| | - Hamidreza Asgari
- Stem Cell and Regenerative Medicine Research Center
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Anatomy
| | | | - Ali Moghaddaszadeh
- Departement of Biomedical Engineering
- Science and Research Branch
- Islamic Azad University
- Tehran
- Iran
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Anatomy
| |
Collapse
|
44
|
Boularaoui S, Al Hussein G, Khan KA, Christoforou N, Stefanini C. An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2020.e00093] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Bociaga D, Bartniak M, Sobczak K, Rosinska K. An Integration of a Peristaltic Pump-Based Extruder into a 3D Bioprinter Dedicated to Hydrogels. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4237. [PMID: 32977549 PMCID: PMC7579243 DOI: 10.3390/ma13194237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
The 3D printing technologies used for medical applications are mostly based on paste extruders. These are designed for high capacity, and thus often feature large material reservoirs and large diameter nozzles. A major challenge for most 3D printing platforms is a compromise between speed, accuracy, and/or volume/mass of moving elements. To address these issues, we integrated a peristaltic pump into a bioprinter. That allowed for combining the most important requirements: high precision, a large material reservoir, and safety of biological material. The system of a fully heated nozzle and a cooled print bed were developed to maintain the optimal hydrogel temperature and crosslinking speed. Our modifications of the bioprinter design improved the mechanical properties of the printouts and their accuracy while maintaining the maximal survival rate of cells and increasing the capacity of the bioink reservoir.
Collapse
Affiliation(s)
- Dorota Bociaga
- Division of Biomedical Engineering and Functional Materials, Institute of Materials Science and Engineering, Lodz University of Technology, 90-924 Lodz, Poland; (M.B.); (K.R.)
| | - Mateusz Bartniak
- Division of Biomedical Engineering and Functional Materials, Institute of Materials Science and Engineering, Lodz University of Technology, 90-924 Lodz, Poland; (M.B.); (K.R.)
| | - Krzysztof Sobczak
- Institute of Turbomachinery, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Karolina Rosinska
- Division of Biomedical Engineering and Functional Materials, Institute of Materials Science and Engineering, Lodz University of Technology, 90-924 Lodz, Poland; (M.B.); (K.R.)
| |
Collapse
|
46
|
Perez-Valle A, Del Amo C, Andia I. Overview of Current Advances in Extrusion Bioprinting for Skin Applications. Int J Mol Sci 2020; 21:E6679. [PMID: 32932676 PMCID: PMC7555324 DOI: 10.3390/ijms21186679] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Bioprinting technologies, which have the ability to combine various human cell phenotypes, signaling proteins, extracellular matrix components, and other scaffold-like biomaterials, are currently being exploited for the fabrication of human skin in regenerative medicine. We performed a systematic review to appraise the latest advances in 3D bioprinting for skin applications, describing the main cell phenotypes, signaling proteins, and bioinks used in extrusion platforms. To understand the current limitations of this technology for skin bioprinting, we briefly address the relevant aspects of skin biology. This field is in the early stage of development, and reported research on extrusion bioprinting for skin applications has shown moderate progress. We have identified two major trends. First, the biomimetic approach uses cell-laden natural polymers, including fibrinogen, decellularized extracellular matrix, and collagen. Second, the material engineering line of research, which is focused on the optimization of printable biomaterials that expedite the manufacturing process, mainly involves chemically functionalized polymers and reinforcement strategies through molecular blending and postprinting interventions, i.e., ionic, covalent, or light entanglement, to enhance the mechanical properties of the construct and facilitate layer-by-layer deposition. Skin constructs manufactured using the biomimetic approach have reached a higher level of complexity in biological terms, including up to five different cell phenotypes and mirroring the epidermis, dermis and hypodermis. The confluence of the two perspectives, representing interdisciplinary inputs, is required for further advancement toward the future translation of extrusion bioprinting and to meet the urgent clinical demand for skin equivalents.
Collapse
Affiliation(s)
| | | | - Isabel Andia
- Regenerative Therapies, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza Cruces 12, 48903 Barakaldo, Spain; (A.P.-V.); (C.D.A.)
| |
Collapse
|
47
|
Pahlevanzadeh F, Mokhtari H, Bakhsheshi-Rad HR, Emadi R, Kharaziha M, Valiani A, Poursamar SA, Ismail AF, RamaKrishna S, Berto F. Recent Trends in Three-Dimensional Bioinks Based on Alginate for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3980. [PMID: 32911867 PMCID: PMC7557490 DOI: 10.3390/ma13183980] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) bioprinting is an appealing and revolutionary manufacturing approach for the accurate placement of biologics, such as living cells and extracellular matrix (ECM) components, in the form of a 3D hierarchical structure to fabricate synthetic multicellular tissues. Many synthetic and natural polymers are applied as cell printing bioinks. One of them, alginate (Alg), is an inexpensive biomaterial that is among the most examined hydrogel materials intended for vascular, cartilage, and bone tissue printing. It has also been studied pertaining to the liver, kidney, and skin, due to its excellent cell response and flexible gelation preparation through divalent ions including calcium. Nevertheless, Alg hydrogels possess certain negative aspects, including weak mechanical characteristics, poor printability, poor structural stability, and poor cell attachment, which may restrict its usage along with the 3D printing approach to prepare artificial tissue. In this review paper, we prepare the accessible materials to be able to encourage and boost new Alg-based bioink formulations with superior characteristics for upcoming purposes in drug delivery systems. Moreover, the major outcomes are discussed, and the outstanding concerns regarding this area and the scope for upcoming examination are outlined.
Collapse
Affiliation(s)
- Farnoosh Pahlevanzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Hamidreza Mokhtari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali Valiani
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - S Ali Poursamar
- Biomaterials, Nanotechnology, and Tissue Engineering Group, Advanced Medical Technology Department, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia
| | - Seeram RamaKrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
48
|
Physicochemical Investigations of Chitosan-Based Hydrogels Containing Aloe Vera Designed for Biomedical Use. MATERIALS 2020; 13:ma13143073. [PMID: 32660077 PMCID: PMC7412484 DOI: 10.3390/ma13143073] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
In this work, synthesis and investigations on chitosan-based hydrogels modified with Aloe vera juice are presented. These materials were synthesized by UV radiation. Investigations involved analysis of chemical structure by FTIR spectroscopy, sorption properties in physiological liquids, strength properties by texture analyzer, surface topography by Atomic Force Microscopy (AFM technique), and in vitro cytotoxicity by MTT test using L929 murine fibroblasts. Particular attention was focused both on determining the impact of the amount and the molecular weight of the crosslinker used for the synthesis as well as on the introduced additive on the properties of hydrogels. It was proven that modified hydrogels exhibited higher swelling ability. Introduced additive affected the tensile strength of hydrogels—modified materials showed 23% higher elongation. The greater amount of the crosslinker used in the synthesis, the more compact the structure, leading to the lower elasticity and lower sorption of hydrogels was reported. Above 95%, murine fibroblasts remained viable after 24 h incubation with hydrogels. It indicates that tested materials did not exhibit cytotoxicity toward these lines. Additionally, materials with Aloe vera juice were characterized by lower surface roughness. Conducted investigations allowed us to state that such modified hydrogels may be considered as useful for biomedical purposes.
Collapse
|