1
|
Chakraborty T, Yadav D, Sahu LK, Pandey MK, Saxena S, Shukla S. CB[6]/ZnO chelated superoleophobic-hydrophilic PVDF membranes for one-step remediation of multi-contaminant in wastewater. CHEMOSPHERE 2024; 368:143637. [PMID: 39490754 DOI: 10.1016/j.chemosphere.2024.143637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Industrial wastewater, despite undergoing primary and secondary treatments with conventional methods, continues to pose challenges due to the presence of multiple contaminants. Membrane separation has emerged as an effective solution to streamline the treatment process, yet it often results in surface fouling. This study introduces a single platform designed for simultaneous removal of dyes, oils, and proteins during the tertiary treatment stage, thereby eliminating the need for multiple separation steps. To enhance membrane robustness and address common fouling issues, polyvinylidene fluoride-montmorillonite-cucurbit[6]uril/zinc oxide (PV-M-CB[6]ZnO) mixed-matrix membranes have been developed. The incorporation of montmorillonite (M), cucurbit[6]uril (CB[6]) host-guest encapsulation, and zinc metal chelation significantly improves the membrane's capability in eliminating cationic dyes, treating oil-water emulsions, and separating bovine serum albumin. With an optimal CB[6]/ZnO loading of 1.6 wt%, the PV-M-CB[6]ZnO membranes exhibit superior performance with high water permeability (4114 L/m2.h.bar) and exceptional separation efficiencies: 95.5% for malachite green, 93.2% for methylene blue, and 98.2% for crystal violet, compared to pristine PVDF membranes. Additionally, these membranes demonstrate an impressive oil-water rejection rate of 97.6% and a bovine serum albumin rejection rate of 76%, with a flux recovery ratio exceeding 86% after seven filtration cycles. Thus, the PV-M-CB[6]ZnO membranes offer enhanced hydrophilicity, improved antifouling properties, and increased efficiency for the removal of multiple contaminants from industrial wastewater, providing a promising solution for sustainable environmental remediation.
Collapse
Affiliation(s)
- Triparna Chakraborty
- Department of Chemistry, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, 382007, India; Water Innovation Center: Technology Research & Education, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India
| | - Dharmveer Yadav
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India; Water Innovation Center: Technology Research & Education, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India
| | - Lokesh Kumar Sahu
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India
| | - Manoj Kumar Pandey
- Department of Chemistry, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, 382007, India
| | - Sumit Saxena
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India; Water Innovation Center: Technology Research & Education, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India; Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India
| | - Shobha Shukla
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India; Water Innovation Center: Technology Research & Education, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India; Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India.
| |
Collapse
|
2
|
Pourmadadi M, Aghababaei N, Abdouss M. Performance and reaction mechanism of montmorillonite/α-Fe 2O 3/starch bio-nanocomposite as high-efficiency photocatalytic degradation of acetaminophen: Characterization, feasibility, and pathway. Int J Biol Macromol 2024; 279:135363. [PMID: 39260628 DOI: 10.1016/j.ijbiomac.2024.135363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
The worldwide challenge of eliminating pharmaceutical contaminants requires immediate attention. Developing bio-based catalysts that are eco-friendly, reusable, and high-performance, employing starch (ST) and montmorillonite (MMT) as support, holds tremendous promise as a novel biocatalyst for pharmaceutical waste removal. In this study, a montmorillonite/α-Fe2O3/starch (MMT/α-Fe2O3/ST) bio-nanocomposite photocatalyst was successfully synthesized and used for acetaminophen (ACT) degradation under UVA-LED irradiation. The influence of operational factors, such as catalyst, ACT concentrations, and solution pH, on photocatalytic activity was examined in detail; catalyst: 0.75 g/L, pH: 7.1, leading to total ACT (10 mg/L) removal in ∼80 min. MMT/α-Fe2O3/ST showed excellent durability due to negligible Fe leaching. After four successive degradation cycles, ACT and TOC elimination efficiencies remained over 91 and 42.7 %. Compared to other anions studied, carbonate ions suppressed the most ACT degradation. Based on the radical scavenger experiments, hydroxyl and superoxide radicals and holes were involved in the MMT/α-Fe2O3/ST system. LC-MS results were used to propose ACT degradation pathways. This work illuminated the significance of biocatalysts in removing emerging pollutants from wastewater.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, Tehran, GC 1983963113, Iran
| | - Nafiseh Aghababaei
- Department of Chemical Engineering, Tafresh University, Tafresh 39518 79611, Iran.
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, 15875-4413 Tehran, Iran.
| |
Collapse
|
3
|
Guo Q, Gou D, Zhao C, Ma Y, Chen C, Zhu J. Influence of Electrostatic Field on Optical Rotation of D-Glucose Solution: Experimental Research for Electric Field-Induced Biological Effect. Molecules 2024; 29:4898. [PMID: 39459266 PMCID: PMC11510495 DOI: 10.3390/molecules29204898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
At present, the effects of environmental electromagnetic irradiation on the metabolism of organisms have attracted extensive attention, but the mechanism is still not clear. D-glucose plays an important role in the metabolism of organisms. In this work, the change in the optical rotation of D-glucose solution under an electrostatic field is measured experimentally, so as to explain the mechanism of the electric field-induced biological effect. The experimental results show that the electrostatic field can alter the optical rotation of D-glucose solution at different temperatures. Under the different strengths of electrostatic field, the specific rotation of D-glucose solution increases at different temperatures; the maximum increase can reach 2.07%, but the effect of temperature and electric field strength on the rotation increment is nonlinear and very complex. Further, it turns out that the proportion of α-D-glucose in solution increases by up to 3.25% under the electrostatic field, while the proportion of β-D-glucose decreases by as much as 1.75%. The experimental study confirms that electrostatic field can change the proportion of two conformation molecules (α and β-D-glucose) in D-glucose solution, which can provide a novel explanation for the mechanism of the electric field-induced biological effect.
Collapse
Affiliation(s)
| | - Dezhi Gou
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China; (Q.G.); (C.Z.); (Y.M.); (C.C.); (J.Z.)
| | | | | | | | | |
Collapse
|
4
|
Ariga K. Liquid-Liquid and Liquid-Solid Interfacial Nanoarchitectonics. Molecules 2024; 29:3168. [PMID: 38999120 PMCID: PMC11243083 DOI: 10.3390/molecules29133168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Nanoscale science is becoming increasingly important and prominent, and further development will necessitate integration with other material chemistries. In other words, it involves the construction of a methodology to build up materials based on nanoscale knowledge. This is also the beginning of the concept of post-nanotechnology. This role belongs to nanoarchitectonics, which has been rapidly developing in recent years. However, the scope of application of nanoarchitectonics is wide, and it is somewhat difficult to compile everything. Therefore, this review article will introduce the concepts of liquid and interface, which are the keywords for the organization of functional material systems in biological systems. The target interfaces are liquid-liquid interface, liquid-solid interface, and so on. Recent examples are summarized under the categories of molecular assembly, metal-organic framework and covalent organic framework, and living cell. In addition, the latest research on the liquid interfacial nanoarchitectonics of organic semiconductor film is also discussed. The final conclusive section summarizes these features and discusses the necessary components for the development of liquid interfacial nanoarchitectonics.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
5
|
Dilmani SA, Koç S, Erkut TS, Gümüşderelioğlu M. Polymer-clay nanofibrous wound dressing materials containing different boron compounds. J Trace Elem Med Biol 2024; 83:127408. [PMID: 38387426 DOI: 10.1016/j.jtemb.2024.127408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Montmorillonite (MMT) is a biocompatible nanoclay and its incorporation into polymeric matrix not only improves the polymer's wettability/biodegradability, but also enhances cellular proliferation, and differentiation. On the other hand, the positive effect of boron (B) on the healing cascade and its antibacterial properties have drawn the attention of researchers. MATERIALS & METHODS In this regard, B compounds in different chemical structures, boron nitride (BN), zinc borate (ZB), and phenylboronic acid (PBA), were adsorbed onto MMT and then, poly (lactic acid) (PLA) based MMT/B including micron/submicron fibers were fabricated by electrospinning. RESULTS The incorporation of MMT nanoparticles into the PLA demonstrated a porous fiber topography with enhanced thermal properties, water uptake capacity, and antibacterial effect. Furthermore, the composites including BN, ZB, and PBA showed bacteriostatic effects against Gram-negative and Gram-positive pathogenic bacteria (Escherichia coli and Staphylococcus aureus). In-vitro cell culture studies performed with human dermal fibroblasts (HDF) indicated the non-toxic effect of B compounds. The results showed that incorporation of MMT supported cell adhesion and proliferation, and further addition of B compounds especially PBA increased cell viability for 14 days. CONCLUSION The results illustrated the acceptable characteristics of the B-containing composites and their favorable effect on the cells, demonstrating their potential as a skin tissue engineering product.
Collapse
Affiliation(s)
- Sara Asghari Dilmani
- Graduate School of Science and Engineering. Hacettepe University, Beytepe, Ankara, Turkey; Bioengineering Department. Hacettepe University, Beytepe, Ankara, Turkey
| | - Sena Koç
- Graduate School of Science and Engineering. Hacettepe University, Beytepe, Ankara, Turkey; Chemical Engineering Department. Hacettepe University, Beytepe, Ankara, Turkey
| | - Tülay Selin Erkut
- Graduate School of Science and Engineering. Hacettepe University, Beytepe, Ankara, Turkey; Chemical Engineering Department. Hacettepe University, Beytepe, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Bioengineering Department. Hacettepe University, Beytepe, Ankara, Turkey; Chemical Engineering Department. Hacettepe University, Beytepe, Ankara, Turkey.
| |
Collapse
|
6
|
Lujanienė G, Novikau R, Karalevičiūtė K, Pakštas V, Talaikis M, Levinskaitė L, Selskienė A, Selskis A, Mažeika J, Jokšas K. Chitosan-minerals-based composites for adsorption of caesium, cobalt and europium. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132747. [PMID: 37837775 DOI: 10.1016/j.jhazmat.2023.132747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023]
Abstract
Currently, there is a growing interest in the use of natural materials in various fields of science, technology and environmental protection due to their availability, low-cost, non-toxicity and biodegradability. Chitosan, natural clay of local origin, montmorillonite, zeolite, cross-linking agents (epichlorohydrin, sodium tripolyphosphate, glutaraldehyde) and plasticisers (glycerol) were used to synthesise composites. The composites were characterised by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction analysis (XRD) and scanning electron microscope (SEM), tested for their antibacterial activity and used in batch experiments to study the adsorption of caesium, cobalt and europium ions. The maximum capacities for adsorption of caesium, cobalt and europium on the composites were 1400 mg/g, 900 mg/g and 18 mg/g, respectively. The experimental data fit better the Langmuir isotherm model and indicate favourable monolayer adsorption of Cs+, Co2+ and Eu3+ at homogeneous sites of the composites. The experimental data were in better agreement with the pseudo-second-order non-linear kinetic model for most elements and adsorbents. Adaptive neuro-fuzzy inference system proved to be a practical tool with good performance and generalisation capability for predicting the adsorption capacity of composites for caesium, cobalt, and europium ions. It was found that the predicted data were very close to the experimental data.
Collapse
Affiliation(s)
- Galina Lujanienė
- Center for Physical Sciences and Technology (FTMC), Savanorių Str. 231, LT-02300 Vilnius, Lithuania.
| | - Raman Novikau
- Center for Physical Sciences and Technology (FTMC), Savanorių Str. 231, LT-02300 Vilnius, Lithuania
| | - Karolina Karalevičiūtė
- Center for Physical Sciences and Technology (FTMC), Savanorių Str. 231, LT-02300 Vilnius, Lithuania
| | - Vidas Pakštas
- Center for Physical Sciences and Technology (FTMC), Savanorių Str. 231, LT-02300 Vilnius, Lithuania
| | - Martynas Talaikis
- Center for Physical Sciences and Technology (FTMC), Savanorių Str. 231, LT-02300 Vilnius, Lithuania
| | | | - Aušra Selskienė
- Center for Physical Sciences and Technology (FTMC), Savanorių Str. 231, LT-02300 Vilnius, Lithuania
| | - Algirdas Selskis
- Center for Physical Sciences and Technology (FTMC), Savanorių Str. 231, LT-02300 Vilnius, Lithuania
| | - Jonas Mažeika
- Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Kęstutis Jokšas
- Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| |
Collapse
|
7
|
Czifra Á, Ancza E. Micro- and Nano-Roughness Separation Based on Fractal Analysis. MATERIALS (BASEL, SWITZERLAND) 2024; 17:292. [PMID: 38255459 PMCID: PMC10821031 DOI: 10.3390/ma17020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
When describing the tribological behaviour of technical surfaces, the need for full-length scale microtopographic characterization often arises. The self-affine of surfaces and the characterisation of self-affine using a fractal dimension and its implantation into tribological models are commonly used. The goal of our present work was to determine the frequency range of fractal behaviour of surfaces by analysing the microtopographic measurements of an anodised aluminium brake plunger. We also wanted to know if bifractal and multifractal behaviour can be detected in real machine parts. As a result, we developed a new methodology for determining the fractal range boundaries to separate the nano- and micro-roughness. To reach our goals, we used an atomic force microscope (AFM) and a stylus instrument to obtain measurements in a wide frequency range (19 nm-3 mm). Power spectral density (PSD)-based fractal evaluation found that the examined surface could not be characterised by a single fractal dimension. A new method capable of separating nano- and micro-roughness has been developed for investigating multifractal behaviour. The presented procedure separates nano- and micro-roughness based on the geometric characteristics of surfaces. In this way, it becomes possible to specifically examine the relationship between the micro-geometry that can be measured in each wavelength range and the effects of cutting technology and the material structure that creates them.
Collapse
Affiliation(s)
- Árpád Czifra
- Institute of Mechanical Engineering and Technology, Óbuda University, 1034 Budapest, Hungary
| | - Erzsébet Ancza
- Institute for Natural Sciences and Basic Subjects, Óbuda University, 1034 Budapest, Hungary;
| |
Collapse
|
8
|
Cassaro A, Pacelli C, Baqué M, Maturilli A, Böttger U, Fujimori A, Moeller R, de Vera JPP, Onofri S. Spectroscopic investigations of fungal biomarkers after exposure to heavy ion irradiation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123073. [PMID: 37453382 DOI: 10.1016/j.saa.2023.123073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
The main objective of the ongoing and future space exploration missions is the search for traces of extant or extinct life (biomarkers) on Mars. One of the main limiting factors on the survival of Earth-like life is the presence of harmful space radiation, that could damage or modify also biomolecules, therefore understanding the effects of radiation on terrestrial biomolecules stability and detectability is of utmost importance. Which terrestrial molecules could be preserved in a Martian radiation scenario? Here, we investigated the potential endurance of fungal biomolecules, by exposing de-hydrated colonies of the Antarctic cryptoendolithic black fungus Cryomyces antarcticus mixed with Antarctic sandstone and with two Martian regolith analogues to increasing doses (0, 250 and 1000 Gy) of accelerated ions, namely iron (Fe), argon (Ar) and helium (He) ions. We analyzed the feasibility to detect fungal compounds with Raman and Infrared spectroscopies after exposure to these space-relevant radiations.
Collapse
Affiliation(s)
- A Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - C Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy; Italian Space Agency, Via del Politecnico snc, Rome, Italy.
| | - M Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department Berlin, Germany
| | - A Maturilli
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department Berlin, Germany
| | - U Böttger
- German Aerospace Center (DLR), Institute of Optical Sensor Systems Berlin, Germany
| | - A Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Basic Medical Sciences for Radiation Damages, NIRS/QST, Chiba, Japan
| | - R Moeller
- German Aerospace Center, Institute of Aerospace Medicine, Radiation Biology Department, Space Microbiology Research Group, DLR, Linder Höhe, D-51147 Köln, Germany; University of Applied Sciences Bonn-Rhein-Sieg (BRSU), Natural Sciences, von-Liebig-Straße 20, D-53359 Rheinbach, Germany
| | - J-P P de Vera
- German Aerospace Center (DLR), Space Operations and Astronaut Training, MUSC, Linder Höhe, D-51147 Köln, Germany; University of Potsdam, Institute for Biochemistry and Biology, WG Biodiversity/ Systematic Botany, Maulbeerallee 1, 14469 Potsdam, Germany
| | - S Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| |
Collapse
|
9
|
Appell M, Wegener EC, Sharma BK, Eller FJ, Evans KO, Compton DL. In Vitro Evaluation of the Adsorption Efficacy of Biochar Materials on Aflatoxin B 1, Ochratoxin A, and Zearalenone. Animals (Basel) 2023; 13:3311. [PMID: 37958067 PMCID: PMC10649945 DOI: 10.3390/ani13213311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Mycotoxin sequestration materials are important tools to reduce mycotoxin illness and enable proper handling of mycotoxin-contaminated commodities. Three food-grade bentonite clays and four generally recognized as safe (GRAS) charcoal/biochar carbon materials that are marketed as feed additives and supplements were evaluated for their ability to sequester the mycotoxins aflatoxin B1, ochratoxin A, and zearalenone. The surface area of the clays varied between 32.1 to 51.4 mg2/g, and the surface area of the carbon-based materials varied from 1.7 to 1735 mg2/g. In vitro, gastric fluid studies indicated that certain pine biochar and activated coconut charcoal could sequester high amounts (85+%) of the mycotoxins at 1 ppm levels or below. However, some biochar materials with lower surface area properties lacked binding capacity. The coconut shell charcoal and pine biochar utilize agricultural waste products in a manner that significantly reduces carbon emissions and provides valuable materials to minimize exposure to toxins found in food and feed.
Collapse
Affiliation(s)
- Michael Appell
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research, 1815 N. University St., Peoria, IL 61604, USA
| | - Evan C. Wegener
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Renewable Product Technology Research, 1815 N. University St., Peoria, IL 61604, USA; (E.C.W.); (K.O.E.); (D.L.C.)
| | - Brajendra K. Sharma
- USDA, Agricultural Research Service, Eastern Regional Research Center, Sustainable Biofuels and Co-Products Research, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA;
| | - Fred J. Eller
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Functional Foods Research, 1815 N. University St., Peoria, IL 61604, USA;
| | - Kervin O. Evans
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Renewable Product Technology Research, 1815 N. University St., Peoria, IL 61604, USA; (E.C.W.); (K.O.E.); (D.L.C.)
| | - David L. Compton
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Renewable Product Technology Research, 1815 N. University St., Peoria, IL 61604, USA; (E.C.W.); (K.O.E.); (D.L.C.)
| |
Collapse
|
10
|
Xu Y, Liu S, Zhang J, Chai S, Li J, Xue C, Wu S. Fabrication of Micro-Cantilever Sensor Based on Clay Minerals for Humidity Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:6962. [PMID: 37571744 PMCID: PMC10422566 DOI: 10.3390/s23156962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
In this paper, novel humidity sensors based on montmorillonite, kaolinite, and composite films coated on micro-cantilevers were prepared to measure the relative humidity (RH) values by the deflection of a micro-cantilever (MC) at room temperature. The humidity-sensing properties, such as response and recovery, sensitivity, repeatability, humidity hysteresis, and long-term stability, were investigated in the range of working humidity (10-80% RH). The humidity response in the close humidity range of 10% RH to 80% RH revealed a linear increase in water absorption of montmorillonite, kaolinite, and montmorillonite/kaolinite mixed dispersant (1:1) as a function of RH with linear correlation factors between the humidity change and deflection estimated to be 0.994, 0.991, and 0.946, respectively. Montmorillonite's sensitivity was better than kaolinite's, with the mixed-clay mineral film's response falling somewhere in between. This research provides a feasible and effective approach to constructing high-performance MC humidity sensors that can be operated at room temperature based on clay minerals.
Collapse
Affiliation(s)
- Yiting Xu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Song Liu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Junfeng Zhang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Songyang Chai
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Jianjun Li
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Changguo Xue
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei 230026, China
| | - Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Chen H, Guo X, Li J, Liu Z, Hu Y, Tao X, Song S, Zhu B. Pickering emulsions synergistically stabilized by sugar beet pectin and montmorillonite exhibit enhanced storage stability and viscoelasticity. Int J Biol Macromol 2023; 242:124788. [PMID: 37164140 DOI: 10.1016/j.ijbiomac.2023.124788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/16/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Sugar beet pectin (SBP) is a naturally occurring emulsifying type of pectin fabricated into nanocomposites with montmorillonite (MMT) and then introduced as a stabilizer for high internal phase emulsions (HIPEs). SBP-MMT composites performed well in emulsifying medium-chain triglyceride with an oil volume fraction (φ) of 0.1-0.85 and SBP/MMT mass ratios of 1:0.1-1:0.75. The two representative high internal phase emulsions stabilized by SBP-MMT composites at different SBP/MMT mass ratios exhibited good stability against creaming and coalescence. In these emulsion systems, SBP and MMT formed a network in the continuous phase that markedly improved the rheological properties, including the storage modulus (by 3 orders of magnitude). Confocal light scattering microscopy analysis indicated that a fraction of MMT could work synergistically with SBP in adsorbing on oil droplet surfaces, enhancing stability. SBP-MMT composites stabilized high internal phase emulsions destabilized after the freeze-thaw treatment (-40 °C for 20 h and 25 °C for 4 h) but could be facilely re-emulsified via high-speed shearing. The gastrointestinal digestion behaviors were also modified by stabilizing SBP and MMT. Overall, this work reveals a hitherto undocumented strategy for fabricating highly stable emulsions based on SBP-MMT composites which have huge prospects for application in the food and related industries.
Collapse
Affiliation(s)
- Hualei Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Xiaoya Tao
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Shuang Song
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China.
| |
Collapse
|
12
|
Wang M, Phillips TD. Green-Engineered Barrier Creams with Montmorillonite-Chlorophyll Clays as Adsorbents for Benzene, Toluene, and Xylene. SEPARATIONS 2023; 10:237. [PMID: 37251084 PMCID: PMC10214870 DOI: 10.3390/separations10040237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Dermal exposures to hazardous environmental chemicals in water can significantly affect the morphology and integrity of skin structure, leading to enhanced and deeper penetration. Organic solvents, such as benzene, toluene, and xylene (BTX), have been detected in humans following skin exposure. In this study, novel barrier cream formulations (EVB™) engineered with either montmorillonite (CM and SM) or chlorophyll-amended montmorillonite (CMCH and SMCH) clays were tested for their binding efficacy for BTX mixtures in water. The physicochemical properties of all sorbents and barrier creams were characterized and were shown to be suitable for topical application. In vitro adsorption results indicated that EVB-SMCH was the most effective and favorable barrier for BTX, as supported by the high binding percentage (29-59% at 0.05 g and 0.1 g), stable binding at equilibrium, low desorption rates, and high binding affinity. Pseudo-second-order and the Freundlich models best fit the adsorption kinetics and isotherms, and the adsorption was an exothermic reaction. Ecotoxicological models using L. minor and H. vulgaris that were submersed in aqueous culture media showed that the inclusion of 0.05% and 0.2% EVB-SMCH reduced BTX concentration. This result was further supported by the significant and dose-dependent increase in multiple growth endpoints, including plant frond number, surface area, chlorophyll content, growth rate, inhibition rate, and hydra morphology. The in vitro adsorption results and in vivo plant and animal models indicated that green-engineered EVB-SMCH can be used as an effective barrier to bind BTX mixtures and interrupt their diffusion and dermal contact.
Collapse
Affiliation(s)
- Meichen Wang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Timothy D. Phillips
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
13
|
Mehrotra S, Rai P, Gautam K, Saxena A, Verma R, Lahane V, Singh S, Yadav AK, Patnaik S, Anbumani S, Priya S, Sharma SK. Chitosan-carbon nanofiber based disposable bioelectrode for electrochemical detection of oxytocin. Food Chem 2023; 418:135965. [PMID: 37018903 DOI: 10.1016/j.foodchem.2023.135965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Bioelectrodes with low carbon footprint can provide an innovative solution to the surmounting levels of e-waste. Biodegradable polymers offer green and sustainable alternatives to synthetic materials. Here, a chitosan-carbon nanofiber (CNF) based membrane has been developed and functionalized for electrochemical sensing application. The surface characterization of the membrane revealed crystalline structure with uniform particle distribution, and surface area of 25.52 m2/g and pore volume of 0.0233 cm3/g. The membrane was functionalized to develop a bioelectrode for the detection of exogenous oxytocin in milk. Electrochemical impedance spectroscopy was employed to determine oxytocin in a linear concentration range of 10 to 105 ng/mL. The developed bioelectrode showed an LOD of 24.98 ± 11.37 pg/mL and sensitivity of 2.77 × 10-10 Ω / log ng mL-1/mm2 for oxytocin in milk samples with 90.85-113.34 percent recovery. The chitosan-CNF membrane is ecologically safe and opens new avenues for environment-friendly disposable materials for sensing applications.
Collapse
Affiliation(s)
- Srishti Mehrotra
- Food, Drug and Chemical Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Pawankumar Rai
- Food, Drug and Chemical Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Krishna Gautam
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Apoorva Saxena
- Food, Drug and Chemical Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rahul Verma
- System Toxicology & Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Vaibhavi Lahane
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Sakshi Singh
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Akhilesh K Yadav
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Satyakam Patnaik
- System Toxicology & Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Smriti Priya
- System Toxicology & Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Sandeep K Sharma
- Food, Drug and Chemical Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
14
|
Caccamo MT, Magazù S. Investigation of Glucose-Water Mixtures as a Function of Concentration and Temperature by Infrared Spectroscopy. Int J Mol Sci 2023; 24:ijms24032564. [PMID: 36768887 PMCID: PMC9917217 DOI: 10.3390/ijms24032564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
The main aim of the present paper is to characterize the hydration properties of glucose and the hydrogen bond network in glucose-water mixtures. For these purposes, temperature scans on ten concentration values of glucose-water mixtures were performed by means of Fourier Transform InfraRed (FTIR) spectroscopy. More specifically, in order to get this information an analysis of the intramolecular OH stretching mode, investigating the 3000-3700 cm-1 spectral range, was performed by means of an innovative approach based on the evaluation of the Spectral Distance (SD). The adopted procedure allows evaluating the glucose hydration number as well as characterizing the temperature behavior of the hydrogen bond network in the glucose-water mixtures. The obtained results for the hydration number are in excellent agreement with literature data and suggest the existence of a particular concentration value for which the hydrogen bond network shows a maximum strength.
Collapse
Affiliation(s)
- Maria Teresa Caccamo
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F.S. D’Alcontres, 31, 98166 Messina, Italy
- Consorzio Interuniversitario Scienze Fisiche Applicate (CISFA), Viale F.S. D’Alcontres, 31, 98166 Messina, Italy
- Correspondence:
| | - Salvatore Magazù
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F.S. D’Alcontres, 31, 98166 Messina, Italy
- Consorzio Interuniversitario Scienze Fisiche Applicate (CISFA), Viale F.S. D’Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
15
|
Olivelli MS, Schampera B, Woche SK, Torres Sánchez RM, Curutchet G, Guggenberger G. Spectroscopic Approach on Bulk and Surface Properties of Fungal Biomass-Clay Adsorbents: Effect of Temperature and Amount of Clay during Synthesis. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Melisa Soledad Olivelli
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
- Consejo nacional de investigaciones científicas y técnicas - CONICET, C1425FQB Buenos Aires, Argentina
| | - Birgit Schampera
- Institut für Bodenkunde, Leibniz Universität Hannover, Herrenhäuser Straße 2, Hannover D-30419, Germany
| | - Susanne Karoline Woche
- Institut für Bodenkunde, Leibniz Universität Hannover, Herrenhäuser Straße 2, Hannover D-30419, Germany
| | - Rosa María Torres Sánchez
- Consejo nacional de investigaciones científicas y técnicas - CONICET, C1425FQB Buenos Aires, Argentina
- Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC), CIC-CCT-La Plata, Camino Centenario y 506, M.B. Gonnet, Buenos Aires 1897, Argentina
| | - Gustavo Curutchet
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
- Consejo nacional de investigaciones científicas y técnicas - CONICET, C1425FQB Buenos Aires, Argentina
| | - Georg Guggenberger
- Institut für Bodenkunde, Leibniz Universität Hannover, Herrenhäuser Straße 2, Hannover D-30419, Germany
| |
Collapse
|
16
|
Caccamo MT, Magazù S. Multiscale Spectral Analysis on Lysozyme Aqueous Solutions in the Presence of PolyEthyleneGlycol. Molecules 2022; 27:8760. [PMID: 36557893 PMCID: PMC9781088 DOI: 10.3390/molecules27248760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Infrared spectroscopy measurements were performed on Lysozyme aqueous solutions also in the presence of PolyEthylene Glycol (PEG 400) as a function of an increasing temperature from T = 27 °C to 90 °C, and, successively in sequence, by decreasing temperatures from T = 90 °C to 27 °C. Data were analyzed by evaluating the spectral difference with respect to the initial spectrum collected at 27 °C. This procedure allows to quantitatively evaluate the thermal restraint related to the thermal scan from T = 27 °C to 90 °C, as well as to introduce a spectral resilience concerning the entire increasing and decreasing thermal paths which allow to highlight the bioprotectant effectiveness of low molecular weight PEG. In particular, the main purpose of the present work is to highlight the effects of a thermal treatment on a mixture of Lysozyme/water and of Lysozyme/water/PEG 400 during an increasing temperature scan, and then after a successive decreasing temperature scan, in order to highlight the bioprotectant role of PEG 400. On that score, an evaluation of the spectral distances of the registered spectra as a function of increasing and decreasing temperatures has been performed and analyzed.
Collapse
Affiliation(s)
- Maria Teresa Caccamo
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze Della Terra, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
- Consorzio Interuniversitario Scienze Fisiche Applicate (CISFA), Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Salvatore Magazù
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze Della Terra, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
- Consorzio Interuniversitario Scienze Fisiche Applicate (CISFA), Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
17
|
Stabilization Effects Induced by Trehalose on Creatine Aqueous Solutions Investigated by Infrared Spectroscopy. Molecules 2022; 27:molecules27196310. [PMID: 36234846 PMCID: PMC9573458 DOI: 10.3390/molecules27196310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Creatine is a very popular amino acid widely utilized in the sports world due to its functions mainly related to muscle building and increasing performance. The present work investigates the behavior of creatine aqueous solutions and of creatine aqueous in the presence of trehalose as a function of time changes by means of Infrared spectroscopy. Infrared spectra have been gathered and studied over time for both the full spectrum and the intramolecular OH-stretching region for the two mixtures. This latter region was studied more specifically using a cutting-edge technique called Spectral Distance (SD). From this analysis of the spectral features of the investigated samples, it emerges that trehalose has a significant stabilizing effect on creatine aqueous solutions.
Collapse
|
18
|
Caccamo MT, Zammuto V, Spanò A, Gugliandolo C, Magazù S. Hydrating Capabilities of the Biopolymers Produced by the Marine Thermophilic Bacillus horneckiae SBP3 as Evaluated by ATR-FTIR Spectroscopy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5988. [PMID: 36079369 PMCID: PMC9457388 DOI: 10.3390/ma15175988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The surfactin-like lipopeptide (BS-SBP3) and the exopolysaccharide (EPS-SBP3) produced by the polyextremophilic Bacillus horneckiae SBP3 (DSM 103063) have been recently described as valuable biopolymers useful in biotechnological applications. To investigate the hydrating capabilities of BS-SBP3 and EPS-SBP3, here we evaluated (i) their wetting properties, measuring the contact angle; (ii) their moisture uptake abilities using the gravimetric method; and (iii) their hydrating states (from 0 to 160% w/w of water content) using ATR-FTIR spectroscopy. BS-SBP3 reduced the water contact angle on a hydrophobic surface from 81.7° to 51.3°, whereas the contact angle in the presence of EPS-SBP3 was 72.9°, indicating that BS-SBP3 improved the wettability of the hydrophobic surface. In the moisture uptake tests, EPS-SBP3 absorbed more water than BS-SBP3, increasing its weight from 10 mg to 30.1 mg after 36 h of 100% humidity exposure. Spectral distance and cross-correlation analyses were used to evaluate the molecular changes of the two biopolymers during the hydration process. As the water concentration increased, BS-SBP3 spectra changed in intensity in the two contributions of the OH-stretching band named "closed" and "open" (3247 and 3336 cm-1, respectively). Differently, the spectra of EPS-SBP3 exhibited a broader peak (3257 cm-1), which shifted at higher water concentrations. As evaluated by the spectral distance and the wavelet cross-correlation analysis, the OH-stretching bands of the BS-SBP3 and EPS-SBP3 changed as a function of water content, with two different sigmoidal trends having the inflection points at 80% and 48%, respectively, indicating peculiar water-properties of each biopolymer. As wetting agents, these biopolymers might replace industrially manufactured additives in agriculture and the food and cosmetic industries.
Collapse
Affiliation(s)
- Maria Teresa Caccamo
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Vincenzo Zammuto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
- Research Centre for Extreme Environments and Extremophiles, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Antonio Spanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
- Research Centre for Extreme Environments and Extremophiles, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Concetta Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
- Research Centre for Extreme Environments and Extremophiles, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Salvatore Magazù
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
- Research Centre for Extreme Environments and Extremophiles, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
19
|
Zahra T, Badiei A, Hamedi J. Effect of the Nanoclay Treated Streptomyces sp. UTMC 3136 as a Bioformulation on the Growth of Helianthus annuus. Curr Microbiol 2022; 79:299. [PMID: 36002542 DOI: 10.1007/s00284-022-02993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
Biofertilizers based on plant growth-promoting actinobacteria are used as potential alternatives to chemical fertilizers for sustainable agricultural systems. However, successful application of PGPA to agricultural land is challenging. The present study was an attempt to develop and evaluate the effect of a low-cost biofertilizer named NCTS (nanoclay-treated-Streptomyces) based on Streptomyces sp. UTMC 3136 spores amalgamated in a hybrid material of nanoclay Na-montmorillonite K10-glycerol-water substrate. In addition, the effect of NCTS on sunflower growth was investigated. In vivo tests showed a statistically significant increase in the agronomic characteristics of sunflowers treated with NCTS. Characterization of NCTS by FTIR, Raman spectroscopy, and scanning electron microscopy testified to the structural alignment and good adhesion of NCTS components. The viability of NCTS was 100% after 72 h of storage at 4 °C. Overall, the present study attempted to validate the efficacy of the formulation of Streptomyces sp. UTMC 3136 in nanoclay for growth improvement of sunflower. It was the first study to show the administration of PGPA in combination with nanomaterials as a growth enhancing biofertilization agent for sunflower.
Collapse
Affiliation(s)
- Tamkeen Zahra
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.,Microbial Technology and Products (MTP) Research Center, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- Department of Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Javad Hamedi
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran. .,Microbial Technology and Products (MTP) Research Center, University of Tehran, Tehran, Iran.
| |
Collapse
|
20
|
A novel carbon fiber/MXene coalition prepared by a bidirectional diazotization strategy: Properties and applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Production and Characterization of Gelatin Biomaterials Based on Agave Microfibers and Bentonite as Reinforcements. Foods 2022; 11:foods11111573. [PMID: 35681323 PMCID: PMC9180701 DOI: 10.3390/foods11111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 01/18/2023] Open
Abstract
The objective of this work was to obtain biomaterials as gelatin films or biofilms produced by casting, reinforced with a microfiber (MF) from Agave angustifolia Haw bagasse and bentonite (BN) nanoparticles and evaluate the effect of such reinforcements at different concentrations. Agave microfibers were obtained by a non-abrasive chemical method. Three formulations based on gelatin with glycerol were reinforced with microfiber, bentonite and both materials with 1.5, 3.5 and 5.5% w/w solids content. Physicochemical properties were determined using SEM and FTIR, thickness, soluble matter and moisture. The XRD, barrier, mechanical and thermal properties were measured. The films’ micrographs showed agglomerations on the surface. Interactions between its functional groups were found. The solubility increased when the MF concentration increased. The thickness of the films was between 60 and 110 μm. The crystallinity ranged from 23 to 86%. The films with both MF and BN and 3.5% w/w solids had the lowest barrier properties, while the film with 5.5% w/w solids showed the highest mechanical properties, being thermally resistant. Overall, Agave microfibers together with bentonite were able to improve some of the films’ properties, but optimized mixing conditions had to be used to achieve good particle dispersion within the gelatin matrix to improve its final properties. Such materials might have the potential to be used as food packaging.
Collapse
|
22
|
Li J, Tao J, Ma C, Yang J, Gu T, Liu J. Carboxylated cellulose nanofiber/montmorillonite nanocomposite for the removal of levofloxacin hydrochloride antibiotic from aqueous solutions. RSC Adv 2020; 10:42038-42053. [PMID: 35516750 PMCID: PMC9057890 DOI: 10.1039/d0ra08987g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Herein, we report the facile two-step synthesis of an effective carboxylated cellulose nanofiber/montmorillonite nanocomposite (CMNFs-MMT) adsorbent for levofloxacin hydrochloride (Levo-HCl). CMNFs-MMT was characterized using scanning electron microscopy, energy dispersive X-ray spectrometry, Brunauer-Emmett-Teller measurements, X-ray photoelectron spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Based on the central composite design, the effects of various factors on the removal of Levo-HCl by the CMNFs-MMT were explored, wherein the effect of pH was the most significant. To gain a clearer perspective on the adsorption process of Levo-HCl onto CMNFs-MMT, the adsorption kinetics and isotherms were also measured, revealing that the reaction is pseudo-second-order and the Sips models provide the best fit with experimental data. Comparing the adsorption in pure water with the removal in river water, the rate of river water removal (90.37%) was slightly lower than that of pure water (93.97%) when adsorption equilibrium was reached, confirming that CMNFs-MMT is not easily influenced by environmental conditions. Reusability experiments indicate that CMNFs-MMT can maintain a certain adsorption capacity for Levo-HCl after six uses. Overall, this work indicates that CMNFs-MMT is an effective adsorbent for eliminating Levo-HCl from aqueous media in future engineering applications.
Collapse
Affiliation(s)
- Junfeng Li
- College of Water Conservancy and Architecture Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
| | - Junhong Tao
- College of Water Conservancy and Architecture Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
| | - Chengxiao Ma
- College of Water Conservancy and Architecture Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
| | - Jie Yang
- College of Water Conservancy and Architecture Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
| | - Tiantian Gu
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University Xinjiang 832003 PR China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University Nanjing 210098 China
| |
Collapse
|
23
|
Noskov AV, Alekseeva OV, Shibaeva VD, Agafonov AV. Synthesis, structure and thermal properties of montmorillonite/ionic liquid ionogels. RSC Adv 2020; 10:34885-34894. [PMID: 35514371 PMCID: PMC9056872 DOI: 10.1039/d0ra06443b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 11/21/2022] Open
Abstract
Sodium montmorillonite (Na-MMT) was synthesized as a result of two-stage processing of natural bentonite (Bent), and its particle-size distribution, structure and morphology were studied. It was found that the two-stage processing of the original clay resulted in a significant increase in the specific surface area (from 72 to 120 m2 g-1). The prepared Na-MMT powder was modified by two ionic liquids (ILs), namely, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMImNTf2) and 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide (BMImNTf2). Several methods, such as SEM, XRD, TG, DSC, FTIR spectroscopy were used to study the structure and thermal behavior of the produced ionogels. The effects of the IL cation on thermal characteristics of the Na-MMT/IL ionogels were studied. Using the DSC, characteristic temperatures of glass transition, crystallization and melting were determined for Na-MMT/IL composites. Taking into account the literature data and using the method of thermogravimetric analysis, it was shown that ionogel formation was accompanied by a decrease in the thermal stability of the IL.
Collapse
Affiliation(s)
- Andrew V Noskov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences Russia
| | - Olga V Alekseeva
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences Russia
| | - Valeriya D Shibaeva
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences Russia
| | - Alexander V Agafonov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences Russia
| |
Collapse
|
24
|
Magazù S, Lombardo D. Editorial-Special Issue "Macromolecular Self-Assembly Materials: From Modeling to Advanced Applications". MATERIALS 2020; 13:ma13061458. [PMID: 32210075 PMCID: PMC7143292 DOI: 10.3390/ma13061458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Salvatore Magazù
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, 98166 Messina, Italy
- Correspondence: (S.M.); (D.L.)
| | - Domenico Lombardo
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, 98158 Messina, Italy
- Correspondence: (S.M.); (D.L.)
| |
Collapse
|