1
|
Talebpour C, Fani F, Laliberté-Riverin S, Vaidya R, Salimnia H, Alamdari H, Ouellette M. Long-Term Prevention of Arthroplasty Infections via Incorporation of Activated AgNbO 3 Nanoparticles in PMMA Bone Cement. ACS APPLIED BIO MATERIALS 2024; 7:4039-4050. [PMID: 38830835 DOI: 10.1021/acsabm.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
We investigated the possibility of loading PMMA bone cement with antimicrobial nanostructured AgNbO3 particles to counter biofilm formation at the cement-tissue interface. We found that a formulation containing (1-4)% AgNbO3 showed high antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa while not showing any toxicity against THP1 human cell lines. In addition, loading the particles did not impact the mechanical properties of the cement. The results thus obtained illustrate the potential of the approach to replace the current technique of mixing cement with conventional antibiotics, which is associated with shortcomings such as efficacy loss from antibiotic depletion.
Collapse
Affiliation(s)
- Cyrus Talebpour
- Department of Mining, Metallurgical and Materials Engineering, Universitė Laval, 1065, av. de la Médecine, Québec G1 V 0A6, Canada
| | - Fereshteh Fani
- Centre de recherche en infectiologie du CHU de Québec and Department of Microbiology and Immunology, Faculté de Medicine, Université Laval, 2705 Boul. Laurier, Québec G1V4G2, Canada
| | - Simon Laliberté-Riverin
- Department of Mining, Metallurgical and Materials Engineering, Universitė Laval, 1065, av. de la Médecine, Québec G1 V 0A6, Canada
| | - Rahul Vaidya
- School of Medicine, Wayne State University, 540 E, Canfield Avenue, Detroit, Michigan 48201, United States
| | - Hossein Salimnia
- Department of Pathology, Children's Hospital of Michigan, 3901 Beaubien, Detroit 48201, Michigan, United States
| | - Houshang Alamdari
- Department of Mining, Metallurgical and Materials Engineering, Universitė Laval, 1065, av. de la Médecine, Québec G1 V 0A6, Canada
| | - Marc Ouellette
- Centre de recherche en infectiologie du CHU de Québec and Department of Microbiology and Immunology, Faculté de Medicine, Université Laval, 2705 Boul. Laurier, Québec G1V4G2, Canada
| |
Collapse
|
2
|
Hossain SI, Bajrami D, Altun N, Izzi M, Calvano CD, Sportelli MC, Gentile L, Picca RA, Gonzalez P, Mizaikoff B, Cioffi N. Development of super nanoantimicrobials combining AgCl, tetracycline and benzalkonium chloride. DISCOVER NANO 2024; 19:100. [PMID: 38861141 PMCID: PMC11166621 DOI: 10.1186/s11671-024-04043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
In this work, we demonstrate that a simple argentometric titration is a scalable, fast, green and robust approach for producing AgCl/antibiotic hybrid antimicrobial materials. We titrated AgNO3 into tetracycline hydrochloride (TCH) aqueous solution, thus forming AgCl/TCH in a one-step procedure. Furthermore, we investigated the one-pot synthesis of triply synergistic super-nanoantimicrobials, combining an inorganic source of Ag+ ions (AgCl), a disinfecting agent (benzyl-dimethyl-hexadecyl-ammonium chloride, BAC) and a molecular antibiotic (tetracycline hydrochloride, TCH). Conventional antimicrobial tests, industrial biofilm detection protocols, and in situ IR-ATR microbial biofilm monitoring, have been adapted to understand the performance of the synthesized super-nanoantimicrobial. The resulting hybrid AgCl/BAC/TCH nanoantimicrobials are found to be synergistically active in eradicating Salmonella enterica and Lentilactobacillus parabuchneri bacteria and biofilms. This study paves the way for the development of a new class of super-efficient nanoantimicrobials that combine relatively low amounts of multiple active species into a single (nano)formulation, thus preventing the development of antimicrobial resistance towards a single active principle.
Collapse
Affiliation(s)
- Syed Imdadul Hossain
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona, 4, 70126, Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, Via E. Orabona, 4, 70126, Bari, Italy
| | - Diellza Bajrami
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - Nazan Altun
- ASINCAR (Research Association of Meat Industries of Principado de Asturias), 33180, Noreña, Spain
| | - Margherita Izzi
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona, 4, 70126, Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, Via E. Orabona, 4, 70126, Bari, Italy
| | - Cosima Damiana Calvano
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona, 4, 70126, Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, Via E. Orabona, 4, 70126, Bari, Italy
| | - Maria Chiara Sportelli
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona, 4, 70126, Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, Via E. Orabona, 4, 70126, Bari, Italy
| | - Luigi Gentile
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona, 4, 70126, Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, Via E. Orabona, 4, 70126, Bari, Italy
| | - Rosaria Anna Picca
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona, 4, 70126, Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, Via E. Orabona, 4, 70126, Bari, Italy
| | - Pelayo Gonzalez
- ASINCAR (Research Association of Meat Industries of Principado de Asturias), 33180, Noreña, Spain
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany.
- Hahn-Schickard, Sedanstrasse 14, 89077, Ulm, Germany.
| | - Nicola Cioffi
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona, 4, 70126, Bari, Italy.
- CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, Via E. Orabona, 4, 70126, Bari, Italy.
| |
Collapse
|
3
|
Bekissanova Z, Railean V, Wojtczak I, Brzozowska W, Trykowski G, Ospanova A, Sprynskyy M. Synthesis and Antimicrobial Activity of 3D Micro-Nanostructured Diatom Biosilica Coated by Epitaxially Growing Ag-AgCl Hybrid Nanoparticles. Biomimetics (Basel) 2023; 9:5. [PMID: 38248579 PMCID: PMC10813397 DOI: 10.3390/biomimetics9010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
The 3D (three-dimensional) micro-nanostructured diatom biosilica obtained from cultivated diatoms was used as a support to immobilize epitaxially growing AgCl-Ag hybrid nanoparticles ((Ag-AgCl)NPs) for the synthesis of nanocomposites with antimicrobial properties. The prepared composites that contained epitaxially grown (Ag-AgCl)NPs were investigated in terms of their morphological and structural characteristics, elemental and mineral composition, crystalline forms, zeta potential, and photoluminescence properties using a variety of instrumental methods including SEM (scanning electron microscopy), TEM (transmission electron microscopy), EDX (energy-dispersive X-ray spectroscopy), XRD (X-ray powder diffraction), zeta-potential measurement, and photoluminescence spectroscopy. The content of (AgCl-Ag)NPs in the hybrid composites amounted to 4.6 mg/g and 8.4 mg/g with AgClNPs/AgNPs ratios as a percentage of 86/14 and 51/49, respectively. Hybrid nanoparticles were evenly dispersed with a dominant size of 5 to 25 nm in composite with an amount of 8.4 mg/g of silver. The average size of the nanoparticles was 7.5 nm; also, there were nanoparticles with a size of 1-2 nm and particles that were 20-40 nm. The synthesis of (Ag-AgCl)NPs and their potential mechanism were studied. The MIC (the minimum inhibitory concentration method) approach was used to investigate the antimicrobial activity against microorganisms Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus. The nanocomposites containing (Ag-AgCl)NPs and natural diatom biosilica showed resistance to bacterial strains from the American Type Cultures Collection and clinical isolates (diabetic foot infection and wound isolates).
Collapse
Affiliation(s)
- Zhanar Bekissanova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (Z.B.); (A.O.)
- Center of Physical-Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland
| | - Izabela Wojtczak
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland;
| | - Weronika Brzozowska
- Division of Surface Science, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland;
| | - Grzegorz Trykowski
- Department of Materials Chemistry, Adsorption and Catalysis, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| | - Alyiya Ospanova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (Z.B.); (A.O.)
- Center of Physical-Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Myroslav Sprynskyy
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland;
| |
Collapse
|
4
|
Viorica R, Pawel P, Płociński T, Gloc M, Dobrucka R, Kurzydłowski KJ, Boguslaw B. Consideration of a new approach to clarify the mechanism formation of AgNPs, AgNCl and AgNPs@AgNCl synthesized by biological method. NANOSCALE RESEARCH LETTERS 2023; 18:2. [PMID: 36723754 DOI: 10.1186/s11671-023-03777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 05/24/2023]
Abstract
The biological methods are considered as environmental-eco-friendly methods for the silver nanocomposites mediation and are widely used in this context. However, the biological methods go along with the relevant limitations, for instance simultaneous synthesis of silver chlorides (AgNCl) type during the AgNPs mediation process. Therefore, the present research is coming to summarize several aspects in this context. Firstly, to present the possible promotion of the sustainable development using bioactive source (e.g. milk) as a source of two different available and new lactobacillus strains (Lactobacillus curvatus and Lactobacillus fermentum). Secondly, to show the ability of the respective isolates to be involved in mediation of various biosilver nanocomposites ((Bio)NCs) synthesis. Moreover, at this stage, for the first time, two (Bio)NCs mediation methods, called "direct method" and "modified method", have been developed, thus three types (AgNPs, AgNCl and AgNP@AgNCl) of nanocomposites mediated by two different Lactobacillus isolates take place. The interdisciplinary approach included using several spectroscopic, microscopic, spectrometric and thermogravimetric methods demonstrated that all six synthesized nanoparticles (three AgNPs, AgNCl and AgNP@AgNCl types from each source) consist of complex structure including both metallic silver core as well as organic surface deposits. The spectrometric technique allowed to identification of the organics branching surface, naturally secreted by the used Lactobacillus isolates during the inoculation step, suggesting the presence of amino-acids sequences which are direct connected with the reduction of silver ion to metal silver, and subsequently with the formation of coated (Bio)NCs and nucleation process. Moreover, based on the obtained results, the mediation mechanism of each (Bio)NCs has been proposed, suggesting that the formation of AgNPs, AgNCl and AgNP@AgNCl types occurs in different manners with faster synthesis firstly of AgNCl, then of the AgNPs type. No differences between the (Bio)NCs synthesized by two different Lactobacillus isolates have been noticed indicating no discrepancies between metabolites secreted by the respective sources.
Collapse
Affiliation(s)
- Railean Viorica
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Toruń, Poland.
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100, Toruń, Poland.
| | - Pomastowski Pawel
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100, Toruń, Poland
| | - Tomasz Płociński
- Faculty of Materials Science and Engineering Warsaw, University of Technology, Ul. Wołoska 141, 02-507, Warsaw, Poland
| | - Michał Gloc
- Faculty of Materials Science and Engineering Warsaw, University of Technology, Ul. Wołoska 141, 02-507, Warsaw, Poland
| | - Renata Dobrucka
- Faculty of Materials Science and Engineering Warsaw, University of Technology, Ul. Wołoska 141, 02-507, Warsaw, Poland
- Department of Non-Food Products Quality and Packaging Development, Institute of Quality Science, Poznań University of Economics and Business, Al. Niepodległości 10, 61-875, Poznan, Poland
| | - Krzysztof Jan Kurzydłowski
- Faculty of Mechanical Engineering, Bialystok University of Technology, Ul. Wiejska 45C, 15-351, Białystok, Poland
| | - Buszewski Boguslaw
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100, Toruń, Poland
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Toruń, Poland
| |
Collapse
|
5
|
Puccetti M, Donnadio A, Ricci M, Latterini L, Quaglia G, Pietrella D, Di Michele A, Ambrogi V. Alginate Ag/AgCl Nanoparticles Composite Films for Wound Dressings with Antibiofilm and Antimicrobial Activities. J Funct Biomater 2023; 14:jfb14020084. [PMID: 36826883 PMCID: PMC9968148 DOI: 10.3390/jfb14020084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Recently, silver-based nanoparticles have been proposed as components of wound dressings due to their antimicrobial activity. Unfortunately, they are cytotoxic for keratinocytes and fibroblasts, and this limits their use. Less consideration has been given to the use of AgCl nanoparticles in wound dressings. In this paper, a sustainable preparation of alginate AgCl nanoparticles composite films by simultaneous alginate gelation and AgCl nanoparticle formation in the presence of CaCl2 solution is proposed with the aim of obtaining films with antimicrobial and antibiofilm activities and low cytotoxicity. First, AgNO3 alginate films were prepared, and then, gelation and nanoparticle formation were induced by film immersion in CaCl2 solution. Films characterization revealed the presence of both AgCl and metallic silver nanoparticles, which resulted as quite homogeneously distributed, and good hydration properties. Finally, films were tested for their antimicrobial and antibiofilm activities against Staphylococcus epidermidis (ATCC 12228), Staphylococcus aureus (ATCC 29213), Pseudomonas aeruginosa (ATCC 15692), and the yeast Candida albicans. Composite films showed antibacterial and antibiofilm activities against the tested bacteria and resulted as less active towards Candida albicans. Film cytotoxicity was investigated towards human dermis fibroblasts (HuDe) and human skin keratinocytes (NCTC2544). Composite films showed low cytotoxicity, especially towards fibroblasts. Thus, the proposed sustainable approach allows to obtain composite films of Ag/AgCl alginate nanoparticles capable of preventing the onset of infections without showing high cytotoxicity for tissue cells.
Collapse
Affiliation(s)
- Matteo Puccetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Anna Donnadio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Maurizio Ricci
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Loredana Latterini
- Nano4Light Lab, Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Giulia Quaglia
- Nano4Light Lab, Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Donatella Pietrella
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Via Piazzale Gambuli, 1, 06129 Perugia, Italy
| | - Alessandro Di Michele
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via Pascoli, 06123 Perugia, Italy
| | - Valeria Ambrogi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy
- Correspondence: ; Tel.: +39-0755855125
| |
Collapse
|
6
|
Zgura I, Badea N, Enculescu M, Maraloiu VA, Ungureanu C, Barbinta-Patrascu ME. Burdock-Derived Composites Based on Biogenic Gold, Silver Chloride and Zinc Oxide Particles as Green Multifunctional Platforms for Biomedical Applications and Environmental Protection. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1153. [PMID: 36770157 PMCID: PMC9919592 DOI: 10.3390/ma16031153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Green nanotechnology is a rapidly growing field linked to using the principles of green chemistry to design novel nanomaterials with great potential in environmental and health protection. In this work, metal and semiconducting particles (AuNPs, AgClNPs, ZnO, AuZnO, AgClZnO, and AuAgClZnO) were phytosynthesized through a "green" bottom-up approach, using burdock (Arctium lappa L.) aqueous extract. The morphological (SEM/TEM), structural (XRD, SAED), compositional (EDS), optical (UV-Vis absorption and FTIR spectroscopy), photocatalytic, and bio-properties of the prepared composites were analyzed. The particle size was determined by SEM/TEM and by DLS measurements. The phytoparticles presented high and moderate physical stability, evaluated by zeta potential measurements. The investigation of photocatalytic activity of these composites, using Rhodamine B solutions' degradation under solar light irradiation in the presence of prepared powders, showed different degradation efficiencies. Bioevaluation of the obtained composites revealed the antioxidant and antibacterial properties. The tricomponent system AuAgClZnO showed the best antioxidant activity for capturing ROS and ABTS•+ radicals, and the best biocidal action against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The "green" developed composites can be considered potential adjuvants in biomedical (antioxidant or biocidal agents) or environmental (as antimicrobial agents and catalysts for degradation of water pollutants) applications.
Collapse
Affiliation(s)
- Irina Zgura
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - Nicoleta Badea
- General Chemistry Department, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7, Polizu Street, 011061 Bucharest, Romania
| | - Monica Enculescu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | | | - Camelia Ungureanu
- General Chemistry Department, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7, Polizu Street, 011061 Bucharest, Romania
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania
| |
Collapse
|
7
|
Muñoz AJ, Espínola F, Ruiz E, Moya M, Castro E. Ag(I) Biosorption and Green Synthesis of Silver/Silver Chloride Nanoparticles by Rhodotorula mucilaginosa 1S1. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:295. [PMID: 36678048 PMCID: PMC9865701 DOI: 10.3390/nano13020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The efficiency of Rhodotorula mucilaginosa 1S1 as an Ag(I) biosorbent and at the same time its ability to biosynthesize recoverable silver nanoparticles is evaluated. Kinetic, equilibrium and thermodynamic tests are carried out for 19 °C, 27 °C and 37 °C, from which the process is adjusted to a pseudo second-order kinetics and to the Freundlich model, while optimal operational conditions are determined at 27 °C. The thermodynamic study shows positive values for enthalpy (ΔH: 133.23 kJ/mol) and entropy (ΔS: 0.4976 kJ/(mol K)), while the Gibbs free energy (ΔG) value is 12.136 kJ/mol. For a metal concentration of 459 mg/L, a maximum biosorption capacity (qm) of 137.2 mg/g at 19 °C is obtained, while for 100 mg/L concentration a qm value of 60.44 mg/g is obtained at the same temperature. The mechanisms involved in the biosorption process are studied by infrared spectroscopy, X-ray diffraction and scanning and transmission electron microscopy, while the nanoparticle synthesis is evaluated by ultraviolet-visible spectrophotometry (UV-vis) and transmission electron microscopy. The results indicate that the biomass is a good biosorbent and also has the ability to synthesize silver nanoparticles (Ag/AgCl) with sizes between 12 nm and 20 nm.
Collapse
Affiliation(s)
- Antonio J. Muñoz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Francisco Espínola
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Encarnación Ruiz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Manuel Moya
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
8
|
Zhao M, Liu M, Yao J, Li W, Li C, Zhang Q, Zhang Z, Wang W. Preparation of a Bi 6O 5(OH) 3(NO 3) 5·2H 2O/AgBr composite and its long-lasting antibacterial efficacy. RSC Adv 2023; 13:1216-1222. [PMID: 36686931 PMCID: PMC9811651 DOI: 10.1039/d2ra07447h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
A novel Bi6O5(OH)3(NO3)5·2H2O/AgBr (6535BBN/AgBr) composite with long-lasting antibacterial efficacy was prepared. The microstructure of the composite was characterized. AgBr nanoparticles (NPs) were sandwiched in 6535BBN nanosheets (NSs) or loaded on their surfaces. The utilization of 6535BBN as carriers contributed to the long-term lasting antibacterial activity of the composite after storage in water or 0.9% NaCl. The antibacterial activity was evaluated by inhibition zones against E. coli. The inhibition zone diameters of 6535BBN/AgBr stored in water for 0 h, 8 h, 16 h, and 48 h were measured as 22.50, 21.71, 20.43, and 20.29 mm, respectively. The activity of the composite after storage in water for 48 h remained 90.2% of that in the beginning. After storing in 0.9% NaCl for 16 h, the activity was determined to be 90.1% of that in the beginning. In comparison with the rapid decrease in the antibacterial activity of pure AgBr, the slow reduction of 6535BBN/AgBr after storage indicates long-lasting efficacy. The excellent dispersion states of 6535BBN/AgBr powders after storage in solutions were revealed, and the positive relationship between the dispersion state and its long-lasting antibacterial activity was suggested. Based on the unique load-on-carrier (LOC) structure, the long-lasting antibacterial performance was promoted by the synergy of the sharp-edge-cutting effect of 6535BBN NSs, prolonged ROS antibacterial effect, and restrained sterilization effects of silver ions caused by their slow release.
Collapse
Affiliation(s)
- Mei Zhao
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Mengchen Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Jinfeng Yao
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Wenyu Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Chengdong Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Qian Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Zhihua Zhang
- School of Materials Science and Engineering, Dalian Jiaotong University Dalian 116028 China
| | - Wenjun Wang
- Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
9
|
Bekissanova Z, Railean V, Brzozowska W, Wojtczak I, Ospanova A, Buszewski B, Sprynskyy M. Synthesis, characterization of silver/kaolinite nanocomposite and studying its antibacterial activity. Colloids Surf B Biointerfaces 2022; 220:112908. [DOI: 10.1016/j.colsurfb.2022.112908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022]
|
10
|
Jin H, Chen H, Qian X, Jin W, Du X, Jin C, Li H, Li H, Zhu Y, Chao J. Effects of mixed carriers on diatomite supported nano-TiO 2. Sci Rep 2022; 12:19838. [PMID: 36400830 PMCID: PMC9674611 DOI: 10.1038/s41598-022-24441-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
In this study, calcium carbonate, sepiolite, and commonly used diatomite (DE) carriers were mixed to prepare calcium carbonate or sepiolite mixed DE/nano-titanium dioxide (TiO2). The analyses of X-ray diffraction and scanning electron microscope confirmed that the particle size of nano-TiO2 was about 20-24 nm in DE/nano-TiO2, and the particles were relatively uniform. When (calcium carbonate and sepiolite + DE)/nano-TiO2 was used, the Ti content in the composite remained unchanged, while the particle size of nano-TiO2 increased to a certain extent. Among them, the use of (calcium carbonate + DE)/nano-TiO2 increased the Ti content in the composite material significantly. Therefore, the findings demonstrated the feasibility of nano-TiO2 supported by the mixed carrier.
Collapse
Affiliation(s)
- Hailan Jin
- grid.464447.10000 0004 1768 3039State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353 China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Bio-based Material Science & Technology (Northeast Forestry University) Ministry of Education, No. 26 Hexing Road, Harbin, 150040 China
| | - Honglei Chen
- grid.464447.10000 0004 1768 3039State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353 China
| | - Xueren Qian
- grid.419897.a0000 0004 0369 313XKey Laboratory of Bio-based Material Science & Technology (Northeast Forestry University) Ministry of Education, No. 26 Hexing Road, Harbin, 150040 China
| | - Wanqi Jin
- grid.412246.70000 0004 1789 9091College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040 China
| | - Xinyue Du
- grid.412246.70000 0004 1789 9091College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040 China
| | - Can Jin
- grid.412246.70000 0004 1789 9091College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040 China
| | - Haojun Li
- grid.412246.70000 0004 1789 9091College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040 China
| | - Hao Li
- grid.412246.70000 0004 1789 9091College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040 China
| | - Yumo Zhu
- grid.412246.70000 0004 1789 9091College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040 China
| | - Junhyung Chao
- grid.412010.60000 0001 0707 9039Department of Paper Science, College of Forestry Environmental Sciences, Kangwon National University, Chunchon-si, 200701 Korea
| |
Collapse
|
11
|
Hossain SI, Sportelli MC, Picca RA, Gentile L, Palazzo G, Ditaranto N, Cioffi N. Green Synthesis and Characterization of Antimicrobial Synergistic AgCl/BAC Nanocolloids. ACS APPLIED BIO MATERIALS 2022; 5:3230-3240. [PMID: 35738566 PMCID: PMC9297327 DOI: 10.1021/acsabm.2c00207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
All over the world,
one of the major challenges is the green synthesis
of potential materials against antimicrobial resistance and viruses.
This study demonstrates a simple method like chemistry lab titration
to synthesize green, facile, scalable, reproducible, and stable synergistic
silver chloride/benzyldimethylhexadecyl-ammonium chloride (AgCl/BAC)
colloidal Nanoantimicrobials (NAMs). Nanocolloidal dispersions of
AgCl in an aqueous medium are prepared by using silver nitrate (AgNO3) as precursor and BAC as both sources of chloride and stabilizer,
holding an asymmetric molecular structure. The synthetic approach
is scalable and green. Both the morphology and stability of AgCl/BAC
nanocolloids (NCs) were investigated as a function of different molar
fractions of the reagents. AgCl/BAC NCs were characterized by transmission
electron microscopy (TEM) and X-ray photoelectron and UV–vis
spectroscopies. Zeta potential measurements revealed increasing positive
potential values at every stage of the synthesis. Size distribution
and hydrodynamic diameter of the particles were measured by dynamic
light scattering (DLS), which predicted the formation of BAC layered
structures associated with the AgCl nanoparticles (NPs). Small-angle
X-ray scattering (SAXS) experiments verify the thickness of the BAC
bilayer around AgCl. The produced AgCl/BAC NCs probably have synergistic
antimicrobial properties from the AgCl core and the biocide BAC shell.
AgCl/BAC NCs stability over months was investigated. The experimental
evidence supports the morphological stability of the AgCl/BAC NCs,
while higher positive zeta potential values anticipate a long-term
antimicrobial effect: a higher surface charge causes NPs to be potentially
more lethal to bacteria. AgCl/BAC antimicrobial aqueous colloidal
suspensions will be used as additives for the industrial production
of antimicrobial coatings.
Collapse
Affiliation(s)
- Syed Imdadul Hossain
- Chemistry Department, University of Bari "Aldo Moro", via E. Orabona 4 - 70126 Bari, Italy.,CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Maria Chiara Sportelli
- Chemistry Department, University of Bari "Aldo Moro", via E. Orabona 4 - 70126 Bari, Italy
| | - Rosaria Anna Picca
- Chemistry Department, University of Bari "Aldo Moro", via E. Orabona 4 - 70126 Bari, Italy.,CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Luigi Gentile
- Chemistry Department, University of Bari "Aldo Moro", via E. Orabona 4 - 70126 Bari, Italy.,CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Gerardo Palazzo
- Chemistry Department, University of Bari "Aldo Moro", via E. Orabona 4 - 70126 Bari, Italy.,CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Nicoletta Ditaranto
- Chemistry Department, University of Bari "Aldo Moro", via E. Orabona 4 - 70126 Bari, Italy.,CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari "Aldo Moro", via E. Orabona 4 - 70126 Bari, Italy.,CSGI (Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
12
|
Karthik C, Punnaivalavan KA, Prabha SP, Caroline DG. Multifarious global flora fabricated phytosynthesis of silver nanoparticles: a green nanoweapon for antiviral approach including SARS-CoV-2. INTERNATIONAL NANO LETTERS 2022; 12:313-344. [PMID: 35194512 PMCID: PMC8853038 DOI: 10.1007/s40089-022-00367-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
The progressive research into the nanoscale level upgrades the higher end modernized evolution with every field of science, engineering, and technology. Silver nanoparticles and their broader range of application from nanoelectronics to nano-drug delivery systems drive the futuristic direction of nanoengineering and technology in contemporary days. In this review, the green synthesis of silver nanoparticles is the cornerstone of interest over physical and chemical methods owing to its remarkable biocompatibility and idiosyncratic property engineering. The abundant primary and secondary plant metabolites collectively as multifarious phytochemicals which are more peculiar in the composition from root hair to aerial apex through various interspecies and intraspecies, capable of reduction, and capping with the synthesis of silver nanoparticles. Furthermore, the process by which intracellular, extracellular biological macromolecules of the microbiota reduce with the synthesis of silver nanoparticles from the precursor molecule is also discussed. Viruses are one of the predominant infectious agents that gets faster resistance to the antiviral therapies of traditional generations of medicine. We discuss the various stages of virus targeting of cells and viral target through drugs. Antiviral potential of silver nanoparticles against different classes and families of the past and their considerable candidate for up-to-the-minute need of complete addressing of the fulminant and opportunistic global pandemic of this millennium SARS-CoV2, illustrated through recent silver-based formulations under development and approval for countering the pandemic situation. Graphical abstract
Collapse
Affiliation(s)
- C. Karthik
- Department of Biotechnology, St. Joseph’s College of Engineering, Old Mamallapuram Road, Chennai, 600119 Tamil Nadu India
| | - K. A. Punnaivalavan
- Department of Biotechnology, St. Joseph’s College of Engineering, Old Mamallapuram Road, Chennai, 600119 Tamil Nadu India
| | - S. Pandi Prabha
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Taluk, Chennai, 602117 Tamil Nadu India
| | - D. G. Caroline
- Department of Biotechnology, St. Joseph’s College of Engineering, Old Mamallapuram Road, Chennai, 600119 Tamil Nadu India
| |
Collapse
|
13
|
Sudagar AJ, Rangam NV, Ruszczak A, Borowicz P, Tóth J, Kövér L, Michałowska D, Roszko MŁ, Noworyta KR, Lesiak B. Valorization of Brewery Wastes for the Synthesis of Silver Nanocomposites Containing Orthophosphate. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2659. [PMID: 34685100 PMCID: PMC8539218 DOI: 10.3390/nano11102659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Brewery wastes from stage 5 (Wort precipitate: BW5) and stage 7 (Brewer's spent yeast: BW7) were valorized for the synthesis of silver phosphate nanocomposites. Nanoparticles were synthesized by converting silver salt in the presence of brewery wastes at different temperatures (25, 50, and 80 °C) and times (10, 30, and 120 min). Unexpectedly, BW7 yielded Ag3PO4 nanoparticles with minor contents of AgCl and Ag metal (Agmet). Contrastingly, BW5 produced AgCl nanoparticles with minor amounts of Ag3PO4 and Agmet. Nanocomposites with different component ratios were obtained by simply varying the synthesis temperature and time. The morphology of the nanocomposites contained ball-like structures representative of Ag3PO4 and stacked layers and fused particles representing AgCl and Agmet. The capping on the nanoparticles contained organic groups from the brewery by-products, and the surface overlayer had a rich chemical composition. The organic overlayers on BW7 nanocomposites were thinner than those on BW5 nanocomposites. Notably, the nanocomposites exhibited high antibacterial activity against Escherichia coli ATCC 25922. The antibacterial activity was higher for BW7 nanocomposites due to a larger silver phosphate content in the composition and a thin organic overlayer. The growth of Agmet in the structure adversely affected the antimicrobial property of the nanocomposites.
Collapse
Affiliation(s)
- Alcina Johnson Sudagar
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Neha Venkatesh Rangam
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Artur Ruszczak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Paweł Borowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - József Tóth
- Institute for Nuclear Research, BemTér 18/c, H-4026 Debrecen, Hungary
| | - László Kövér
- Institute for Nuclear Research, BemTér 18/c, H-4026 Debrecen, Hungary
| | - Dorota Michałowska
- Institute of Agriculture and Food Biotechnology-State Research Institute, ul. Rakowiecka 36, 02-532 Warsaw, Poland
| | - Marek Ł Roszko
- Institute of Agriculture and Food Biotechnology-State Research Institute, ul. Rakowiecka 36, 02-532 Warsaw, Poland
| | - Krzysztof R Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Beata Lesiak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
14
|
Monedeiro F, Railean-Plugaru V, Monedeiro-Milanowski M, Pomastowski P, Buszewski B. Metabolic Profiling of VOCs Emitted by Bacteria Isolated from Pressure Ulcers and Treated with Different Concentrations of Bio-AgNPs. Int J Mol Sci 2021; 22:4696. [PMID: 33946710 PMCID: PMC8124631 DOI: 10.3390/ijms22094696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Considering the advent of antibiotic resistance, the study of bacterial metabolic behavior stimulated by novel antimicrobial agents becomes a relevant tool to elucidate involved adaptive pathways. Profiling of volatile metabolites was performed to monitor alterations of bacterial metabolism induced by biosynthesized silver nanoparticles (bio-AgNPs). Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae and Proteus mirabilis were isolated from pressure ulcers, and their cultures were prepared in the presence/absence of bio-AgNPs at 12.5, 25 and 50 µg mL-1. Headspace solid phase microextraction associated to gas chromatography-mass spectrometry was the employed analytical platform. At the lower concentration level, the agent promoted positive modulation of products of fermentation routes and bioactive volatiles, indicating an attempt of bacteria to adapt to an ongoing suppression of cellular respiration. Augmented response of aldehydes and other possible products of lipid oxidative cleavage was noticed for increasing levels of bio-AgNPs. The greatest concentration of agent caused a reduction of 44 to 80% in the variety of compounds found in the control samples. Pathway analysis indicated overall inhibition of amino acids and fatty acids routes. The present assessment may provide a deeper understanding of molecular mechanisms of bio-AgNPs and how the metabolic response of bacteria is untangled.
Collapse
Affiliation(s)
- Fernanda Monedeiro
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Viorica Railean-Plugaru
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Maciej Monedeiro-Milanowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Paweł Pomastowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Bogusław Buszewski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina St., 87-100 Toruń, Poland
| |
Collapse
|