1
|
Mohammadi V, Esmaeilzadeh K, Esmaeilzadeh A. Application of magnetic nanoparticles in adoptive cell therapy of cancer; training, guiding and imaging cells. Nanomedicine (Lond) 2024; 19:2315-2329. [PMID: 39258568 PMCID: PMC11488091 DOI: 10.1080/17435889.2024.2395239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
Adoptive cell therapy (ACT) is on the horizon as a thrilling therapeutic plan for cancer. However, widespread application of ACT is often restricted by several challenges, including complexity of priming tumor-specific T cells and poor trafficking in solid tumors. The convergence of nanotechnology and cancer immunotherapy is coming of age and could address the limitations of ACT. Recent studies have provided evidence on the application of magnetic nanoparticles (MNPs) to generate smart immune cells and to bypass problems associated with conventional ACT. Herein, we review current progress in the application of MNPs to improve preparing, guiding and tracking immune cells in cancer ACT. Besides, we comment on the challenges ahead and strategies to optimize MNPs for clinical settings.
Collapse
Affiliation(s)
- Vahid Mohammadi
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Mishra S, Yadav MD. Magnetic Nanoparticles: A Comprehensive Review from Synthesis to Biomedical Frontiers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17239-17269. [PMID: 39132737 DOI: 10.1021/acs.langmuir.4c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Nanotechnology has opened new doors of exploration, particularly in materials science and healthcare. Magnetic nanoparticles (MNP), the tiny magnets, because of their various properties, have the potential to bring about radical changes in the field of medicine. The distinctive surface chemistry, nontoxicity, biocompatibility, and, in particular, the inducible magnetic moment of magnetic materials has attracted a great deal of interest in morphological structures from a variety of scientific domains. This review presents a concise overview of MNPs and their crucial properties and synthesis routes. It also aims to highlight the continuous synthesis methods available for MNP production. In recent years, the use of computational methods for understanding the behavior of nanoparticles has been on the rise. Thus, we also discuss the numerical models developed to understand how magnetic nanoparticles can be used in magnetic hyperthermia and targeting the Circle of Wilis. With the increasing use of MNPs in biomedical applications, it becomes necessary to understand the mechanisms of toxicity, which are elucidated in this review. The review focuses on the biomedical applications of MNPs in drug delivery, theranostics, and MRI contrasting agents. We anticipate that this article will broaden the perspective on magnetic nanoparticles and help to understand their functionality and applicability better.
Collapse
Affiliation(s)
- Shlok Mishra
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, India
| | - Manishkumar D Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, India
| |
Collapse
|
3
|
Branco F, Cunha J, Mendes M, Vitorino C, Sousa JJ. Peptide-Hitchhiking for the Development of Nanosystems in Glioblastoma. ACS NANO 2024; 18:16359-16394. [PMID: 38861272 PMCID: PMC11223498 DOI: 10.1021/acsnano.4c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024]
Abstract
Glioblastoma (GBM) remains the epitome of aggressiveness and lethality in the spectrum of brain tumors, primarily due to the blood-brain barrier (BBB) that hinders effective treatment delivery, tumor heterogeneity, and the presence of treatment-resistant stem cells that contribute to tumor recurrence. Nanoparticles (NPs) have been used to overcome these obstacles by attaching targeting ligands to enhance therapeutic efficacy. Among these ligands, peptides stand out due to their ease of synthesis and high selectivity. This article aims to review single and multiligand strategies critically. In addition, it highlights other strategies that integrate the effects of external stimuli, biomimetic approaches, and chemical approaches as nanocatalytic medicine, revealing their significant potential in treating GBM with peptide-functionalized NPs. Alternative routes of parenteral administration, specifically nose-to-brain delivery and local treatment within the resected tumor cavity, are also discussed. Finally, an overview of the significant obstacles and potential strategies to overcome them are discussed to provide a perspective on this promising field of GBM therapy.
Collapse
Affiliation(s)
- Francisco Branco
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Joana Cunha
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria Mendes
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - João J. Sousa
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
4
|
Nanda SS, Yi DK. Recent Advances in Synergistic Effect of Nanoparticles and Its Biomedical Application. Int J Mol Sci 2024; 25:3266. [PMID: 38542240 PMCID: PMC10969916 DOI: 10.3390/ijms25063266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
The synergistic impact of nanomaterials is critical for novel intracellular and/or subcellular drug delivery systems of minimal toxicity. This synergism results in a fundamental bio/nano interface interaction, which is discussed in terms of nanoparticle translocation, outer wrapping, embedding, and interior cellular attachment. The morphology, size, surface area, ligand chemistry and charge of nanoparticles all play a role in translocation. In this review, we suggest a generalized mechanism to characterize the bio/nano interface, as we discuss the synergistic interaction between nanoparticles and cells, tissues, and other biological systems. Novel perceptions are reviewed regarding the ability of nanoparticles to improve hybrid nanocarriers with homogeneous structures to enhance multifunctional biomedical applications, such as bioimaging, tissue engineering, immunotherapy, and phototherapy.
Collapse
Affiliation(s)
| | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin 17058, Republic of Korea;
| |
Collapse
|
5
|
Azizollahi F, Kamali H, Oroojalian F. Magnetic nanocarriers for cancer immunotherapy. NANOMEDICINE IN CANCER IMMUNOTHERAPY 2024:349-401. [DOI: 10.1016/b978-0-443-18770-4.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Oguzlar S, Zeyrek Ongun M, Deliormanlı AM. Effect on Improving CO 2 Sensor Properties: Combination of HPTS and γ-Fe 2O 3@ZnO Bioactive Glass. ACS OMEGA 2023; 8:40561-40571. [PMID: 37929109 PMCID: PMC10620782 DOI: 10.1021/acsomega.3c05361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
8-Hydroxypyrene-1,3,6-trisulfonic acid (HPTS) dye, a fluorescent dye often used as a pH indicator, is embedded within the bioactive glass matrix and undergoes changes in its fluorescent properties when exposed to carbon dioxide (CO2). The aim of the current study is to investigate the use of bioactive glass (BG) particles containing γ-Fe2O3@ZnO to enhance the CO2 sensitivity of HPTS. X-ray diffraction, Fourier transform infrared, scanning electron microscopy, and photoluminescence spectroscopies were used to characterize the sol-gel synthesized powders. The sensing slides were prepared in the form of a thin film by immobilizing the fluorescent dye and γ-Fe2O3@ZnO-based additives into the poly(methyl methacrylate) matrix. The addition of γ-Fe2O3@ZnO nanoparticles with bioactive glass additives to the HPTS improves the performance characteristics of the sensor, including the linear response range, relative signal variation, and sensitivity. Meanwhile, the CO2 sensitivities were measured as 10.22, 7.73, 16.56, 17.82, 19.58, and 42.40 for the undoped form and M, M@ZnO, 5M@ZnO-BG, 10M@ZnO-BG, and 20M@ZnO-BG NP-doped forms of the HPTS-based thin films, respectively. The response and recovery times of the HPTS-based sensing slide along with 20M@ZnO-BG NPs have been measured as 44 and 276 s, respectively. The γ-Fe2O3/ZnO-containing BG particle-doped HPTS composites can be used as a promising sensor agent in the detection of CO2 gas in various fields such as environmental monitoring, medical diagnostics, and industrial processes.
Collapse
Affiliation(s)
- Sibel Oguzlar
- Center
for Fabrication and Application of Electronic Materials, Dokuz Eylul University, Izmir 35390, Turkey
| | - Merve Zeyrek Ongun
- Izmir
Vocational High School, Chemistry and Chemical Processing Technologies
Department, Chemical Technology Program, Dokuz Eylul University, Izmir 35210, Turkey
| | - Aylin M. Deliormanlı
- Department
of Metallurgical and Materials Engineering, Manisa Celal Bayar University, Manisa 45040, Turkey
| |
Collapse
|
7
|
Pusta A, Tertis M, Crăciunescu I, Turcu R, Mirel S, Cristea C. Recent Advances in the Development of Drug Delivery Applications of Magnetic Nanomaterials. Pharmaceutics 2023; 15:1872. [PMID: 37514058 PMCID: PMC10383769 DOI: 10.3390/pharmaceutics15071872] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
With the predicted rise in the incidence of cancer, there is an ever-growing need for new cancer treatment strategies. Recently, magnetic nanoparticles have stood out as promising nanostructures for imaging and drug delivery systems as they possess unique properties. Moreover, magnetic nanomaterials functionalized with other compounds can lead to multicomponent nanoparticles with innovative structures and synergetic performance. The incorporation of chemotherapeutic drugs or RNA in magnetic drug delivery systems represents a promising alternative that can increase efficiency and reduce the side effects of anticancer therapy. This review presents a critical overview of the recent literature concerning the advancements in the field of magnetic nanoparticles used in drug delivery, with a focus on their classification, characteristics, synthesis and functionalization methods, limitations, and examples of magnetic drug delivery systems incorporating chemotherapeutics or RNA.
Collapse
Affiliation(s)
- Alexandra Pusta
- Department of Analytical Chemistry and Instrumental Analysis, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry and Instrumental Analysis, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Izabell Crăciunescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Rodica Turcu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Simona Mirel
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry and Instrumental Analysis, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Hybrid Magnetic Lipid-Based Nanoparticles for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15030751. [PMID: 36986612 PMCID: PMC10058222 DOI: 10.3390/pharmaceutics15030751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Cancer is one of the major public health problems worldwide. Despite the advances in cancer therapy, it remains a challenge due to the low specificity of treatment and the development of multidrug resistance mechanisms. To overcome these drawbacks, several drug delivery nanosystems have been investigated, among them, magnetic nanoparticles (MNP), especially superparamagnetic iron oxide nanoparticles (SPION), which have been applied for treating cancer. MNPs have the ability to be guided to the tumor microenvironment through an external applied magnetic field. Furthermore, in the presence of an alternating magnetic field (AMF) this nanocarrier can transform electromagnetic energy in heat (above 42 °C) through Néel and Brown relaxation, which makes it applicable for hyperthermia treatment. However, the low chemical and physical stability of MNPs makes their coating necessary. Thus, lipid-based nanoparticles, especially liposomes, have been used to encapsulate MNPs to improve their stability and enable their use as a cancer treatment. This review addresses the main features that make MNPs applicable for treating cancer and the most recent research in the nanomedicine field using hybrid magnetic lipid-based nanoparticles for this purpose.
Collapse
|
9
|
Khizar S, Elkalla E, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Magnetic nanoparticles: multifunctional tool for cancer therapy. Expert Opin Drug Deliv 2023; 20:189-204. [PMID: 36608938 DOI: 10.1080/17425247.2023.2166484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Cancer has one of the highest mortality rates globally. The traditional therapies used to treat cancer have harmful adverse effects. Considering these facts, researchers have explored new therapeutic possibilities with enhanced benefits. Nanoparticle development for cancer detection, in addition to therapy, has shown substantial progress over the past few years. AREA COVERED Herein, the latest research regarding cancer treatment employing magnetic nanoparticles (MNPs) in chemo-, immuno-, gene-, and radiotherapy along with hyperthermia is summarized, in addition to their physio-chemical features, advantages, and limitations for clinical translation have also been discussed. EXPERT OPINION MNPs are being extensively investigated and developed into effective modules for cancer therapy. They are highly functional tools aimed at cancer therapy owing to their excellent superparamagnetic, chemical, biocompatible, physical, and biodegradable properties.
Collapse
Affiliation(s)
- Sumera Khizar
- Univ Lyon, University Cla-ude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Eslam Elkalla
- Univ Lyon, University Cla-ude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Nadia Zine
- Univ Lyon, University Cla-ude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, University Cla-ude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | |
Collapse
|
10
|
Rabaan AA, Bukhamsin R, AlSaihati H, Alshamrani SA, AlSihati J, Al-Afghani HM, Alsubki RA, Abuzaid AA, Al-Abdulhadi S, Aldawood Y, Alsaleh AA, Alhashem YN, Almatouq JA, Emran TB, Al-Ahmed SH, Nainu F, Mohapatra RK. Recent Trends and Developments in Multifunctional Nanoparticles for Cancer Theranostics. Molecules 2022; 27:8659. [PMID: 36557793 PMCID: PMC9780934 DOI: 10.3390/molecules27248659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Conventional anticancer treatments, such as radiotherapy and chemotherapy, have significantly improved cancer therapy. Nevertheless, the existing traditional anticancer treatments have been reported to cause serious side effects and resistance to cancer and even to severely affect the quality of life of cancer survivors, which indicates the utmost urgency to develop effective and safe anticancer treatments. As the primary focus of cancer nanotheranostics, nanomaterials with unique surface chemistry and shape have been investigated for integrating cancer diagnostics with treatment techniques, including guiding a prompt diagnosis, precise imaging, treatment with an effective dose, and real-time supervision of therapeutic efficacy. Several theranostic nanosystems have been explored for cancer diagnosis and treatment in the past decade. However, metal-based nanotheranostics continue to be the most common types of nonentities. Consequently, the present review covers the physical characteristics of effective metallic, functionalized, and hybrid nanotheranostic systems. The scope of coverage also includes the clinical advantages and limitations of cancer nanotheranostics. In light of these viewpoints, future research directions exploring the robustness and clinical viability of cancer nanotheranostics through various strategies to enhance the biocompatibility of theranostic nanoparticles are summarised.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Rehab Bukhamsin
- Dammam Regional Laboratory and Blood Bank, Dammam 31411, Saudi Arabia
| | - Hajir AlSaihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Jehad AlSihati
- Internal Medicine Department, Gastroenterology Section, King Fahad Specialist Hospital, Dammam 31311, Saudi Arabia
| | - Hani M. Al-Afghani
- Laboratory Department, Security Forces Hospital, Makkah 24269, Saudi Arabia
- iGene Center for Research and Training, Jeddah 23484, Saudi Arabia
| | - Roua A. Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Abdulmonem A. Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Saleh Al-Abdulhadi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Riyadh 11942, Saudi Arabia
- Dr. Saleh Office for Medical Genetic and Genetic Counseling Services, The House of Expertise, Prince Sattam Bin Abdulaziz University, Dammam 32411, Saudi Arabia
| | - Yahya Aldawood
- Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences, Dammam 34222, Saudi Arabia
| | - Abdulmonem A. Alsaleh
- Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences, Dammam 34222, Saudi Arabia
| | - Yousef N. Alhashem
- Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences, Dammam 34222, Saudi Arabia
| | - Jenan A. Almatouq
- Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences, Dammam 34222, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Shamsah H. Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, India
| |
Collapse
|
11
|
Zhang N, Wu Y, Xu W, Li Z, Wang L. Synergic fabrication of multifunctional liposomes nanocomposites for improved radiofrequency ablation combination for liver metastasis cancer therapy. Drug Deliv 2022; 29:506-518. [PMID: 35147065 PMCID: PMC8845112 DOI: 10.1080/10717544.2021.2008056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 02/02/2023] Open
Abstract
The field of biomedical research has recently been interested in nanoplatforms with various functionalities, such as cancer drug carriers and MRI and optical imaging, as well as thermal treatment, among other things. As a result of the present investigation, a unique multifunctional liposome (MFL) was established in this investigation. Using radiofrequency-induced imaging and drug release based on magnetic field impact, a dual drug delivery targeted with tumor multi-mechanism treatment was made more effective. The C60 (fullerene) surface was coated with iron nanocomposites to establish the proposed nanosystems, and PEGylation was used (Fe3O4-C60-PEG2000). For fullerene radiofrequency-triggered drug release, thermosensitive DPPC liposomes with folate-DSPE-PEG2000 enveloped the binary nanosystems and doxorubicin (DOX). The in vitro cytotoxicity of the nanocomposites was confirmed by the liver metastasis in HT-29 colon cancer cells using radiofrequency. The flow cytometry analysis confirmed the apoptosis cell death mechanism. The thermal treatment combined chemotherapeutic MFL nano framework transformed radiofrequency radiation from thermoresponsive liposomes, which was noticed both in vivo and in vitro. Due to their superior active tumor targeting and magnetic targeting characteristics, the MFL could also selectively destroy cancerous liver cells in highly co-localized targets.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yibin Wu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weiqi Xu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhenjian Li
- 3D Biomedicine Science & Technology Co., Limited, Shanghai, China
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
12
|
Novel MR imaging nanoprobe for hepatocellular carcinoma detection based on manganese–zinc ferrite nanoparticles: in vitro and in vivo assessments. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04427-x. [DOI: 10.1007/s00432-022-04427-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/16/2022] [Indexed: 10/31/2022]
|
13
|
McKeever C, Aziz M. Effect of Multilayered Structure on the Static and Dynamic Properties of Magnetic Nanospheres. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35177-35183. [PMID: 35879264 PMCID: PMC9354015 DOI: 10.1021/acsami.2c05715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of flexible and lightweight electromagnetic interference (EMI)-shielding materials and microwave absorbers requires precise control and optimization of core-shell constituents within composite materials. Here, a theoretical model is proposed to predict the static and dynamic properties of multilayered core-shell particles comprised of exchange-coupled layers, as in the case of a spherical iron core coupled to an oxide shell across a spacer layer. The theory of exchange resonance in homogeneous spheres is shown to be a limiting special case of this more general theory. Nucleation of magnetization reversal occurs through either quasi-uniform or curling magnetization processes in core-shell particles, where a purely homogeneous magnetization configuration is forbidden by the multilayered morphology. The energy is minimized through mixing of modes for specific interface conditions, leading to many inhomogeneous solutions, which grow as 2n with increasing layers, where n represents the number of magnetic layers. The analytical predictions are confirmed using numerical simulations.
Collapse
Affiliation(s)
- Conor McKeever
- Department
of Physics and Astronomy, University of
Exeter, Exeter EX4 4QL, United Kingdom
- MaxLLG,
Exeter Science Park, Exeter EX5 2FN, United Kingdom
| | - Mustafa Aziz
- Department
of Engineering, University of Exeter, Exeter EX4 4QF, United Kingdom
- MaxLLG,
Exeter Science Park, Exeter EX5 2FN, United Kingdom
| |
Collapse
|
14
|
Mehta S, Suresh A, Nayak Y, Narayan R, Nayak UY. Hybrid nanostructures: Versatile systems for biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Sachse E, Escobar-Castillo M, Waag F, Gökce B, Salamon S, Landers J, Wende H, Lupascu DC. Laser Ablation of NiFe 2O 4 and CoFe 2O 4 Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1872. [PMID: 35683727 PMCID: PMC9181974 DOI: 10.3390/nano12111872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023]
Abstract
Pulsed laser ablation in liquids was utilized to prepare NiFe2O4 (NFO) and CoFe2O4 (CFO) nanoparticles from ceramic targets. The morphology, crystallinity, composition, and particle size distribution of the colloids were investigated. We were able to identify decomposition products formed during the laser ablation process in water. Attempts to fractionate the nanoparticles using the high-gradient magnetic separation method were performed. The nanoparticles with crystallite sizes in the range of 5-100 nm possess superparamagnetic behavior and approximately 20 Am2/kg magnetization at room temperature. Their ability to absorb light in the visible range makes them potential candidates for catalysis applications in chemical reactions and in biomedicine.
Collapse
Affiliation(s)
- Erik Sachse
- Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany; (E.S.); (D.C.L.)
| | - Marianela Escobar-Castillo
- Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany; (E.S.); (D.C.L.)
| | - Friedrich Waag
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany; (F.W.); (B.G.)
| | - Bilal Gökce
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany; (F.W.); (B.G.)
- Materials Science and Additive Manufacturing, University of Wuppertal, 42119 Wuppertal, Germany
| | - Soma Salamon
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany; (S.S.); (J.L.); (H.W.)
| | - Joachim Landers
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany; (S.S.); (J.L.); (H.W.)
| | - Heiko Wende
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany; (S.S.); (J.L.); (H.W.)
| | - Doru C. Lupascu
- Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany; (E.S.); (D.C.L.)
| |
Collapse
|
16
|
The convergence of in silico approach and nanomedicine for efficient cancer treatment; in vitro investigations on curcumin loaded multifunctional graphene oxide nanocomposite structure. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Patel M, Prabhu A. Smart nanocomposite assemblies for multimodal cancer theranostics. Int J Pharm 2022; 618:121697. [PMID: 35337903 DOI: 10.1016/j.ijpharm.2022.121697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/28/2022]
Abstract
Despite great strides in anticancer research, performance statistics of current treatment modalities remain dismal, highlighting the need for safe, efficacious strategies for tumour mitigation. Non-invasive fusion technology platforms combining photodynamic, photothermal and hyperthermia therapies have emerged as alternate strategies with potential to meet many of the unmet clinical demands in the domain of cancer. These therapies make use of metallic and magnetic nanoparticles with light absorbing properties, which are manipulated to generate either reactive cytotoxic oxygen species or heat for tumour ablation. Combination therapies integrating light, heat and magnetism-mediated nanoplatforms with the conventional approaches of chemotherapy, radiotherapy and surgery are emerging as precision medicine for targeted interventions against cancer. This article aims to compile recent developments of advanced nanocomposite assemblies that integrate multimodal therapeutics for cancer treatment. Amalgamation of various effective, non-invasive technological platforms such as photodynamic therapy (PDT), photothermal therapy (PTT), magnetic hyperthermia (MHT), and chemodynamic therapy (CDT) have tremendous potential in presenting safe and efficacious solutions to the formidable challenges in cancer therapeutics.
Collapse
Affiliation(s)
- Manshi Patel
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
18
|
Rahiman N, Mohammadi M, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR. Recent advancements in nanoparticle-mediated approaches for restoration of multiple sclerosis. J Control Release 2022; 343:620-644. [PMID: 35176392 DOI: 10.1016/j.jconrel.2022.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
Multiple Sclerosis (MS) is an autoimmune disease with complicated immunopathology which necessitates considering multifactorial aspects for its management. Nano-sized pharmaceutical carriers named nanoparticles (NPs) can support impressive management of disease not only in early detection and prognosis level but also in a therapeutic manner. The most prominent initiator of MS is the domination of cellular immunity to humoral immunity and increment of inflammatory cytokines. The administration of several platforms of NPs for MS management holds great promise so far. The efforts for MS management through in vitro and in vivo (experimental animal models) evaluations, pave a new way to a highly efficient therapeutic means and aiding its translation to the clinic in the near future.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Magnetic/flow controlled continuous size fractionation of magnetic nanoparticles using simulated moving bed chromatography. Talanta 2021; 240:123160. [PMID: 34954615 DOI: 10.1016/j.talanta.2021.123160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 11/23/2022]
Abstract
The use of magnetic nanoparticles shows a steadily increasing technical importance. Particularly in medical technology disciplines such as cancer treatment, the potential of these special particles is increasing rapidly. Magnetic nanoparticles are particles with a submicron size, and consist mostly of magnetite-containing composites. An important quality parameter of such particles is a particle size distribution as narrow as possible, which can only be obtained to a certain degree by synthesis. Apart from ultracentrifugation, there are so far only methods on an analytical scale to narrow the size distribution as a post-processing step. We present a method based on magnetic chromatography, by which high separation efficiencies at yields of up to 99.9% are achieved. The novel technique is based on a competition between the magnetic interaction of the nanoparticles and the separation matrix, as well as the hydrodynamic forces. Furthermore, the method is extended using a continuous mode, namely simulated moving bed chromatography, to obtain potent space-time yields of up to 2.94 g/(L*h). For those reasons, this novel continuous magnetic chromatography method offers high potential for large-scale refinement of magnetic nanoparticles while fulfilling sophisticated quality criteria for high-technology applications.
Collapse
|
20
|
Kush P, Kumar P, Singh R, Kaushik A. Aspects of high-performance and bio-acceptable magnetic nanoparticles for biomedical application. Asian J Pharm Sci 2021; 16:704-737. [PMID: 35027950 PMCID: PMC8737424 DOI: 10.1016/j.ajps.2021.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/01/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
This review covers extensively the synthesis & surface modification, characterization, and application of magnetic nanoparticles. For biomedical applications, consideration should be given to factors such as design strategies, the synthesis process, coating, and surface passivation. The synthesis method regulates post-synthetic change and specific applications in vitro and in vivo imaging/diagnosis and pharmacotherapy/administration. Special insights have been provided on biodistribution, pharmacokinetics, and toxicity in a living system, which is imperative for their wider application in biology. These nanoparticles can be decorated with multiple contrast agents and thus can also be used as a probe for multi-mode imaging or double/triple imaging, for example, MRI-CT, MRI-PET. Similarly loading with different drug molecules/dye/fluorescent molecules and integration with other carriers have found application not only in locating these particles in vivo but simultaneously target drug delivery/hyperthermia inside the body. Studies are underway to collect the potential of these magnetically driven nanoparticles in various scientific fields such as particle interaction, heat conduction, imaging, and magnetism. Surely, this comprehensive data will help in the further development of advanced techniques for theranostics based on high-performance magnetic nanoparticles and will lead this research area in a new sustainable direction.
Collapse
Affiliation(s)
- Preeti Kush
- School of Pharmacy, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University Gangoh, Saharanpur, Uttar Pradesh 247341, India
| | - Parveen Kumar
- Nanotechnology Division (H-1), CSIR-Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ranjit Singh
- School of Pharmacy, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University Gangoh, Saharanpur, Uttar Pradesh 247341, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL 33805-8531, United States
| |
Collapse
|
21
|
Díez‐Villares S, Ramos‐Docampo MA, da Silva‐Candal A, Hervella P, Vázquez‐Ríos AJ, Dávila‐Ibáñez AB, López‐López R, Iglesias‐Rey R, Salgueiriño V, de la Fuente M. Manganese Ferrite Nanoparticles Encapsulated into Vitamin E/Sphingomyelin Nanoemulsions as Contrast Agents for High-Sensitive Magnetic Resonance Imaging. Adv Healthc Mater 2021; 10:e2101019. [PMID: 34415115 PMCID: PMC11469163 DOI: 10.1002/adhm.202101019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/20/2021] [Indexed: 12/20/2022]
Abstract
Magnetic resonance imaging (MRI) is one of the most powerful non-invasive imaging modalities used in clinics due to its great spatial resolution and excellent soft-tissue contrast, though still less sensitive than other techniques such as the nuclear imaging modalities. This lack of sensitivity can be improved with the use of contrast agents based on nanomaterials. In recent years, researchers have focused on the development of magnetic nanoparticles, given their role as enhancers of the contrast signal based on the magnetic resonance. Manganese ferrite nanoparticles stand out, given their high magnetic susceptibility and magnetic soft nature. Herein, 10 nm MnFe2 O4 nanoparticles, functionalized with the natural antioxidant vitamin E (VitE-MFO) are encapsulated into simple, biodegradable and non-toxic nanoemulsions (NEs), by a reproducible one-step method obtaining stable 150 nm-sized magnetic nanoemulsions (VitE-MFO-NEs). After encapsulation, the superparamagnetic properties of VitE-MFO are maintained and MR imaging studies reveal an extremely high transverse relaxivity for VitE-MFO-NEs (652.9 × 10-3 m-1 s-1 ), twofold higher than VitE-MFO value. Moreover, VitE-MFO-NEs show great in vivo biocompatibility and good signal in in vivo and ex vivo MRI, which indicates their great potential for biomedical imaging enhancing the negative MR contrast and significantly improving the sensitivity of MRI.
Collapse
Affiliation(s)
- Sandra Díez‐Villares
- Nano‐Oncology and Translational Therapeutics GroupHealth Research Institute of Santiago de Compostela (IDIS)SERGASSantiago de Compostela15706Spain
- University of Santiago de Compostela (USC)Santiago de Compostela15706Spain
- Biomedical Research Networking Center on Oncology (CIBERONC)Madrid28029Spain
| | - Miguel A. Ramos‐Docampo
- Departamento de Física AplicadaUniversidade de VigoVigo36310Spain
- CINBIOUniversidade de VigoVigo36310Spain
| | - Andrés da Silva‐Candal
- Clinical Neurosciences Research LaboratoryHealth Research Institute of Santiago de Compostela (IDIS)SERGASSantiago de Compostela15706Spain
| | - Pablo Hervella
- Clinical Neurosciences Research LaboratoryHealth Research Institute of Santiago de Compostela (IDIS)SERGASSantiago de Compostela15706Spain
| | - Abi J. Vázquez‐Ríos
- Nano‐Oncology and Translational Therapeutics GroupHealth Research Institute of Santiago de Compostela (IDIS)SERGASSantiago de Compostela15706Spain
- Biomedical Research Networking Center on Oncology (CIBERONC)Madrid28029Spain
| | - Ana B. Dávila‐Ibáñez
- Roche‐CHUS Joint‐UnitTranslational Medical Oncology GroupHealth Research Institute of Santiago de Compostela (IDIS)SERGASSantiago de Compostela15706Spain
| | - Rafael López‐López
- Biomedical Research Networking Center on Oncology (CIBERONC)Madrid28029Spain
- Roche‐CHUS Joint‐UnitTranslational Medical Oncology GroupHealth Research Institute of Santiago de Compostela (IDIS)SERGASSantiago de Compostela15706Spain
| | - Ramón Iglesias‐Rey
- Clinical Neurosciences Research LaboratoryHealth Research Institute of Santiago de Compostela (IDIS)SERGASSantiago de Compostela15706Spain
| | - Verónica Salgueiriño
- Departamento de Física AplicadaUniversidade de VigoVigo36310Spain
- CINBIOUniversidade de VigoVigo36310Spain
| | - María de la Fuente
- Nano‐Oncology and Translational Therapeutics GroupHealth Research Institute of Santiago de Compostela (IDIS)SERGASSantiago de Compostela15706Spain
- Biomedical Research Networking Center on Oncology (CIBERONC)Madrid28029Spain
| |
Collapse
|
22
|
Magnetic Nanoparticles Used in Oncology. MATERIALS 2021; 14:ma14205948. [PMID: 34683540 PMCID: PMC8539633 DOI: 10.3390/ma14205948] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022]
Abstract
Recently, magnetic nanoparticles (MNPs) have more and more often been used in experimental studies on cancer treatments, which have become one of the biggest challenges in medical research. The main goal of this research is to treat and to cure advanced or metastatic cancer with minimal side effects through nanotechnology. Drug delivery approaches take into account the fact that MNPs can be bonded to chemotherapeutical drugs, nucleic acids, synthetized antibodies or radionuclide substances. MNPs can be guided, and different treatment therapies can be applied, under the influence of an external magnetic field. This paper reviews the main MNPs’ synthesis methods, functionalization with different materials and highlight the applications in cancer therapy. In this review, we describe cancer cell monitorization based on different types of magnetic nanoparticles, chemotherapy, immunotherapy, magnetic hyperthermia, gene therapy and ferroptosis. Examples of applied treatments on murine models or humans are analyzed, and glioblastoma cancer therapy is detailed in the review. MNPs have an important contribution to diagnostics, investigation, and therapy in the so called theranostics domain. The main conclusion of this paper is that MNPs are very useful in different cancer therapies, with limited side effects, and they can increase the life expectancy of patients with cancer drug resistance.
Collapse
|
23
|
Freitas LF, Ferreira AH, Thipe VC, Varca GHC, Lima CSA, Batista JGS, Riello FN, Nogueira K, Cruz CPC, Mendes GOA, Rodrigues AS, Sousa TS, Alves VM, Lugão AB. The State of the Art of Theranostic Nanomaterials for Lung, Breast, and Prostate Cancers. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2579. [PMID: 34685018 PMCID: PMC8539690 DOI: 10.3390/nano11102579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
The synthesis and engineering of nanomaterials offer more robust systems for the treatment of cancer, with technologies that combine therapy with imaging diagnostic tools in the so-called nanotheranostics. Among the most studied systems, there are quantum dots, liposomes, polymeric nanoparticles, inorganic nanoparticles, magnetic nanoparticles, dendrimers, and gold nanoparticles. Most of the advantages of nanomaterials over the classic anticancer therapies come from their optimal size, which prevents the elimination by the kidneys and enhances their permeation in the tumor due to the abnormal blood vessels present in cancer tissues. Furthermore, the drug delivery and the contrast efficiency for imaging are enhanced, especially due to the increased surface area and the selective accumulation in the desired tissues. This property leads to the reduced drug dose necessary to exert the desired effect and for a longer action within the tumor. Finally, they are made so that there is no degradation into toxic byproducts and have a lower immune response triggering. In this article, we intend to review and discuss the state-of-the-art regarding the use of nanomaterials as therapeutic and diagnostic tools for lung, breast, and prostate cancer, as they are among the most prevalent worldwide.
Collapse
Affiliation(s)
- Lucas F. Freitas
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Aryel H. Ferreira
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
- MackGraphe-Graphene and Nanomaterial Research Center, Mackenzie Presbyterian University, Sao Paulo 01302-907, Brazil
| | - Velaphi C. Thipe
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Gustavo H. C. Varca
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Caroline S. A. Lima
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Jorge G. S. Batista
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Fabiane N. Riello
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Kamila Nogueira
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Cassia P. C. Cruz
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Giovanna O. A. Mendes
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Adriana S. Rodrigues
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Thayna S. Sousa
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Victoria M. Alves
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Ademar B. Lugão
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| |
Collapse
|
24
|
Nikoofar K, Molaei Yielzoleh F. Cascade embedding triethyltryptophanium iodide ionic liquid (
TrpEt
3
+
I
−
) on silicated titanomagnetite core (
Fe
3‐x
Ti
x
O
4
‐SiO
2
@
TrpEt
3
+
I
−
): A novel nano organic–inorganic hybrid to prepare a library of 4‐substituted quinoline‐2‐carboxylates and 4,6‐disubstituted quinoline‐2‐carboxylates. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kobra Nikoofar
- Department of Chemistry, Faculty of Physics and Chemistry Alzahra University Tehran Iran
| | | |
Collapse
|
25
|
Yang HY, Li Y, Lee DS. Functionalization of Magnetic Nanoparticles with Organic Ligands toward Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering Jilin Institute of Chemical Technology Jilin Jilin Province 132022 P.R. China
| | - Yi Li
- College of Materials and Textile Engineering Jiaxing University Jiaxing Zhejiang Province 314001 P.R. China
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering Sungkyunkwan University Suwon Gyeonggi-do 16419 Republic of Korea
| |
Collapse
|
26
|
Yamoah MA, Thai PN, Zhang XD. Transgene Delivery to Human Induced Pluripotent Stem Cells Using Nanoparticles. Pharmaceuticals (Basel) 2021; 14:334. [PMID: 33917388 PMCID: PMC8067386 DOI: 10.3390/ph14040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/25/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) and hiPSCs-derived cells have the potential to revolutionize regenerative and precision medicine. Genetically reprograming somatic cells to generate hiPSCs and genetic modification of hiPSCs are considered the key procedures for the study and application of hiPSCs. However, there are significant technical challenges for transgene delivery into somatic cells and hiPSCs since these cells are known to be difficult to transfect. The existing methods, such as viral transduction and chemical transfection, may introduce significant alternations to hiPSC culture which affect the potency, purity, consistency, safety, and functional capacity of hiPSCs. Therefore, generation and genetic modification of hiPSCs through non-viral approaches are necessary and desirable. Nanotechnology has revolutionized fields from astrophysics to biology over the past two decades. Increasingly, nanoparticles have been used in biomedicine as powerful tools for transgene and drug delivery, imaging, diagnostics, and therapeutics. The most successful example is the recent development of SARS-CoV-2 vaccines at warp speed to combat the 2019 coronavirus disease (COVID-19), which brought nanoparticles to the center stage of biomedicine and demonstrated the efficient nanoparticle-mediated transgene delivery into human body. Nanoparticles have the potential to facilitate the transgene delivery into the hiPSCs and offer a simple and robust approach. Nanoparticle-mediated transgene delivery has significant advantages over other methods, such as high efficiency, low cytotoxicity, biodegradability, low cost, directional and distal controllability, efficient in vivo applications, and lack of immune responses. Our recent study using magnetic nanoparticles for transfection of hiPSCs provided an example of the successful applications, supporting the potential roles of nanoparticles in hiPSC biology. This review discusses the principle, applications, and significance of nanoparticles in the transgene delivery to hiPSCs and their successful application in the development of COVID-19 vaccines.
Collapse
Affiliation(s)
- Megan A. Yamoah
- Department of Economics, University of Oxford, Oxford OX1 3UQ, UK;
| | - Phung N. Thai
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA 95616, USA;
| | - Xiao-Dong Zhang
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA 95616, USA;
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| |
Collapse
|
27
|
Sánchez J, Rodríguez-Reyes M, Cortés-Hernández DA, Ávila-Orta CA, Reyes-Rodríguez PY. Heating capacity and biocompatibility of Pluronic-coated manganese gallium ferrites for magnetic hyperthermia treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
28
|
Cadena Castro D, Gatti G, Martín SE, Uberman PM, García MC. Promising tamoxifen-loaded biocompatible hybrid magnetic nanoplatforms against breast cancer cells: synthesis, characterization and biological evaluation. NEW J CHEM 2021. [DOI: 10.1039/d0nj04226a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Improved efficacy and safety of tamoxifen-loaded hybrid nanocarriers based on Fe3O4 nanoparticles, l-cysteine and hyaluronic acid for breast cancer therapy.
Collapse
Affiliation(s)
- Diego Cadena Castro
- Universidad Nacional de Córdoba
- Facultad de Ciencias Químicas
- Departamento de Química Orgánica
- Córdoba
- Argentina
| | - Gerardo Gatti
- Fundación para el Progreso de la Medicina
- Laboratorio de Investigación en Cáncer
- Córdoba
- Argentina
| | - Sandra E. Martín
- Universidad Nacional de Córdoba
- Facultad de Ciencias Químicas
- Departamento de Química Orgánica
- Córdoba
- Argentina
| | - Paula M. Uberman
- Universidad Nacional de Córdoba
- Facultad de Ciencias Químicas
- Departamento de Química Orgánica
- Córdoba
- Argentina
| | - Mónica C. García
- Universidad Nacional de Córdoba
- Facultad de Ciencias Químicas
- Departamento de Ciencias Farmacéuticas
- Córdoba
- Argentina
| |
Collapse
|
29
|
Kinetics and Nanoparticle Catalytic Enhancement of Biogas Production from Wastewater Using a Magnetized Biochemical Methane Potential (MBMP) System. Catalysts 2020. [DOI: 10.3390/catal10101200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study presents magnetized nanoparticles (NPs) as a catalyst to accelerate anaerobic digestion (AD) potential for clean and ecofriendly energy (biogas) from wastewater settings. The effects of iron oxides (Ms) and aluminum sulphate (Alum) were investigated using two chronological experiments: (i) the Jar test technique to generate residue slurry as organic fertilizer potential and (ii) a magnetized biochemical methane potential (MBMP) system for biogas production at mesophilic conditions for 21 days. X-ray diffraction and Fourier Transform Infrared spectroscopy were carried out to establish the Ms Crystallite and active functional groups respectively. Scanning electronic microscopy coupled with energy dispersive X-ray spectrometer and elemental analysis were used to track and confirm NPs inclusion after the post-AD process. Coagulation at 50 mg/L and magnetic exposure time of 30 min showed above 85% treatability performance by Ms as compared to 70% for Alum. Owing to the slow kinetics of the AD process, additional NPs content in the digesters coupled with an external magnetic field improved their performance. Cumulative biogas yields of 1460 mL/d > 610 mL/d > 505 mL/d for Ms > Control > Alum respectively representing 80% > 61% > 52% of CH4 were attained. The modified Gompertz model shows that the presence of NPs shortens the lag phase of the control system with kinetics rate constants of 0.285 1/d (control) to 0.127 1/d (Ms) < 0.195 1/d (Alum).
Collapse
|
30
|
Datta NR, Kok HP, Crezee H, Gaipl US, Bodis S. Integrating Loco-Regional Hyperthermia Into the Current Oncology Practice: SWOT and TOWS Analyses. Front Oncol 2020; 10:819. [PMID: 32596144 PMCID: PMC7303270 DOI: 10.3389/fonc.2020.00819] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Moderate hyperthermia at temperatures between 40 and 44°C is a multifaceted therapeutic modality. It is a potent radiosensitizer, interacts favorably with a host of chemotherapeutic agents, and, in combination with radiotherapy, enforces immunomodulation akin to “in situ tumor vaccination.” By sensitizing hypoxic tumor cells and inhibiting repair of radiotherapy-induced DNA damage, the properties of hyperthermia delivered together with photons might provide a tumor-selective therapeutic advantage analogous to high linear energy transfer (LET) neutrons, but with less normal tissue toxicity. Furthermore, the high LET attributes of hyperthermia thermoradiobiologically are likely to enhance low LET protons; thus, proton thermoradiotherapy would mimic 12C ion therapy. Hyperthermia with radiotherapy and/or chemotherapy substantially improves therapeutic outcomes without enhancing normal tissue morbidities, yielding level I evidence reported in several randomized clinical trials, systematic reviews, and meta-analyses for various tumor sites. Technological advancements in hyperthermia delivery, advancements in hyperthermia treatment planning, online invasive and non-invasive MR-guided thermometry, and adherence to quality assurance guidelines have ensured safe and effective delivery of hyperthermia to the target region. Novel biological modeling permits integration of hyperthermia and radiotherapy treatment plans. Further, hyperthermia along with immune checkpoint inhibitors and DNA damage repair inhibitors could further augment the therapeutic efficacy resulting in synthetic lethality. Additionally, hyperthermia induced by magnetic nanoparticles coupled to selective payloads, namely, tumor-specific radiotheranostics (for both tumor imaging and radionuclide therapy), chemotherapeutic drugs, immunotherapeutic agents, and gene silencing, could provide a comprehensive tumor-specific theranostic modality akin to “magic (nano)bullets.” To get a realistic overview of the strength (S), weakness (W), opportunities (O), and threats (T) of hyperthermia, a SWOT analysis has been undertaken. Additionally, a TOWS analysis categorizes future strategies to facilitate further integration of hyperthermia with the current treatment modalities. These could gainfully accomplish a safe, versatile, and cost-effective enhancement of the existing therapeutic armamentarium to improve outcomes in clinical oncology.
Collapse
Affiliation(s)
- Niloy R Datta
- Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - H Petra Kok
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans Crezee
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan Bodis
- Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| |
Collapse
|
31
|
Amash V, Paithankar K, Dharaskar SP, Arunachalam A, Amere Subbarao S. Development of Nanocarrier-Based Mitochondrial Chaperone, TRAP-1 Inhibitor to Combat Cancer Metabolism. ACS APPLIED BIO MATERIALS 2020; 3:4188-4197. [DOI: 10.1021/acsabm.0c00268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vijayalakshmi Amash
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana, India
| | - Khanderao Paithankar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana, India
| | - Shrikant Purushottam Dharaskar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana, India
- Academy of Scientific & Innovation Research, Government of India, Ghaziabad, India
| | - Abirami Arunachalam
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | |
Collapse
|
32
|
Farid RM, Gaafar PM, Hazzah HA, Helmy MW, Abdallah OY. Chemotherapeutic potential of L-carnosine from stimuli-responsive magnetic nanoparticles against breast cancer model. Nanomedicine (Lond) 2020; 15:891-911. [DOI: 10.2217/nnm-2019-0428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: L-carnosine-coated magnetic nanoparticles (CCMNPs) were developed to enhance chemotherapeutic activity of carnosine-dipeptide. Materials & methods: Surface grafting of MNPs with carnosine was contended by differential scanning calorimetry, infrared spectroscopy and x-ray diffraction. Physicochemical characterization and in vitro cytotoxicity on MCF-7 cell line was carried out. In vivo chemotherapeutic activity and toxicity was assessed by an Ehrlich Ascites tumor model. Results: CCMNPs possessed monodispersed size (120 nm), ζ (-27.3 mV), magnetization (51.52 emu/g) and entrapment efficiency (88.3%) with sustained release rate. CCMNPs showed 2.3-folds lower IC50 values compared with carnosine solution after 48 h. Targeted CCMNPs were specifically accumulated in tumor showing significant reduction in tumor size with no systemic toxicity. Significant reduction in VEGF and cyclin D1 levels were observed. Conclusion: The developed system endowed with responsiveness to an external stimulus can represent a promising magnetically targeted delivery system for carnosine site specific delivery.
Collapse
Affiliation(s)
- Ragwa M Farid
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy & Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Passent M E Gaafar
- Department of Pharmaceutics, College of Pharmacy, Arab Academy for Science, Technology & Maritime Transport, Alexandria, Egypt
| | - Heba A Hazzah
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy & Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
33
|
Liao CF, Hsu ST, Chen CC, Yao CH, Lin JH, Chen YH, Chen YS. Effects of Electrical Stimulation on Peripheral Nerve Regeneration in a Silicone Rubber Conduit in Taxol-Treated Rats. MATERIALS 2020; 13:ma13051063. [PMID: 32120862 PMCID: PMC7084817 DOI: 10.3390/ma13051063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Taxol, a type of antimitotic agent, could modulate local inflammatory conditions in peripheral nerves, which may impair their regeneration and recovery when injured. This study provided in vivo trials of silicone rubber chambers to bridge a long 10 mm sciatic nerve defect in taxol-treated rats. It was aimed to determine the effects of electrical stimulation at various frequencies on regeneration of the sciatic nerves in the bridging conduits. Taxol-treated rats were divided into four groups (n = 10/group): sham control (no current delivered from the stimulator); and electrical stimulation (3 times/week for 3 weeks at 2, 20, and 200 Hz with 1 mA current intensity). Neuronal electrophysiology, animal behavior, neuronal connectivity, macrophage infiltration, calcitonin gene-related peptide (CGRP) expression levels, and morphological observations were evaluated. At the end of 4 weeks, animals in the low- (2 Hz) and medium-frequency (20 Hz) groups had dramatic higher rates of successful regeneration (90% and 80%) across the wide gap as compared to the groups of sham and high-frequency (200 Hz) (60% and 50%). In addition, the 2 Hz group had significantly larger amplitudes and evoked muscle action potentials compared to the sham and the 200 Hz group, respectively (P < 0.05). Heat, cold plate licking latencies, motor coordination, and neuronal connectivity were unaffected by the electrical stimulation. Macrophage density, CGRP expression level, and axon number were all significantly increased in the 20 Hz group compared to the sham group (P < 0.05). This study suggested that low- (2 Hz) to medium-frequency (20 Hz) electrical stimulation could ameliorate local inflammatory conditions to augment recovery of regenerating nerves by accelerating their regrowth and improving electrophysiological function in taxol-treated peripheral nerve injury repaired with the silicone rubber conduit.
Collapse
Affiliation(s)
- Chien-Fu Liao
- Department of Biological Science and Technology, School of Medicine, China Medical University, Taichung 40402, Taiwan; (C.-F.L.); (C.-H.Y.)
| | - Shih-Tien Hsu
- Lab of Biomaterials, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Chung-Chia Chen
- Linsen Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei 10341, Taiwan;
| | - Chun-Hsu Yao
- Department of Biological Science and Technology, School of Medicine, China Medical University, Taichung 40402, Taiwan; (C.-F.L.); (C.-H.Y.)
- Lab of Biomaterials, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
- Department of Bioinformatics and Medical Engineering, Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Jia-Horng Lin
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan;
| | - Yung-Hsiang Chen
- Department of Bioinformatics and Medical Engineering, Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
- Graduate Institute of Integrated Medicine, Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung 40402, Taiwan
- Correspondence: (Y.-H.C.); (Y.-S.C.)
| | - Yueh-Sheng Chen
- Department of Biological Science and Technology, School of Medicine, China Medical University, Taichung 40402, Taiwan; (C.-F.L.); (C.-H.Y.)
- Lab of Biomaterials, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
- Department of Bioinformatics and Medical Engineering, Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Correspondence: (Y.-H.C.); (Y.-S.C.)
| |
Collapse
|