1
|
Nikolaev VV, Lepekhina TB, Alliluev AS, Bidram E, Sokolov PM, Nabiev IR, Kistenev YV. Quantum Dot-Based Nanosensors for In Vitro Detection of Mycobacterium tuberculosis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1553. [PMID: 39404280 PMCID: PMC11478040 DOI: 10.3390/nano14191553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Despite the existing effective treatment methods, tuberculosis (TB) is the second most deadly infectious disease, its carriers in the latent and active phases accounting for more than 20% of the world population. An effective method for controlling TB and reducing TB mortality is regular population screening aimed at diagnosing the latent form of TB and taking preventive and curative measures. Numerous methods allow diagnosing TB by directly detecting Mycobacterium tuberculosis (M.tb) biomarkers, including M.tb DNA, proteins, and specific metabolites or antibodies produced by the host immune system in response to M.tb. PCR, ELISA, immunofluorescence and immunochemical analyses, flow cytometry, and other methods allow the detection of M.tb biomarkers or the host immune response to M.tb by recording the optical signal from fluorescent or colorimetric dyes that are components of the diagnostic systems. Current research in biosensors is aimed at increasing the sensitivity of detection, a promising approach being the use of fluorescent quantum dots as brighter and more photostable optical tags. Here, we review current methods for the detection of M.tb biomarkers using quantum dot-based nanosensors and summarize data on the M.tb biomarkers whose detection can be made considerably more sensitive by using these sensors.
Collapse
Affiliation(s)
- Viktor V. Nikolaev
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (V.V.N.); (T.B.L.); (A.S.A.)
| | - Tatiana B. Lepekhina
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (V.V.N.); (T.B.L.); (A.S.A.)
| | - Alexander S. Alliluev
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (V.V.N.); (T.B.L.); (A.S.A.)
- Tomsk Phthisiopulmonology Medical Center, Rosa Luxemburg St., 634009 Tomsk, Russia
| | - Elham Bidram
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Pavel M. Sokolov
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute (MEPhI), National Research Nuclear University, 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Igor R. Nabiev
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute (MEPhI), National Research Nuclear University, 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- Laboratoire BioSpecT (BioSpectroscopie Translationnelle), Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Yury V. Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (V.V.N.); (T.B.L.); (A.S.A.)
| |
Collapse
|
2
|
Wang J, Shao W, Liu Z, Kesavan G, Zeng Z, Shurin MR, Star A. Diagnostics of Tuberculosis with Single-Walled Carbon Nanotube-Based Field-Effect Transistors. ACS Sens 2024; 9:1957-1966. [PMID: 38484361 PMCID: PMC11059104 DOI: 10.1021/acssensors.3c02694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 05/02/2024]
Abstract
Tuberculosis (TB) is still threatening millions of people's lives, especially in developing countries. One of the major factors contributing to the ongoing epidemic of TB is the lack of a fast, efficient, and inexpensive diagnostic strategy. In this work, we developed a semiconducting single-walled carbon nanotube (SWCNT)-based field-effect transistor (FET) device functionalized with anti-Mycobacterium tuberculosis antigen 85B antibody (Ab85B) to detect the major M. tuberculosis-secreted antigen 85B (Ag85B). Through optimizing the device fabrication process by evaluating the mass of the antibody and the concentration of the gating electrolyte, our Ab85B-SWCNT FET devices achieved the detection of the Ag85B spiked in phosphate-buffered saline (calibration samples) with a limit of detection (LOD) of 0.05 fg/mL. This SWCNT FET biosensor also showed good sensing performance in biological matrices including artificial sputum and can identify Ag85B in serum after introducing bovine serum albumin (BSA) into the blocking layer. Furthermore, our BSA-blocked Ab85B-SWCNT FET devices can distinguish between TB-positive and -negative clinical samples, promising the application of SWCNT FET devices in point-of-care TB diagnostics. Moreover, the robustness of this SWCNT-based biosensor to the TB diagnosis in blood serum was enhanced by blocking SWCNT devices directly with a glutaraldehyde cross-linked BSA layer, enabling future applications of these SWCNT-based biosensors in clinical testing.
Collapse
Affiliation(s)
- Jieyu Wang
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Wenting Shao
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhengru Liu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ganesh Kesavan
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zidao Zeng
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael R. Shurin
- Department
of Pathology, University of Pittsburgh Medical
Center, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander Star
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
3
|
Le TN, Descanzo MJN, Hsiao WWW, Soo PC, Peng WP, Chang HC. Fluorescent nanodiamond immunosensors for clinical diagnostics of tuberculosis. J Mater Chem B 2024; 12:3533-3542. [PMID: 38526339 DOI: 10.1039/d3tb03038e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Fluorescent nanodiamonds (FNDs) are carbon nanoparticles containing a dense ensemble of nitrogen-vacancy defects as color centers. These centers have exceptional photostability and unique quantum properties, making them useful for ultrasensitive biosensing applications. This work employed FNDs conjugated with antibodies as magneto-optical immunosensors for tuberculosis (TB) diagnostics using competitive spin-enhanced lateral flow immunoassay (SELFIA). ESAT6 (6-kDa early secretory antigenic target) of Mycobacterium tuberculosis is a clinical marker of TB. We evaluated the assay's performance using the recombinant ESAT6 antigen and its antibodies noncovalently coated on FNDs. A detection limit of ∼0.02 ng mL-1 was achieved with the lateral flow membrane strip pre-structured with a narrow channel of 1 mm width. Adopting a cut-off value of 24.0 ng mm-1 for 100-nm FNDs on the strips, the method detected 49 out of 50 clinical samples with Mycobacterium tuberculosis complexes. In contrast, none of the assays for 10 clinical samples with non-tuberculous mycobacteria (NTM) isolates exhibited the presence of ESAT6. These results suggest that the SELFIA platform is applicable for TB detection and can differentiate TB from NTM infections, which also affect the human respiratory system. The FND-enabled immunosensing techniques are versatile and promising for early detection of TB and other diseases, opening a new avenue for biomedical applications of carbon-based nanomaterials.
Collapse
Affiliation(s)
- Trong-Nghia Le
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan.
| | | | - Wesley W-W Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Po-Chi Soo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan
- Department of Internal Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien 97004, Taiwan
| | - Wen-Ping Peng
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan.
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei 106, Taiwan
| |
Collapse
|
4
|
Shan L, Qiao Y, Ma L, Zhang X, Chen C, Xu X, Li D, Qiu S, Xue X, Yu Y, Guo Y, Qian K, Wang J. AuNPs/CNC Nanocomposite with A "Dual Dispersion" Effect for LDI-TOF MS Analysis of Intact Proteins in NSCLC Serum Exosomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307360. [PMID: 38224220 DOI: 10.1002/advs.202307360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/07/2023] [Indexed: 01/16/2024]
Abstract
Detecting exosomal markers using laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) is a novel approach for examining liquid biopsies of non-small cell lung cancer (NSCLC) samples. However, LDI-TOF MS is limited by low sensitivity and poor reproducibility when analyzing intact proteins directly. In this report, gold nanoparticles/cellulose nanocrystals (AuNPs/CNC) is introduced as the matrix for direct analysis of intact proteins in NSCLC serum exosomes. AuNPs/CNC with "dual dispersion" effects dispersed and stabilized AuNPs and improved ion inhibition effects caused by protein aggregation. These features increased the signal-to-noise ratio of [M+H]+ peaks by two orders of magnitude and lowered the detection limit of intact proteins to 0.01 mg mL-1. The coefficient of variation with or without AuNPs/CNC is measured as 10.2% and 32.5%, respectively. The excellent reproducibility yielded a linear relationship (y = 15.41x - 7.983, R2 = 0.989) over the protein concentration range of 0.01 to 20 mg mL-1. Finally, AuNPs/CNC-assisted LDI-TOF MS provides clinically relevant fingerprint information of exosomal proteins in NSCLC serum, and characteristic proteins S100 calcium-binding protein A10, Urokinase plasminogen activator surface receptor, Plasma protease C1 inhibitor, Tyrosine-protein kinase Fgr and Mannose-binding lectin associated serine protease 2 represented excellent predictive biomarkers of NSCLC risk.
Collapse
Affiliation(s)
- Liang Shan
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, No. 227, South Chongqing Road, Shanghai, 200025, P. R. China
| | - Lifang Ma
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Changqiang Chen
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Xin Xu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Dan Li
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Shiyu Qiu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Xiangfei Xue
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Yongchun Yu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
| | - Yinlong Guo
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No. 345, Lingling Road, Shanghai, 200032, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, No. 1954, Huashan Road, Shanghai, 200030, P. R. China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Road, Shanghai, 200030, P. R. China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 227, South Chongqing Road, Shanghai, 200025, P. R. China
| |
Collapse
|
5
|
Mobed A, Darvishi M, Kohansal F, Dehfooli FM, Alipourfard I, Tahavvori A, Ghazi F. Biosensors; nanomaterial-based methods in diagnosing of Mycobacterium tuberculosis. J Clin Tuberc Other Mycobact Dis 2024; 34:100412. [PMID: 38222862 PMCID: PMC10787265 DOI: 10.1016/j.jctube.2023.100412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Diagnosis of Mycobacterium tuberculosis (Mtb) before the progression of pulmonary infection can be very effective in its early treatment. The Mtb grows so slowly that it takes about 6-8 weeks to be diagnosed even using sensitive cell culture methods. The main opponent in tuberculosis (TB) and nontuberculous mycobacterial (NTM) epidemiology, like in all contagious diseases, is to pinpoint the source of infection and reveal its transmission and dispersion ways in the environment. It is crucial to be able to distinguish and monitor specific mycobacterium strains in order to do this. In food analysis, clinical diagnosis, environmental monitoring, and bioprocess, biosensing technologies have been improved to manage and detect Mtb. Biosensors are progressively being considered pioneering tools for point-of-care diagnostics in Mtb discoveries. In this review, we present an epitome of recent developments of biosensing technologies for M. tuberculosis detection, which are categorized on the basis of types of electrochemical, Fluorescent, Photo-thermal, Lateral Flow, Magneto-resistive, Laser, Plasmonic, and Optic biosensors.
Collapse
Affiliation(s)
- Ahmad Mobed
- Infectious and Tropical Diseases Research Center, Clinical Research Institute, Tabriz University of Medical Sciences, Iran
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Fereshteh Kohansal
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Iraj Alipourfard
- Institute of Medical Science and Technology, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Tahavvori
- Internal Department, Medical Faculty, Urmia University of Medical Sciences, Iran
| | - Farhood Ghazi
- Internal Department, Medical Faculty, Urmia University of Medical Sciences, Iran
| |
Collapse
|
6
|
Chaturvedi M, Patel M, Tiwari A, Dwivedi N, Mondal DP, Srivastava AK, Dhand C. An insight to the recent advancements in detection of Mycobacterium tuberculosis using biosensors: A systematic review. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 186:14-27. [PMID: 38052326 DOI: 10.1016/j.pbiomolbio.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/31/2023] [Accepted: 10/01/2023] [Indexed: 12/07/2023]
Abstract
Since ancient times, Tuberculosis (TB) has been a severe invasive illness that has been prevalent for thousands of years and is also known as "consumption" or phthisis. TB is the most common chronic lung bacterial illness in the world, killing over 2 million people each year, caused by Mycobacterium tuberculosis (MTB). As per the reports of WHO, in spite of technology advancements, the average rate of decline in global TB infections from 2000-2018 was only 1.6% per year, and the worldwide reduction in TB deaths was only 11%. In addition, COVID-19 pandemic has reversed years of global progress in tackling TB with fewer diagnosed cases. The majority of undiagnosed patients of TB are found in low- and middle-income countries where the GeneXpert MTB/RIF assay and sputum smear microscopy have been approved by the WHO as reference procedures for quickly detecting TB. Biosensors, like other cutting-edge technologies, have piqued researchers' interest since they offer a quick and accurate way to identify MTB. Modern integrated technologies allow for the rapid, low-cost, and highly precise detection of analytes in extremely little amounts of sample by biosensors. Here in this review, we outlined the severity of tuberculosis (TB) and the most recent developments in the biosensors sector, as well as their various kinds and benefits for TB detection. The review also emphasizes how widespread TB is and how it needs accurate diagnosis and effective treatment.
Collapse
Affiliation(s)
- Mansi Chaturvedi
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; School of Biomolecular Engineering & Biotechnology UTD RGPV, Bhopal, 462033, India
| | - Monika Patel
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Archana Tiwari
- School of Biomolecular Engineering & Biotechnology UTD RGPV, Bhopal, 462033, India
| | - Neeraj Dwivedi
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - D P Mondal
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Avanish Kumar Srivastava
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chetna Dhand
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Heterostructure of Metal Oxides Integrated on a GCE for Estimation of H2O2 Capacity in Milk and Fruit Juice Samples. ELECTROCHEM 2023. [DOI: 10.3390/electrochem4010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
High levels of H2O2 in food can lead to oxidative stress. Which has been linked to a number of neurological diseases. Hence, its detection in beverages is essential. However, a complicated structure of the reaction medium of H2O2 makes the detection procedure very difficult. For this reason, sensitive strategic methods are required. In this study, quantification of H2O2 in milk and apple juice has been obtained via the electrochemical sensing platform based on GCE/SiO-CeONPs. Scanning Electron Microscopy (SEM), Cyclic voltammetry(CV), and electron impedance spectroscopy(EIS) were employed to characterize the composite. The kinetics investigation of the sensor with H2O2 revealed an a quasi-reversible one -electron adsorption process. Under optimized conditions, the Differential Pulse Voltammetry (DPV) in 0.1 M Phosphate buffer (PB) pH 5.5 of the H2O2 displayed a peak at 0.13 V vs. Ag/AgCl with the detection limits of 0.0004 µM, linearity range of 0.01–0.08 µM. The observed LOD values of this method for real samples were calculated to be 0.006 µM and 0.007 µM with LOQ of 0.02 µM for milk and apple juice, respectively. The recovery of the analyte was from 92 to 99%. Furthermore, due to good selectivity and stability, the benefit of this sensor is its applicability in multiple fields.
Collapse
|
8
|
Yang X, Fan S, Ma Y, Chen H, Xu JF, Pi J, Wang W, Chen G. Current progress of functional nanobiosensors for potential tuberculosis diagnosis: The novel way for TB control? Front Bioeng Biotechnol 2022; 10:1036678. [PMID: 36588948 PMCID: PMC9798010 DOI: 10.3389/fbioe.2022.1036678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB), induced by the foxy Mycobacterium tuberculosis (Mtb), is still one of the top killers worldwide among infectious diseases. Although several antibiotics have been developed to significantly relieve the tuberculosis epidemics worldwide, there are still several important scientific challenges for tuberculosis. As one of the most critical issues for tuberculosis control, the accurate and timely diagnosis of tuberculosis is critical for the following therapy of tuberculosis and thus responsible for the effective control of drug-resistant tuberculosis. Current tuberculosis diagnostic methods in clinic are still facing the difficulties that they can't provide the rapid diagnostic results with high sensitivity and accuracy, which therefore requires the development of more effective novel diagnostic strategies. In recent decades, nanomaterials have been proved to show promising potentials for novel nanobiosensor construction based on their outstanding physical, chemical and biological properties. Taking these promising advantages, nanomaterial-based biosensors show the potential to allow the rapid, sensitive and accurate tuberculosis diagnosis. Here, aiming to increase the development of more effective tuberculosis diagnostic strategy, we summarized the current progress of nanobiosensors for potential tuberculosis diagnosis application. We discussed the different kind diagnostic targets for tuberculosis diagnosis based on nanobiosensors, ranging from the detection of bacterial components from M. tuberculosis, such as DNA and proteins, to the host immunological responses, such as specific cytokine production, and to the direct whole cell detection of M. tuberculosis. We believe that this review would enhance our understandings of nanobiosensors for potential tuberculosis diagnosis, and further promote the future research on nanobiosensor-based tuberculosis diagnosis to benefit the more effective control of tuberculosis epidemic.
Collapse
Affiliation(s)
- Xuran Yang
- Department of Clinical Medicine Laboratory, Affiliated Xiaolan Hospital, Southern Medical University, Zhongshan, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hui Chen
- Department of Clinical Medicine Laboratory, Affiliated Xiaolan Hospital, Southern Medical University, Zhongshan, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China,*Correspondence: Jiang Pi, ; Wandang Wang, ; Guanghui Chen,
| | - Wandang Wang
- Department of Clinical Medicine Laboratory, Affiliated Xiaolan Hospital, Southern Medical University, Zhongshan, China,*Correspondence: Jiang Pi, ; Wandang Wang, ; Guanghui Chen,
| | - Guanghui Chen
- Department of Clinical Medicine Laboratory, Affiliated Xiaolan Hospital, Southern Medical University, Zhongshan, China,*Correspondence: Jiang Pi, ; Wandang Wang, ; Guanghui Chen,
| |
Collapse
|
9
|
Fabrication of Silicon Nanowire Sensors for Highly Sensitive pH and DNA Hybridization Detection. NANOMATERIALS 2022; 12:nano12152652. [PMID: 35957087 PMCID: PMC9370444 DOI: 10.3390/nano12152652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022]
Abstract
A highly sensitive silicon nanowire (SiNW)-based sensor device was developed using electron beam lithography integrated with complementary metal oxide semiconductor (CMOS) technology. The top-down fabrication approach enables the rapid fabrication of device miniaturization with uniform and strictly controlled geometric and surface properties. This study demonstrates that SiNW devices are well-aligned with different widths and numbers for pH sensing. The device consists of a single nanowire with 60 nm width, exhibiting an ideal pH responsivity (18.26 × 106 Ω/pH), with a good linear relation between the electrical response and a pH level range of 4–10. The optimized SiNW device is employed to detect specific single-stranded deoxyribonucleic acid (ssDNA) molecules. To use the sensing area, the sensor surface was chemically modified using (3-aminopropyl) triethoxysilane and glutaraldehyde, yielding covalently linked nanowire ssDNA adducts. Detection of hybridized DNA works by detecting the changes in the electrical current of the ssDNA-functionalized SiNW sensor, interacting with the targeted ssDNA in a label-free way. The developed biosensor shows selectivity for the complementary target ssDNA with linear detection ranging from 1.0 × 10−12 M to 1.0 × 10−7 M and an attained detection limit of 4.131 × 10−13 M. This indicates that the use of SiNW devices is a promising approach for the applications of ion detection and biomolecules sensing and could serve as a novel biosensor for future biomedical diagnosis.
Collapse
|
10
|
Sivakumar R, Lee NY. Recent advances in airborne pathogen detection using optical and electrochemical biosensors. Anal Chim Acta 2022; 1234:340297. [PMID: 36328717 PMCID: PMC9395976 DOI: 10.1016/j.aca.2022.340297] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
The world is currently facing an adverse condition due to the pandemic of airborne pathogen SARS-CoV-2. Prevention is better than cure; thus, the rapid detection of airborne pathogens is necessary because it can reduce outbreaks and save many lives. Considering the immense role of diverse detection techniques for airborne pathogens, proper summarization of these techniques would be beneficial for humans. Hence, this review explores and summarizes emerging techniques, such as optical and electrochemical biosensors used for detecting airborne bacteria (Bacillus anthracis, Mycobacterium tuberculosis, Staphylococcus aureus, and Streptococcus pneumoniae) and viruses (Influenza A, Avian influenza, Norovirus, and SARS-CoV-2). Significantly, the first section briefly focuses on various diagnostic modalities applied toward airborne pathogen detection. Next, the fabricated optical biosensors using various transducer materials involved in colorimetric and fluorescence strategies for infectious pathogen detection are extensively discussed. The third section is well documented based on electrochemical biosensors for airborne pathogen detection by differential pulse voltammetry, cyclic voltammetry, square-wave voltammetry, amperometry, and impedance spectroscopy. The unique pros and cons of these modalities and their future perspectives are addressed in the fourth and fifth sections. Overall, this review inspected 171 research articles published in the last decade and persuaded the importance of optical and electrochemical biosensors for airborne pathogen detection.
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
11
|
Li Y, Peng D, Guo S, Yang B, Zhou J, Zhou J, Zhang Q, Bai L. Aptasensor for Mycobacterium tuberculosis antigen MPT64 detection using anthraquinone derivative confined in ordered mesoporous carbon as a new redox nanoprobe. Bioelectrochemistry 2022; 147:108209. [PMID: 35850057 DOI: 10.1016/j.bioelechem.2022.108209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/23/2022] [Accepted: 07/09/2022] [Indexed: 11/02/2022]
Abstract
Rapid and sensitive tuberculosis (TB) diagnoses remain big challenges to current detection tools. In this work, a sensitive electrochemical aptasensor was constructed for the determination of Mycobacterium tuberculosis antigen MPT64 using a new redox nanoprobe. We found that anthraquinone derivative, anthraquinone-2-carboxylic acid (AQCA), a redox mediator, could be confined in ordered mesoporous carbon material of CMK-3. Due to the large loading amount of AQCA, as well as the confined space and electron transfer promotion effect of CMK-3, the obtained AQCA/CMK-3 nanohybrid with mass ratio of 2:1 showed excellent electroactivity and was employed as a new redox nanoprobe for signal amplification for the first time. Additionally, urchin-like Ce-MOFs were used to load a large amount of deposited gold nanocrystals (dep-Au), leading to dense immobilization of capture probe. The proposed electrochemical aptasensor for MPT64 detection showed a good linear relationship in the range from 100 fg/mL to 10 ng/mL with a low detection limit of 67.6 fg/mL. Besides, the aptasensor was utilized to detect MTP64 in human serum samples for TB diagnosis and presented satisfactory results.
Collapse
Affiliation(s)
- Yishi Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Dengyong Peng
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Bijun Yang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jiaxu Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Qifan Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
12
|
Dong B, He Z, Li Y, Xu X, Wang C, Zeng J. Improved Conventional and New Approaches in the Diagnosis of Tuberculosis. Front Microbiol 2022; 13:924410. [PMID: 35711765 PMCID: PMC9195135 DOI: 10.3389/fmicb.2022.924410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Tuberculosis (TB) is a life-threatening infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis). Timely diagnosis and effective treatment are essential in the control of TB. Conventional smear microscopy still has low sensitivity and is unable to reveal the drug resistance of this bacterium. The traditional culture-based diagnosis is time-consuming, since usually the results are available after 3–4 weeks. Molecular biology methods fail to differentiate live from dead M. tuberculosis, while diagnostic immunology methods fail to distinguish active from latent TB. In view of these limitations of the existing detection techniques, in addition to the continuous emergence of multidrug-resistant and extensively drug-resistant TB, in recent years there has been an increase in the demand for simple, rapid, accurate and economical point-of-care approaches. This review describes the development, evaluation, and implementation of conventional diagnostic methods for TB and the rapid new approaches for the detection of M. tuberculosis.
Collapse
Affiliation(s)
- Baoyu Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhiqun He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyue Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Joshi H, Kandari D, Maitra SS, Bhatnagar R. Biosensors for the detection of Mycobacterium tuberculosis: a comprehensive overview. Crit Rev Microbiol 2022; 48:784-812. [PMID: 35196464 DOI: 10.1080/1040841x.2022.2035314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tuberculosis (TB) infection is one of the leading causes of death in the world. According to WHO reports 2019, the average rate of decrease in global TB incidences was only 1.6% per year from 2000 to 2018, besides that the global decline in TB deaths was just 11%. Therefore, the dire need for early detection of the pathogen for the successful diagnosis of TB seems justified. Mycobacterium tuberculosis secretory proteins have gained more attention as TB biomarkers, for the early diagnosis and treatment of TB. Here in this review, we elaborate on the recent advancements made in the field of piezoelectric, magnetic, optical, and electrochemical biosensors, in addition to listing their merits and setbacks. Additionally, this review also discusses the construction of biosensors through modern integrated technologies, such as combinations of analytical chemistry, molecular biology, and nanotechnology. Integrated technologies enhance the detection for perceiving highly selective, specific, and sensitive signals to detect M. tuberculosis. Furthermore, this review highlights the recent challenges and scope of improvement in numerous biosensors developed for rapid, specific, selective, and sensitive detection of tuberculosis to reduce the TB burden and successful treatment.
Collapse
Affiliation(s)
- Hemant Joshi
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Subhrangsu Sundar Maitra
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Amity University of Rajasthan, Jaipur, India
| |
Collapse
|
14
|
An electrochemical aptasensor for Mycobacterium tuberculosis ESAT-6 antigen detection using bimetallic organic framework. Mikrochim Acta 2021; 188:404. [PMID: 34731314 DOI: 10.1007/s00604-021-05058-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/09/2021] [Indexed: 02/01/2023]
Abstract
A label-free electrochemical aptasensor is reported for sensitive detection of the 6-kDa early secreted antigenic target (ESAT-6). For the first time, the bimetallic organic framework (b-MOF) of Zr-MOF-on-Ce-MOF was decorated with nitrogen-doped graphene (NG) and applied as the matrix for electroactive toluidine blue (Tb) to form the NG@Zr-MOF-on-Ce-MOF@Tb nanohybrid. The prepared nanohybrid with excellent hydrophilicity, dispersibility, and large specific surface exhibited significant electrochemical response. This nanohybrid could be directly used for anchoring ESAT-6 binding aptamers (EBA) through the interaction between the 5'-phosphate group (PO43-) of EBA and Zr4+ of Zr-MOF. The signal response before and after incubating the ESAT-6 antigen has been evaluated by cyclic voltammetry at a scan rate of 100 mV s-1 from - 0.7 to 0.3 V (vs. SCE). Under optimal conditions, the proposed aptasensor displayed a wide linear range from 100 fg mL-1 to 10 ng mL-1 with a limit of detection (LOD) of 12 fg mL-1. The developed method showed good reproducibility with a relative standard deviation (RSD) of 2.27%. The aptasensor showed favorable results in the analysis of the real samples. With these merits, the aptasensor has exceptional potential as a diagnostic tool for tuberculosis in clinical practice.
Collapse
|
15
|
Azmi UZM, Yusof NA, Abdullah J, Mohammad F, Ahmad SAA, Suraiya S, Raston NHA, Faudzi FNM, Khiste SK, Al-Lohedan HA. Aptasensor for the Detection of Mycobacterium tuberculosis in Sputum Utilising CFP10-ESAT6 Protein as a Selective Biomarker. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2446. [PMID: 34578762 PMCID: PMC8470133 DOI: 10.3390/nano11092446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022]
Abstract
A portable electrochemical aptamer-antibody based sandwich biosensor has been designed and successfully developed using an aptamer bioreceptor immobilized onto a screen-printed electrode surface for Mycobacterium tuberculosis (M. tuberculosis) detection in clinical sputum samples. In the sensing strategy, a CFP10-ESAT6 binding aptamer was immobilized onto a graphene/polyaniline (GP/PANI)-modified gold working electrode by covalent binding via glutaraldehyde linkage. Upon interaction with the CFP10-ESAT6 antigen target, the aptamer will capture the target where the nano-labelled Fe3O4/Au MNPs conjugated antibody is used to complete the sandwich format and enhance the signal produced from the aptamer-antigen interaction. Using this strategy, the detection of CFP10-ESAT6 antigen was conducted in the concentration range of 5 to 500 ng/mL. From the analysis, the detection limit was found to be 1.5 ng/mL, thereby demonstrating the efficiency of the aptamer as a bioreceptor. The specificity study was carried out using bovine serum albumin (BSA), MPT64, and human serum, and the result demonstrated good specificity that is 7% higher than the antibody-antigen interaction reported in a previous study. The fabricated aptasensor for M. tuberculosis analysis shows good reproducibility with an relative standard deviation (RSD) of 2.5%. Further analysis of M. tuberculosis in sputum samples have shown good correlation with the culture method with 100% specificity and sensitivity, thus making the aptasensor a promising candidate for M. tuberculosis detection considering its high specificity and sensitivity with clinical samples.
Collapse
Affiliation(s)
- Umi Zulaikha Mohd Azmi
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (U.Z.M.A.); (J.A.); (S.A.A.A.); (F.N.M.F.)
| | - Nor Azah Yusof
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (U.Z.M.A.); (J.A.); (S.A.A.A.); (F.N.M.F.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Jaafar Abdullah
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (U.Z.M.A.); (J.A.); (S.A.A.A.); (F.N.M.F.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Faruq Mohammad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Shahrul Ainliah Alang Ahmad
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (U.Z.M.A.); (J.A.); (S.A.A.A.); (F.N.M.F.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Siti Suraiya
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia;
| | - Nurul Hanun Ahmad Raston
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia;
| | - Fatin Nabilah Mohd Faudzi
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (U.Z.M.A.); (J.A.); (S.A.A.A.); (F.N.M.F.)
| | - Sachin K. Khiste
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
| | - Hamad A. Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
16
|
Editorial for the Special Issue on Nanomaterials in Health Care Diagnostics. MATERIALS 2021; 14:ma14092214. [PMID: 33925797 PMCID: PMC8123434 DOI: 10.3390/ma14092214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
|
17
|
Kaya HO, Cetin AE, Azimzadeh M, Topkaya SN. Pathogen detection with electrochemical biosensors: Advantages, challenges and future perspectives. J Electroanal Chem (Lausanne) 2021; 882:114989. [PMID: 33456428 PMCID: PMC7794054 DOI: 10.1016/j.jelechem.2021.114989] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/27/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
Abstract
Detection of pathogens, e.g., bacteria and viruses, is still a big challenge in analytical medicine due to their vast number and variety. Developing strategies for rapid, inexpensive, specific, and sensitive detection of the pathogens using nanomaterials, integrating with microfluidics devices, amplification methods, or even combining these strategies have received significant attention. Especially, after the health-threatening COVID-19 outbreak, rapid and sensitive detection of pathogens became very critical. Detection of pathogens could be realized with electrochemical, optical, mass sensitive, or thermal methods. Among them, electrochemical methods are very promising by bringing different advantages, i.e., they exhibit more versatile detection schemes and real-time quantification as well as label-free measurements, which provides a broader application perspective. In this review, we discuss the recent advances for the detection of bacteria and viruses using electrochemical biosensors. Moreover, electrochemical biosensors for pathogen detection were broadly reviewed in terms of analyte, bio-recognition and transduction elements. Different fabrication techniques, detection principles, and applications of various pathogens with the electrochemical biosensors were also discussed.
Collapse
Affiliation(s)
- Hüseyin Oğuzhan Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Turkey
| | - Arif E Cetin
- Izmir Biomedicine and Genome Center, Balcova 35340, Izmir, Turkey
| | - Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999 Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999 Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, 8916188635 Yazd, Iran
| | - Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Turkey
| |
Collapse
|
18
|
Mohd Azmi UZ, Yusof NA, Abdullah J, Alang Ahmad SA, Mohd Faudzi FN, Ahmad Raston NH, Suraiya S, Ong PS, Krishnan D, Sahar NK. Portable electrochemical immunosensor for detection of Mycobacterium tuberculosis secreted protein CFP10-ESAT6 in clinical sputum samples. Mikrochim Acta 2021; 188:20. [PMID: 33404779 DOI: 10.1007/s00604-020-04669-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/24/2020] [Indexed: 01/04/2023]
Abstract
An early detection of Mycobacterium tuberculosis is very important to reduce the number of fatal cases and allow for fast recovery. However, the interpretation of the result from smear microscopy requires skilled personnel due to the propensity of the method to produce false-negative results. In this work, a portable, rapid, and simple sandwich-type immunosensor reader has been developed that is able to detect the presence of M. tuberculosis in sputum samples. By using sandwich-type immunosensor, an anti-CFP10-ESAT6 antibody was immobilized onto the graphene/polyaniline (GP/PANI)-modified gold screen-printed electrode. After incubation with the target CFP10-ESAT6 antigen, the iron/gold magnetic nanoparticles (Fe3O4/Au MNPs) conjugated with anti-CFP10-ESAT6 antibody were used to complete the sandwich format. Differential pulse voltammetry (DPV) technique was used to detect the CFP10-ESAT6 antigen at the potential range of 0.0-1.0 V. The detection time is less than 2 h. Under optimal condition, CFP10-ESAT6 antigen was detected in a linear range from 10 to 500 ng mL-1 with a limit of detection at 1.5 ng mL-1. The method developed from this process was then integrated into a portable reader. The performance of the sensor was investigated and compared with the standard methods (culture and smear microscopy). It provides a good correlation (100% sensitivity and 91.7% specificity) with both methods of detection for M. tuberculosis in sputum samples henceforth, demonstrating the potential of the device as a more practical screening tool.Graphical abstract.
Collapse
Affiliation(s)
- Umi Zulaikha Mohd Azmi
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Nor Azah Yusof
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Jaafar Abdullah
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Shahrul Ainliah Alang Ahmad
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | | | - Nurul Hanun Ahmad Raston
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Siti Suraiya
- School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Poh Shing Ong
- NanoMalaysia Berhad, a CLG under the Ministry of Energy, Science, Technology, Environment and Climate Change (MESTECC), 50450, Kuala Lumpur, Malaysia
| | - Devandran Krishnan
- NanoMalaysia Berhad, a CLG under the Ministry of Energy, Science, Technology, Environment and Climate Change (MESTECC), 50450, Kuala Lumpur, Malaysia
| | - Nur Khairunnisa Sahar
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| |
Collapse
|
19
|
Nemčeková K, Labuda J. Advanced materials-integrated electrochemical sensors as promising medical diagnostics tools: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111751. [PMID: 33545892 DOI: 10.1016/j.msec.2020.111751] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 02/08/2023]
Abstract
Electrochemical sensors have increasingly been linked with terms as modern biomedically effective highly selective and sensitive devices, wearable and wireless technology, portable electronics, smart textiles, energy storage, communication and user-friendly operating systems. The work brings the overview of the current advanced materials and their application strategies for improving performance, miniaturization and portability of sensing devices. It provides the extensive information on recently developed (bio)sensing platforms based on voltammetric, amperometric, potentiometric and impedimetric detection modes including portable, non-invasive, wireless, and self-driven miniaturized devices for monitoring human and animal health. Diagnostics of selected free radical precursors, low molecular biomarkers, nucleic acids and protein-based biomarkers, bacteria and viruses of today's interest is demonstrated.
Collapse
Affiliation(s)
- Katarína Nemčeková
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava 81237, Slovakia.
| | - Ján Labuda
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava 81237, Slovakia.
| |
Collapse
|
20
|
Rodríguez-Hernández E, Quintas-Granados LI, Flores-Villalva S, Cantó-Alarcón JG, Milián-Suazo F. Application of antigenic biomarkers for Mycobacterium tuberculosis. J Zhejiang Univ Sci B 2020; 21:856-870. [PMID: 33150770 PMCID: PMC7670104 DOI: 10.1631/jzus.b2000325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/19/2020] [Indexed: 01/12/2023]
Abstract
The study and characterization of biomolecules involved in the interaction between mycobacteria and their hosts are crucial to determine their roles in the invasion process and provide basic knowledge about the biology and pathogenesis of disease. Promising new biomarkers for diagnosis and immunotherapy have emerged recently. Mycobacterium is an ancient pathogen that has developed complex strategies for its persistence in the host and environment, likely based on the complexity of the network of interactions between the molecules involved in infection. Several biomarkers have received recent attention in the process of developing rapid and reliable detection techniques for tuberculosis. Among the most widely investigated antigens are CFP-10 (10-kDa culture filtrate protein), ESAT-6 (6-kDa early secretory antigenic target), Ag85A, Ag85B, CFP-7, and PPE18. Some of these antigens have been proposed as biomarkers to assess the key elements of the response to infection of both the pathogen and host. The design of novel and accurate diagnostic methods is essential for the control of tuberculosis worldwide. Presently, the diagnostic methods are based on the identification of molecules in the humoral response in infected individuals. Therefore, these tests depend on the capacity of the host to develop an immune response, which usually is heterogeneous. In the last 20 years, special attention has been given to the design of multiantigenic diagnostic methods to improve the levels of sensitivity and specificity. In this review, we summarize the state of the art in the study and use of mycobacterium biomolecules with the potential to support novel tuberculosis control strategies.
Collapse
Affiliation(s)
- Elba Rodríguez-Hernández
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Km. 1 Carretera a Colón, Ajuchitlán Colón, 76280, Colón, Querétaro, México
| | - Laura Itzel Quintas-Granados
- Universidad Mexiquense del Bicentenario, Unidad de Estudios Superiores de Tultitlán, Avenida Ex-Hacienda de Portales s/n, Villa Esmeralda, Tultitlán Estado de México, 54910, Tultitlán, México
| | - Susana Flores-Villalva
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Km. 1 Carretera a Colón, Ajuchitlán Colón, 76280, Colón, Querétaro, México
| | - Jorge Germinal Cantó-Alarcón
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Avenida de las Ciencias s/n, Juriquilla, Delegación Santa Rosa Jáuregui, 76230, Querétaro, México
| | - Feliciano Milián-Suazo
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Avenida de las Ciencias s/n, Juriquilla, Delegación Santa Rosa Jáuregui, 76230, Querétaro, México
| |
Collapse
|
21
|
Mat Zaid MH, Che-Engku-Chik CEN, Yusof NA, Abdullah J, Othman SS, Issa R, Md Noh MF, Wasoh H. DNA Electrochemical Biosensor Based on Iron Oxide/Nanocellulose Crystalline Composite Modified Screen-Printed Carbon Electrode for Detection of Mycobacterium tuberculosis. Molecules 2020; 25:E3373. [PMID: 32722334 PMCID: PMC7435410 DOI: 10.3390/molecules25153373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 11/16/2022] Open
Abstract
Death from tuberculosis has resulted in an increased need for early detection to prevent a tuberculosis (TB) epidemic, especially in closed and crowded populations. Herein, a sensitive electrochemical DNA biosensor based on functionalized iron oxide with mercaptopropionic acid (MPA-Fe3O4) nanoparticle and nanocellulose crystalline functionalized cetyl trimethyl ammonium bromide (NCC/CTAB) has been fabricated for the detection of Mycobacterium tuberculosis (MTB). In this study, a simple drop cast method was applied to deposit solution of MPA-Fe3O4/NCC/CTAB onto the surface of the screen-printed carbon electrode (SPCE). Then, a specific sequence of MTB DNA probe was immobilized onto a modified SPCE surface by using the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling mechanism. For better signal amplification and electrochemical response, ruthenium bipyridyl Ru(bpy)32+ was assigned as labels of hybridization followed by the characteristic test using differential pulse voltammetry (DPV). The results of this biosensor enable the detection of target DNA until a concentration as low as 7.96 × 10-13 M with a wide detection range from 1.0 × 10-6 to 1.0 × 10-12 M. In addition, the developed biosensor has shown a differentiation between positive and negative MTB samples in real sampel analysis.
Collapse
Affiliation(s)
- Mohd Hazani Mat Zaid
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.H.M.Z.); (N.A.Y.); (J.A.)
- Department of chemical sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Che Engku Noramalina Che-Engku-Chik
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.H.M.Z.); (N.A.Y.); (J.A.)
- Department of chemical sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.H.M.Z.); (N.A.Y.); (J.A.)
- Department of chemical sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Siti Sarah Othman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Rahizan Issa
- Bacteriology Unit, Infectious Disease Research Centre, Institute for Medical Research, Jalan Pahang, Kuala Lumpur 50588, Malaysia;
| | - Mohd Fairulnizal Md Noh
- Cardiovascular Diabetes and Nutrition Research Centre, Institute for Medical Research, Jalan Pahang, Kuala Lumpur 50588, Malaysia;
| | - Helmi Wasoh
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Malaysia
- Halal Product Research Institute (IPPH), Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|