1
|
Badar W, Inamdar SR, Fratzl P, Snow T, Terrill NJ, Knight MM, Gupta HS. Nonlinear Stress-Induced Transformations in Collagen Fibrillar Organization, Disorder and Strain Mechanisms in the Bone-Cartilage Unit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407649. [PMID: 39527673 PMCID: PMC11714194 DOI: 10.1002/advs.202407649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/24/2024] [Indexed: 11/16/2024]
Abstract
By developing a 3D X-ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of nanoscale deformation in the collagen fibril network across the intact bone-cartilage unit (BCU), whose healthy functioning is critical for joint function and preventing degeneration. Extracting the 3D fibril structure from 2D small-angle X-ray scattering before and during physiological compression reveals of dominant deformation modes, including crystallinity transitions, lateral fibril compression, and reorientation, which vary in a coupled, nonlinear, and correlated manner across the cartilage-bone interface. A distinct intermolecular arrangement of collagen molecules, and enhanced molecular-level disorder, is found in the cartilage (sliding) surface region. Just below, fibrils accommodate tissue strain by reorientation, which transitions molecular-level kinking or loss of crystallinity in the deep zone. Crystalline fibrils laterally shrink far more (20×) than they contract, possibly by water loss from between tropocollagen molecules. With the calcified plate acting as an anchor for surrounding tissue, a qualitative switch occurs in fibrillar deformation between the articular cartilage and calcified regions. These findings significantly advance this understanding of the complex, nonlinear ultrastructural dynamics at this critical interface, and opens avenues for developing targeted diagnostic and therapeutic strategies for musculoskeletal disorders.
Collapse
Affiliation(s)
- Waqas Badar
- Centre for Bioengineering and School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Sheetal R. Inamdar
- Centre for Bioengineering and School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Peter Fratzl
- Max Planck Institute of Colloids and InterfacesResearch Campus Golm14424PotsdamGermany
| | - Tim Snow
- Diamond Light SourceHarwell Science CampusHarwellOX11 0DEUK
| | | | - Martin M. Knight
- Centre for Bioengineering and School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Himadri S. Gupta
- Centre for Bioengineering and School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| |
Collapse
|
2
|
Mürer FK, Tekseth KR, Chattopadhyay B, Olstad K, Akram MN, Breiby DW. Multimodal 2D and 3D microscopic mapping of growth cartilage by computational imaging techniques - a short review including new research. Biomed Phys Eng Express 2024; 10:045041. [PMID: 38744257 DOI: 10.1088/2057-1976/ad4b1f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Being able to image the microstructure of growth cartilage is important for understanding the onset and progression of diseases such as osteochondrosis and osteoarthritis, as well as for developing new treatments and implants. Studies of cartilage using conventional optical brightfield microscopy rely heavily on histological staining, where the added chemicals provide tissue-specific colours. Other microscopy contrast mechanisms include polarization, phase- and scattering contrast, enabling non-stained or 'label-free' imaging that significantly simplifies the sample preparation, thereby also reducing the risk of artefacts. Traditional high-performance microscopes tend to be both bulky and expensive.Computational imagingdenotes a range of techniques where computers with dedicated algorithms are used as an integral part of the image formation process. Computational imaging offers many advantages like 3D measurements, aberration correction and quantitative phase contrast, often combined with comparably cheap and compact hardware. X-ray microscopy is also progressing rapidly, in certain ways trailing the development of optical microscopy. In this study, we first briefly review the structures of growth cartilage and relevant microscopy characterization techniques, with an emphasis on Fourier ptychographic microscopy (FPM) and advanced x-ray microscopies. We next demonstrate with our own results computational imaging through FPM and compare the images with hematoxylin eosin and saffron (HES)-stained histology. Zernike phase contrast, and the nonlinear optical microscopy techniques of second harmonic generation (SHG) and two-photon excitation fluorescence (TPEF) are explored. Furthermore, X-ray attenuation-, phase- and diffraction-contrast computed tomography (CT) images of the very same sample are presented for comparisons. Future perspectives on the links to artificial intelligence, dynamic studies andin vivopossibilities conclude the article.
Collapse
Affiliation(s)
- Fredrik K Mürer
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
- SINTEF Helgeland AS, Halvor Heyerdahls vei 33, 8626 Mo i Rana, Norway
| | - Kim R Tekseth
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Basab Chattopadhyay
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Kristin Olstad
- Faculty of Veterinary Medicine, Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences (NMBU), Equine section, PO Box 5003, 1432 Ås, Norway
| | - Muhammad Nadeem Akram
- Department of Microsystems, University of South-Eastern Norway (USN), 3184 Borre, Norway
| | - Dag W Breiby
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
- Department of Microsystems, University of South-Eastern Norway (USN), 3184 Borre, Norway
| |
Collapse
|
3
|
Berni M, Marchiori G, Baleani M, Giavaresi G, Lopomo NF. Biomechanics of the Human Osteochondral Unit: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1698. [PMID: 38612211 PMCID: PMC11012636 DOI: 10.3390/ma17071698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
The damping system ensured by the osteochondral (OC) unit is essential to deploy the forces generated within load-bearing joints during locomotion, allowing furthermore low-friction sliding motion between bone segments. The OC unit is a multi-layer structure including articular cartilage, as well as subchondral and trabecular bone. The interplay between the OC tissues is essential in maintaining the joint functionality; altered loading patterns can trigger biological processes that could lead to degenerative joint diseases like osteoarthritis. Currently, no effective treatments are available to avoid degeneration beyond tissues' recovery capabilities. A thorough comprehension on the mechanical behaviour of the OC unit is essential to (i) soundly elucidate its overall response to intra-articular loads for developing diagnostic tools capable of detecting non-physiological strain levels, (ii) properly evaluate the efficacy of innovative treatments in restoring physiological strain levels, and (iii) optimize regenerative medicine approaches as potential and less-invasive alternatives to arthroplasty when irreversible damage has occurred. Therefore, the leading aim of this review was to provide an overview of the state-of-the-art-up to 2022-about the mechanical behaviour of the OC unit. A systematic search is performed, according to PRISMA standards, by focusing on studies that experimentally assess the human lower-limb joints' OC tissues. A multi-criteria decision-making method is proposed to quantitatively evaluate eligible studies, in order to highlight only the insights retrieved through sound and robust approaches. This review revealed that studies on human lower limbs are focusing on the knee and articular cartilage, while hip and trabecular bone studies are declining, and the ankle and subchondral bone are poorly investigated. Compression and indentation are the most common experimental techniques studying the mechanical behaviour of the OC tissues, with indentation also being able to provide information at the micro- and nanoscales. While a certain comparability among studies was highlighted, none of the identified testing protocols are currently recognised as standard for any of the OC tissues. The fibril-network-reinforced poro-viscoelastic constitutive model has become common for describing the response of the articular cartilage, while the models describing the mechanical behaviour of mineralised tissues are usually simpler (i.e., linear elastic, elasto-plastic). Most advanced studies have tested and modelled multiple tissues of the same OC unit but have done so individually rather than through integrated approaches. Therefore, efforts should be made in simultaneously evaluating the comprehensive response of the OC unit to intra-articular loads and the interplay between the OC tissues. In this regard, a multidisciplinary approach combining complementary techniques, e.g., full-field imaging, mechanical testing, and computational approaches, should be implemented and validated. Furthermore, the next challenge entails transferring this assessment to a non-invasive approach, allowing its application in vivo, in order to increase its diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Matteo Berni
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (M.B.); (M.B.)
| | - Gregorio Marchiori
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Massimiliano Baleani
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (M.B.); (M.B.)
| | - Gianluca Giavaresi
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | | |
Collapse
|
4
|
Davis S, Karali A, Balcaen T, Zekonyte J, Pétré M, Roldo M, Kerckhofs G, Blunn G. Comparison of two contrast-enhancing staining agents for use in X-ray imaging and digital volume correlation measurements across the cartilage-bone interface. J Mech Behav Biomed Mater 2024; 152:106414. [PMID: 38277908 DOI: 10.1016/j.jmbbm.2024.106414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
OBJECTIVE The pathogenesis of osteoarthritis (OA) is associated with subchondral bone changes, which is linked to abnormal strain distribution in the overlying articular cartilage. This highlights the importance of understanding mechanical interaction at the cartilage-bone interface. The aim of this study is to compare solutions of two contrast-enhancing staining agents (CESA) for combining high-resolution Contrast-Enhanced X-ray microfocus Computed Tomography (CECT) with Digital Volume Correlation (DVC) for full-field strain measurements at the cartilage-bone interface. DESIGN Bovine osteochondral plugs were stained with phosphotungstic acid (PTA) in 70% ethanol or 1:2 hafnium-substituted Wells-Dawson polyoxometalate (Hf-WD POM) in PBS. Mechanical properties were assessed using micromechanical probing and nanoindentation. Strain uncertainties (from CECT data) were evaluated following two consecutive unloaded scans. Residual strains were computed following unconfined compression (ex situ) testing. RESULTS PTA and Hf-WD POM enabled the visualisation of structural features in cartilage, allowing DVC computation on the CECT data. Residual strains up to ∼10,000 μɛ were detected up to the tidemark. Nanoindentation showed that PTA-staining caused an average ∼6-fold increase in articular cartilage stiffness, a ∼19-fold increase in reduced modulus and ∼7-fold increase in hardness, whereas Hf-WD POM-stained specimens had mechanical properties similar to pre-stain tissue. Micromechanical probing showed a 77% increase in cartilage surface stiffness after PTA-staining, in comparison to a 16% increase in stiffness after staining with Hf-WD POM. CONCLUSION Hf-WD POM is a more suitable CESA solution compared to PTA for CECT imaging combined with DVC as it allowed visualisation of structural features in the cartilage tissue whilst more closely maintaining tissue mechanical properties.
Collapse
Affiliation(s)
- Sarah Davis
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, PO1 2DT, UK; School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, UK.
| | - Aikaterina Karali
- School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, UK
| | - Tim Balcaen
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium; Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Jurgita Zekonyte
- School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, UK
| | - Maïté Pétré
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium; Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Heverlee, Belgium
| | - Marta Roldo
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium; Department of Materials Engineering, KU Leuven, Heverlee, Belgium; Prometheus, Division for Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Gordon Blunn
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, PO1 2DT, UK
| |
Collapse
|
5
|
Disney CM, Vo NT, Bodey AJ, Bay BK, Lee PD. Image quality and scan time optimisation for in situ phase contrast x-ray tomography of the intervertebral disc. J Mech Behav Biomed Mater 2023; 138:105579. [PMID: 36463809 DOI: 10.1016/j.jmbbm.2022.105579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022]
Abstract
In-line phase contrast synchrotron tomography combined with in situ mechanical loading enables the characterisation of soft tissue micromechanics via digital volume correlation (DVC) within whole organs. Optimising scan time is important for reducing radiation dose from multiple scans and to limit sample movement during acquisition. Also, although contrasted edges provided by in-line phase contrast tomography of soft tissues are useful for DVC, the effect of phase contrast imaging on its accuracy has yet to be investigated. Due to limited time at synchrotron facilities, scan parameters are often decided during imaging and their effect on DVC accuracy is not fully understood. Here, we used previously published data of intervertebral disc phase contrast tomography to evaluate the influence of i) fibrous image texture, ii) number of projections, iii) tomographic reconstruction method, and iv) phase contrast propagation distance on DVC results. A greater understanding of how image texture influences optimal DVC tracking was obtained by visualising objective function mapping, enabling tracking inaccuracies to be identified. When reducing the number of projections, DVC was minimally affected by image high frequency noise but with a compromise in accuracy. Iterative reconstruction methods improved image signal-to-noise and consequently significantly lowered DVC displacement uncertainty. Propagation distance was shown to affect DVC accuracy. Consistent DVC results were achieved within a propagation distance range which provided contrast to the smallest scale features, where; too short a distance provided insufficient features to track, whereas too long led to edge effect inconsistencies, particularly at greater deformations. Although limited to a single sample type and image setup, this study provides general guidelines for future investigations when optimising image quality and scan times for in situ phase contrast x-ray tomography of fibrous connective tissues.
Collapse
Affiliation(s)
- C M Disney
- Mechanical Engineering, University College London, UK; Diamond Light Source, UK.
| | - N T Vo
- Diamond Light Source, UK; National Synchrotron Light Source II, Brookhaven National Laboratory, USA
| | | | - B K Bay
- School of Mechanical, Industrial & Manufacturing Engineering, Oregon State University, USA
| | - P D Lee
- Mechanical Engineering, University College London, UK
| |
Collapse
|
6
|
Karali A, Dall'Ara E, Zekonyte J, Kao AP, Blunn G, Tozzi G. Effect of radiation-induced damage of trabecular bone tissue evaluated using indentation and digital volume correlation. J Mech Behav Biomed Mater 2023; 138:105636. [PMID: 36608532 DOI: 10.1016/j.jmbbm.2022.105636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Exposure to X-ray radiation for an extended amount of time can cause damage to the bone tissue and therefore affect its mechanical properties. Specifically, high-resolution X-ray Computed Tomography (XCT), in both synchrotron and lab-based systems, has been employed extensively for evaluating bone micro-to-nano architecture. However, to date, it is still unclear how long exposures to X-ray radiation affect the mechanical properties of trabecular bone, particularly in relation to lab-XCT systems. Indentation has been widely used to identify local mechanical properties such as hardness and elastic modulus of bone and other biological tissues. The purpose of this study is therefore, to use indentation and XCT-based investigative tools such as digital volume correlation (DVC) to assess the microdamage induced by long exposure of trabecular bone tissue to X-ray radiation and how this affects its local mechanical properties. Trabecular bone specimens were indented before and after X-ray exposures of 33 and 66 h, where variation of elastic modulus was evaluated at every stage. The resulting elastic modulus was decreased, and micro-cracks appeared in the specimens after the first long X-ray exposure and crack formation increased after the second exposure. High strain concentration around the damaged tissue exceeding 1% was also observed from DVC analysis. The outcomes of this study show the importance of designing appropriate XCT-based experiments in lab systems to avoid degradation of the bone tissue mechanical properties due to radiation and these results will help to inform future studies that require long X-ray exposure for in situ experiments or generation of reliable subject-specific computational models.
Collapse
Affiliation(s)
- Aikaterina Karali
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK.
| | - Enrico Dall'Ara
- Departement of Oncology and Metabolism and Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
| | - Jurgita Zekonyte
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Alexander P Kao
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Gianluca Tozzi
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
7
|
Dall'Ara E, Bodey AJ, Isaksson H, Tozzi G. A practical guide for in situ mechanical testing of musculoskeletal tissues using synchrotron tomography. J Mech Behav Biomed Mater 2022; 133:105297. [PMID: 35691205 DOI: 10.1016/j.jmbbm.2022.105297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/03/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
Musculoskeletal tissues are complex hierarchical materials where mechanical response is linked to structural and material properties at different dimensional levels. Therefore, high-resolution three-dimensional tomography is very useful for assessing tissue properties at different scales. In particular, Synchrotron Radiation micro-Computed Tomography (SR-microCT) has been used in several applications to analyze the structure of bone and biomaterials. In the past decade the development of digital volume correlation (DVC) algorithms applied to SR-microCT images and its combination with in situ mechanical testing (four-dimensional imaging) have allowed researchers to visualise, for the first time, the deformation of musculoskeletal tissues and their interaction with biomaterials under different loading scenarios. However, there are several experimental challenges that make these measurements difficult and at high risk of failure. Challenges relate to sample preparation, imaging parameters, loading setup, accumulated tissue damage for multiple tomographic acquisitions, reconstruction methods and data processing. Considering that access to SR-microCT facilities is usually associated with bidding processes and long waiting times, the failure of these experiments could notably slow down the advancement of this research area and reduce its impact. Many of the experimental failures can be avoided with increased experience in performing the tests and better guidelines for preparation and execution of these complex experiments; publication of negative results could help interested researchers to avoid recurring mistakes. Therefore, the goal of this article is to highlight the potential and pitfalls in the design and execution of in situ SR-microCT experiments, involving multiple scans, of musculoskeletal tissues for the assessment of their structural and/or mechanical properties. The advice and guidelines that follow should improve the success rate of this type of experiment, allowing the community to reach higher impact more efficiently.
Collapse
Affiliation(s)
- E Dall'Ara
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, UK; INSIGNEO Institute for in Silico Medicine, University of Sheffield, UK.
| | | | - H Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - G Tozzi
- School of Engineering, London South Bank University, London, UK
| |
Collapse
|
8
|
Dall'Ara E, Tozzi G. Digital volume correlation for the characterization of musculoskeletal tissues: Current challenges and future developments. Front Bioeng Biotechnol 2022; 10:1010056. [PMID: 36267445 PMCID: PMC9577231 DOI: 10.3389/fbioe.2022.1010056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Biological tissues are complex hierarchical materials, difficult to characterise due to the challenges associated to the separation of scale and heterogeneity of the mechanical properties at different dimensional levels. The Digital Volume Correlation approach is the only image-based experimental approach that can accurately measure internal strain field within biological tissues under complex loading scenarios. In this minireview examples of DVC applications to study the deformation of musculoskeletal tissues at different dimensional scales are reported, highlighting the potential and challenges of this relatively new technique. The manuscript aims at reporting the wide breath of DVC applications in the past 2 decades and discuss future perspective for this unique technique, including fast analysis, applications on soft tissues, high precision approaches, and clinical applications.
Collapse
Affiliation(s)
- Enrico Dall'Ara
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Gianluca Tozzi
- School of Engineering, University of Greenwich, Chatham Maritime, United Kingdom
| |
Collapse
|
9
|
Time-resolved in situ synchrotron-microCT: 4D deformation of bone and bone analogues using digital volume correlation. Acta Biomater 2021; 131:424-439. [PMID: 34126266 DOI: 10.1016/j.actbio.2021.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/07/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023]
Abstract
Digital volume correlation (DVC) in combination with high-resolution micro-computed tomography (microCT) imaging and in situ mechanical testing is gaining popularity for quantifying 3D full-field strains in bone and biomaterials. However, traditional in situ time-lapsed (i.e., interrupted) mechanical testing cannot fully capture the dynamic strain mechanisms in viscoelastic biological materials. The aim of this study was to investigate the time-resolved deformation of bone structures and analogues via continuous in situ synchrotron-radiation microCT (SR-microCT) compression and DVC to gain a better insight into their structure-function relationships. Fast SR-microCT imaging enabled the deformation behaviour to be captured with high temporal and spatial resolution. Time-resolved DVC highlighted the relationship between local strains and damage initiation and progression in the different biostructures undergoing plastic deformation, bending and/or buckling of their main microstructural elements. The results showed that SR-microCT continuous mechanical testing complemented and enhanced the information obtained from time-lapsed testing, which may underestimate the 3D strain magnitudes as a result of the stress relaxation occurring in between steps before image acquisition in porous biomaterials. Altogether, the findings of this study highlight the importance of time-resolved in situ experiments to fully characterise the time-dependent mechanical behaviour of biological tissues and biomaterials and to further explore their micromechanics under physiologically relevant conditions. STATEMENT OF SIGNIFICANCE: Time-resolved synchrotron X-ray tomography in combination with in situ mechanical testing provided the first four-dimensional analysis of the mechanical deformation of bone and bone analogues. To unravel the interplay of damage initiation and progression with local deformation, digital volume correlation was used to map the local strain field while microstructural changes were tracked with high temporal and spatial resolution. The results highlighted the importance of fast imaging and time-resolved in situ experiments to capture the real deformation of complex porous materials to fully characterize the local strain-damage relationship. The findings are notably improving the understanding of time-dependent mechanical behaviour of bone tissue, with the potential to be extend to highly viscoelastic biomaterials and soft tissues.
Collapse
|
10
|
Bonithon R, Kao AP, Fernández MP, Dunlop JN, Blunn GW, Witte F, Tozzi G. Multi-scale mechanical and morphological characterisation of sintered porous magnesium-based scaffolds for bone regeneration in critical-sized defects. Acta Biomater 2021; 127:338-352. [PMID: 33831571 DOI: 10.1016/j.actbio.2021.03.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/11/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022]
Abstract
Magnesium (Mg) and its alloys are very promising degradable, osteoconductive and osteopromotive materials to be used as regenerative treatment for critical-sized bone defects. Under load-bearing conditions, Mg alloys must display sufficient morphological and mechanical resemblance to the native bone they are meant to replace to provide adequate support and enable initial bone bridging. In this study, unique highly open-porous Mg-based scaffolds were mechanically and morphologically characterised at different scales. In situ X-ray computed tomography (XCT) mechanics, digital volume correlation (DVC), electron microscopy and nanoindentation were combined to assess the influence of material properties on the apparent (macro) mechanics of the scaffold. The results showed that Mg exhibited a higher connected structure (38.4mm-3 and 6.2mm-3 for Mg and trabecular bone (Tb), respectively) and smaller spacing (245µm and 629µm for Mg and Tb, respectively) while keeping an overall appropriate porosity of 55% in the range of trabecular bone (30-80%). This fully connected and highly porous structure promoted lower local strain compared to the trabecular bone structure at material level (i.e. -22067 ± 8409µε and -40120 ± 18364µε at 6% compression for Mg and trabecular bone, respectively) and highly ductile mechanical behaviour at apparent level preventing premature scaffold failure. Furthermore, the Mg scaffolds exceeded the physiological strain of bone tissue generated in daily activities such as walking or running (500-2000µε) by one order of magnitude. The yield stress was also found to be close to trabecular bone (2.06MPa and 6.67MPa for Mg and Tb, respectively). Based on this evidence, the study highlights the overall biomechanical suitability of an innovative Mg-based scaffold design to be used as a treatment for bone critical-sized defects. STATEMENT OF SIGNIFICANCE: Bone regeneration remains a challenging field of research where different materials and solutions are investigated. Among the variety of treatments, biodegradable magnesium-based implants represent a very promising possibility. The novelty of this study is based on the characterisation of innovative magnesium-based implants whose structure and manufacturing have been optimised to enable the preservation of mechanical integrity and resemble bone microarchitecture. It is also based on a multi-scale approach by coupling high-resolution X-ray computed tomography (XCT), with in situ mechanics, digital volume correlation (DVC) as well as nano-indentation and electron-based microscopy imaging to define how degradable porous Mg-based implants fulfil morphological and mechanical requirements to be used as critical bone defects regeneration treatment.
Collapse
|
11
|
Koudelka P, Kytyr D, Fila T, Sleichrt J, Rada V, Zlamal P, Benes P, Bendova V, Kumpova I, Vopalensky M. A Method for Evaluation the Fatigue Microcrack Propagation in Human Cortical Bone Using Differential X-ray Computed Tomography. MATERIALS 2021; 14:ma14061370. [PMID: 33799895 PMCID: PMC8001655 DOI: 10.3390/ma14061370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022]
Abstract
Fatigue initiation and the propagation of microcracks in a cortical bone is an initial phase of damage development that may ultimately lead to the formation of macroscopic fractures and failure of the bone. In this work, a time-resolved high-resolution X-ray micro-computed tomography (CT) was performed to investigate the system of microcracks in a bone sample loaded by a simulated gait cycle. A low-cycle (1000 cycles) fatigue loading in compression with a 900 N peak amplitude and a 0.4 Hz frequency simulating the slow walk for the initialization of the internal damage of the bone was used. An in-house developed laboratory X-ray micro-CT imaging system coupled with a compact loading device were employed for the in situ uni-axial fatigue experiments reaching a μ2μm effective voxel size. To reach a comparable quality of the reconstructed 3D images with the SEM microscopy, projection-level corrections and focal spot drift correction were performed prior to the digital volume correlation and evaluation using differential tomography for the identification of the individual microcracks in the microstructure. The microcracks in the intact bone, the crack formation after loading, and the changes in the topology of the microcracks were identified on a volumetric basis in the microstructure of the bone.
Collapse
|
12
|
Davis S, Roldo M, Blunn G, Tozzi G, Roncada T. Influence of the Mechanical Environment on the Regeneration of Osteochondral Defects. Front Bioeng Biotechnol 2021; 9:603408. [PMID: 33585430 PMCID: PMC7873466 DOI: 10.3389/fbioe.2021.603408] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Articular cartilage is a highly specialised connective tissue of diarthrodial joints which provides a smooth, lubricated surface for joint articulation and plays a crucial role in the transmission of loads. In vivo cartilage is subjected to mechanical stimuli that are essential for cartilage development and the maintenance of a chondrocytic phenotype. Cartilage damage caused by traumatic injuries, ageing, or degradative diseases leads to impaired loading resistance and progressive degeneration of both the articular cartilage and the underlying subchondral bone. Since the tissue has limited self-repairing capacity due its avascular nature, restoration of its mechanical properties is still a major challenge. Tissue engineering techniques have the potential to heal osteochondral defects using a combination of stem cells, growth factors, and biomaterials that could produce a biomechanically functional tissue, representative of native hyaline cartilage. However, current clinical approaches fail to repair full-thickness defects that include the underlying subchondral bone. Moreover, when tested in vivo, current tissue-engineered grafts show limited capacity to regenerate the damaged tissue due to poor integration with host cartilage and the failure to retain structural integrity after insertion, resulting in reduced mechanical function. The aim of this review is to examine the optimal characteristics of osteochondral scaffolds. Additionally, an overview on the latest biomaterials potentially able to replicate the natural mechanical environment of articular cartilage and their role in maintaining mechanical cues to drive chondrogenesis will be detailed, as well as the overall mechanical performance of grafts engineered using different technologies.
Collapse
Affiliation(s)
- Sarah Davis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Tosca Roncada
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
13
|
Arora H, Mitchell RL, Johnston R, Manolesos M, Howells D, Sherwood JM, Bodey AJ, Wanelik K. Correlating Local Volumetric Tissue Strains with Global Lung Mechanics Measurements. MATERIALS (BASEL, SWITZERLAND) 2021; 14:439. [PMID: 33477444 PMCID: PMC7829924 DOI: 10.3390/ma14020439] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/30/2022]
Abstract
The mechanics of breathing is a fascinating and vital process. The lung has complexities and subtle heterogeneities in structure across length scales that influence mechanics and function. This study establishes an experimental pipeline for capturing alveolar deformations during a respiratory cycle using synchrotron radiation micro-computed tomography (SR-micro-CT). Rodent lungs were mechanically ventilated and imaged at various time points during the respiratory cycle. Pressure-Volume (P-V) characteristics were recorded to capture any changes in overall lung mechanical behaviour during the experiment. A sequence of tomograms was collected from the lungs within the intact thoracic cavity. Digital volume correlation (DVC) was used to compute the three-dimensional strain field at the alveolar level from the time sequence of reconstructed tomograms. Regional differences in ventilation were highlighted during the respiratory cycle, relating the local strains within the lung tissue to the global ventilation measurements. Strains locally reached approximately 150% compared to the averaged regional deformations of approximately 80-100%. Redistribution of air within the lungs was observed during cycling. Regions which were relatively poorly ventilated (low deformations compared to its neighbouring region) were deforming more uniformly at later stages of the experiment (consistent with its neighbouring region). Such heterogenous phenomena are common in everyday breathing. In pathological lungs, some of these non-uniformities in deformation behaviour can become exaggerated, leading to poor function or further damage. The technique presented can help characterize the multiscale biomechanical nature of a given pathology to improve patient management strategies, considering both the local and global lung mechanics.
Collapse
Affiliation(s)
- Hari Arora
- Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK; (R.J.); (M.M.); (D.H.)
| | - Ria L. Mitchell
- Faculty of Engineering, The University of Sheffield, Sheffield S10 2TN, UK;
| | - Richard Johnston
- Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK; (R.J.); (M.M.); (D.H.)
| | - Marinos Manolesos
- Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK; (R.J.); (M.M.); (D.H.)
| | - David Howells
- Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK; (R.J.); (M.M.); (D.H.)
| | - Joseph M. Sherwood
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK;
| | - Andrew J. Bodey
- Diamond Light Source Ltd., Didcot OX11 0DE, Oxfordshire, UK; (A.J.B.); (K.W.)
| | - Kaz Wanelik
- Diamond Light Source Ltd., Didcot OX11 0DE, Oxfordshire, UK; (A.J.B.); (K.W.)
| |
Collapse
|
14
|
Tavana S, Clark JN, Newell N, Calder JD, Hansen U. In Vivo Deformation and Strain Measurements in Human Bone Using Digital Volume Correlation (DVC) and 3T Clinical MRI. MATERIALS 2020; 13:ma13235354. [PMID: 33255848 PMCID: PMC7728341 DOI: 10.3390/ma13235354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022]
Abstract
Strains within bone play an important role in the remodelling process and the mechanisms of fracture. The ability to assess these strains in vivo can provide clinically relevant information regarding bone health, injury risk, and can also be used to optimise treatments. In vivo bone strains have been investigated using multiple experimental techniques, but none have quantified 3D strains using non-invasive techniques. Digital volume correlation based on clinical MRI (DVC-MRI) is a non-invasive technique that has the potential to achieve this. However, before it can be implemented, uncertainties associated with the measurements must be quantified. Here, DVC-MRI was evaluated to assess its potential to measure in vivo strains in the talus. A zero-strain test (two repeated unloaded scans) was conducted using three MRI sequences, and three DVC approaches to quantify errors and to establish optimal settings. With optimal settings, strains could be measured with a precision of 200 με and accuracy of 480 με for a spatial resolution of 7.5 mm, and a precision of 133 με and accuracy of 251 με for a spatial resolution of 10 mm. These results demonstrate that this technique has the potential to measure relevant levels of in vivo bone strain and to be used for a range of clinical applications.
Collapse
Affiliation(s)
- Saman Tavana
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (N.N.)
- Correspondence: (S.T.); (U.H.); Tel.: +44-(0)20-7594-7061 (U.H.)
| | - Jeffrey N. Clark
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (N.N.)
| | - Nicolas Newell
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (N.N.)
| | - James D. Calder
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK;
- Fortius Clinic, 17 Fitzhardinge St, London W1H 6EQ, UK
| | - Ulrich Hansen
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (N.N.)
- Correspondence: (S.T.); (U.H.); Tel.: +44-(0)20-7594-7061 (U.H.)
| |
Collapse
|
15
|
Rankin K, Steer J, Paton J, Mavrogordato M, Marter A, Worsley P, Browne M, Dickinson A. Developing an Analogue Residual Limb for Comparative DVC Analysis of Transtibial Prosthetic Socket Designs. MATERIALS 2020; 13:ma13183955. [PMID: 32906701 PMCID: PMC7557588 DOI: 10.3390/ma13183955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Abstract
Personalised prosthetic sockets are fabricated by expert clinicians in a skill- and experience-based process, with research providing tools to support evidence-based practice. We propose that digital volume correlation (DVC) may offer a deeper understanding of load transfer from prosthetic sockets into the residual limb, and tissue injury risk. This study’s aim was to develop a transtibial amputated limb analogue for volumetric strain estimation using DVC, evaluating its ability to distinguish between socket designs. A soft tissue analogue material was developed, comprising silicone elastomer and sand particles as fiducial markers for image correlation. The material was cast to form an analogue residual limb informed by an MRI scan of a person with transtibial amputation, for whom two polymer check sockets were produced by an expert prosthetist. The model was micro-CT scanned according to (i) an unloaded noise study protocol and (ii) a case study comparison between the two socket designs, loaded to represent two-legged stance. The scans were reconstructed to give 108 µm voxels. The DVC noise study indicated a 64 vx subvolume and 50% overlap, giving better than 0.32% strain sensitivity, and ~3.5 mm spatial resolution of strain. Strain fields induced by the loaded sockets indicated tensile, compressive and shear strain magnitudes in the order of 10%, with a high signal:noise ratio enabling distinction between the two socket designs. DVC may not be applicable for socket design in the clinical setting, but does offer critical 3D strain information from which existing in vitro and in silico tools can be compared and validated to support the design and manufacture of prosthetic sockets, and enhance the biomechanical understanding of the load transfer between the limb and the prosthesis.
Collapse
Affiliation(s)
- Kathryn Rankin
- Bioengineering Science Research Group, School of Engineering, University of Southampton, Southampton SO17 1BJ, UK; (K.R.); (J.S.); (J.P.); (A.M.); (M.B.)
- µ-VIS X-Ray Imaging Centre, University of Southampton, Southampton SO17 1BJ, UK;
| | - Joshua Steer
- Bioengineering Science Research Group, School of Engineering, University of Southampton, Southampton SO17 1BJ, UK; (K.R.); (J.S.); (J.P.); (A.M.); (M.B.)
| | - Joshua Paton
- Bioengineering Science Research Group, School of Engineering, University of Southampton, Southampton SO17 1BJ, UK; (K.R.); (J.S.); (J.P.); (A.M.); (M.B.)
| | - Mark Mavrogordato
- µ-VIS X-Ray Imaging Centre, University of Southampton, Southampton SO17 1BJ, UK;
| | - Alexander Marter
- Bioengineering Science Research Group, School of Engineering, University of Southampton, Southampton SO17 1BJ, UK; (K.R.); (J.S.); (J.P.); (A.M.); (M.B.)
| | - Peter Worsley
- Skin Health Research Group, School of Health Sciences, University of Southampton, Southampton SO16 6YD, UK;
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Martin Browne
- Bioengineering Science Research Group, School of Engineering, University of Southampton, Southampton SO17 1BJ, UK; (K.R.); (J.S.); (J.P.); (A.M.); (M.B.)
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Alexander Dickinson
- Bioengineering Science Research Group, School of Engineering, University of Southampton, Southampton SO17 1BJ, UK; (K.R.); (J.S.); (J.P.); (A.M.); (M.B.)
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Correspondence: ; Tel.: +44-(238)-059-5394
| |
Collapse
|
16
|
Clark JN, Heyraud A, Tavana S, Al-Jabri T, Tallia F, Clark B, Blunn GW, Cobb JP, Hansen U, Jones JR, Jeffers JRT. Exploratory Full-Field Mechanical Analysis across the Osteochondral Tissue-Biomaterial Interface in an Ovine Model. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3911. [PMID: 32899671 PMCID: PMC7559087 DOI: 10.3390/ma13183911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/26/2022]
Abstract
Osteochondral injuries are increasingly prevalent, yet success in articular cartilage regeneration remains elusive, necessitating the development of new surgical interventions and novel medical devices. As part of device development, animal models are an important milestone in illustrating functionality of novel implants. Inspection of the tissue-biomaterial system is vital to understand and predict load-sharing capacity, fixation mechanics and micromotion, none of which are directly captured by traditional post-mortem techniques. This study aims to characterize the localised mechanics of an ex vivo ovine osteochondral tissue-biomaterial system extracted following six weeks in vivo testing, utilising laboratory micro-computed tomography, in situ loading and digital volume correlation. Herein, the full-field displacement and strain distributions were visualised across the interface of the system components, including newly formed tissue. The results from this exploratory study suggest that implant micromotion in respect to the surrounding tissue could be visualised in 3D across multiple loading steps. The methodology provides a non-destructive means to assess device performance holistically, informing device design to improve osteochondral regeneration strategies.
Collapse
Affiliation(s)
- Jeffrey N. Clark
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (S.T.); (U.H.)
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (A.H.); (F.T.); (J.R.J.)
| | - Agathe Heyraud
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (A.H.); (F.T.); (J.R.J.)
| | - Saman Tavana
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (S.T.); (U.H.)
| | - Talal Al-Jabri
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK; (T.A.-J.); (J.P.C.)
| | - Francesca Tallia
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (A.H.); (F.T.); (J.R.J.)
| | - Brett Clark
- Imaging and Analysis Centre, Natural History Museum London, London SW7 5BD, UK;
| | - Gordon W. Blunn
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth PO1 2DT, UK;
| | - Justin P. Cobb
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK; (T.A.-J.); (J.P.C.)
| | - Ulrich Hansen
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (S.T.); (U.H.)
| | - Julian R. Jones
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (A.H.); (F.T.); (J.R.J.)
| | - Jonathan R. T. Jeffers
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (S.T.); (U.H.)
| |
Collapse
|
17
|
Clark JN, Tavana S, Heyraud A, Tallia F, Jones JR, Hansen U, Jeffers JRT. Quantifying 3D Strain in Scaffold Implants for Regenerative Medicine. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3890. [PMID: 32899192 PMCID: PMC7504351 DOI: 10.3390/ma13173890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022]
Abstract
Regenerative medicine solutions require thoughtful design to elicit the intended biological response. This includes the biomechanical stimulus to generate an appropriate strain in the scaffold and surrounding tissue to drive cell lineage to the desired tissue. To provide appropriate strain on a local level, new generations of scaffolds often involve anisotropic spatially graded mechanical properties that cannot be characterised with traditional materials testing equipment. Volumetric examination is possible with three-dimensional (3D) imaging, in situ loading and digital volume correlation (DVC). Micro-CT and DVC were utilised in this study on two sizes of 3D-printed inorganic/organic hybrid scaffolds (n = 2 and n = 4) with a repeating homogenous structure intended for cartilage regeneration. Deformation was observed with a spatial resolution of under 200 µm whilst maintaining displacement random errors of 0.97 µm, strain systematic errors of 0.17% and strain random errors of 0.031%. Digital image correlation (DIC) provided an analysis of the external surfaces whilst DVC enabled localised strain concentrations to be examined throughout the full 3D volume. Strain values derived using DVC correlated well against manually calculated ground-truth measurements (R2 = 0.98, n = 8). The technique ensures the full 3D micro-mechanical environment experienced by cells is intimately considered, enabling future studies to further examine scaffold designs for regenerative medicine.
Collapse
Affiliation(s)
- Jeffrey N. Clark
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (S.T.); (U.H.)
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (A.H.); (F.T.); (J.R.J.)
| | - Saman Tavana
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (S.T.); (U.H.)
| | - Agathe Heyraud
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (A.H.); (F.T.); (J.R.J.)
| | - Francesca Tallia
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (A.H.); (F.T.); (J.R.J.)
| | - Julian R. Jones
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (A.H.); (F.T.); (J.R.J.)
| | - Ulrich Hansen
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (S.T.); (U.H.)
| | - Jonathan R. T. Jeffers
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (J.N.C.); (S.T.); (U.H.)
| |
Collapse
|
18
|
Karali A, Kao AP, Meeson R, Roldo M, Blunn GW, Tozzi G. Full-field strain of regenerated bone tissue in a femoral fracture model. J Microsc 2020; 285:156-166. [PMID: 32530049 DOI: 10.1111/jmi.12937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/29/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
The mechanical behaviour of regenerated bone tissue during fracture healing is key in determining its ability to withstand physiological loads. However, the strain distribution in the newly formed tissue and how this influences the way a fracture heals it is still unclear. X-ray Computed Tomography (XCT) has been extensively used to assess the progress of mineralised tissues in regeneration and when combined with in situ mechanics and digital volume correlation (DVC) has been proven a powerful tool to understand the mechanical behaviour and full-field three-dimensional (3D) strain distribution in bone. The purpose of this study is therefore to use in situ XCT mechanics and DVC to investigate the strain distribution and load-bearing capacity in a regenerating fracture in the diaphyseal bone, using a rodent femoral fracture model stabilised by external fixation. Rat femurs with 1 mm and 2 mm osteotomy gaps were tested under in situ XCT step-wise compression in the apparent elastic region. High strain was present in the newly formed bone (εp1 and εp3 reaching 29 000 µε and -43 000 µε, respectively), with a wide variation and inhomogeneity of the 3D strain distribution in the regenerating tissues of the fracture gap, which is directly related to the presence of unmineralised tissue observed in histological images. The outcomes of this study will contribute in understanding natural regenerative ability of bone and its mechanical behaviour under loading.
Collapse
Affiliation(s)
- A Karali
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - A P Kao
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - R Meeson
- Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - M Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - G W Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - G Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| |
Collapse
|