1
|
Grunberger JW, Newton HS, Donohue D, Dobrovolskaia MA, Ghandehari H. Role of physicochemical properties in silica nanoparticle-mediated immunostimulation. Nanotoxicology 2024; 18:599-617. [PMID: 39460666 DOI: 10.1080/17435390.2024.2418088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/01/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
Immunostimulation caused by nanoparticles may be beneficial or adverse depending on their intended application. Activation of immune cells is beneficial for indications targeting the immune system for therapeutic purposes, such as tumor microenvironment reprogramming, immunotherapy, and vaccines. When it is unwanted, however, immunostimulation may lead to excessive inflammation, cytokine storm, and hypersensitivity reactions. The increasing use of silica nanoparticles (SiNPs) for the delivery of drugs, imaging agents, and antigens warrants preclinical studies aimed at understanding carrier-mediated effects on the number, activation status, and function of immune cell subsets. Herein, we present an in vitro study utilizing primary human peripheral blood mononuclear cells (PBMC) to investigate the proinflammatory properties of four types of SiNPs varying in size and porosity. Cytokine analysis was performed in resting and LPS-primed PBMC cultures to understand the ability of silica nanoparticles to induce de novo and exaggerate preexisting inflammation, respectively. Changes in the number and activation status of lymphoid and myeloid cells were studied by flow cytometry to gain further insight into SiNP-mediated immunostimulation. Nonporous SiNPs were found to be more proinflammatory than mesoporous SiNPs, and larger-sized particles induced greater cytokine response. LPS-primed PBMC resulted in increased susceptibility to SiNPs. Immunophenotyping analysis of SiNP-treated PBMC resulted in T and B lymphocyte, natural killer cell, and dendritic cell activation. Additionally, a loss of regulatory T cells and an increase in γδ TCR T cell population were observed with all particles. These findings have implications for the utility of SiNPs for the delivery of drugs and imaging agents.
Collapse
Affiliation(s)
- Jason William Grunberger
- Utah Center for Nanomedicine, Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA
| | - Hannah S Newton
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Duncan Donohue
- Statistics Department, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Iradukunda Y, Kang JY, Zhao XB, Fu XK, Han SQ, Adam KM, Ha W, Shi YP. Glutathione-Conjugated Fluorometric Ratiometric NIR-Silicon Nanoparticles and Its Applications for In Vitro and In Vivo Imaging. ACS APPLIED BIO MATERIALS 2024; 7:6631-6640. [PMID: 39302025 DOI: 10.1021/acsabm.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Glutathione (GSH), a tripeptide molecule, is the most abundant nonprotein biothiol in living cells, playing a crucial role in preventing oxidative damage to cellular components and maintaining intracellular redox homeostasis. As a thiol molecule, GSH contains a sulfhydryl (-SH) group that is vital for the body's response to reactive oxygen species (ROS). To confirm whether GSH can be used as a bioindicator or in the early diagnosis of cancers at the cellular level, it is essential to achieve highly selective detection and conjugation of GSH to silicon nanoparticles (SiNPs) under pathological conditions. We are herein excited to report a type of fluorescent ratiometric near-infrared silicon nanoparticle (NIR-SiNP) probe, that is, glutathione peptide conjugated (NIR-SiNPs-GSH), which simultaneously possess small pore sizes at an average of 6.7 nm, an emission of 670 nm, a bioimaging functionality of living cancer cells and animals, and favorable biocompatibility. Taking advantage of these virtues, we further manifest that such resulting NIR-SiNPs, NIR-SiNPs-GSH bioprobes are marvelously worthy for immunofluorescence imaging of cancer cells and living mice. Furthermore, it was shown that DAPI and probes could selectively stain malignant tumor cell nuclei, indicating the possibility for bioimaging and identification of cancer cells and animals. In summary, the suggested NIR-SiNPs-GSH probe has the potential to be a very effective chemical tool for early tumor detection in the future.
Collapse
Affiliation(s)
- Yves Iradukunda
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing-Yan Kang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Xiao-Bo Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Si-Qi Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Khalid Mohammed Adam
- Department of Chemistry, Faculty of Education, University of Kordofan, El Obeid 51111, Sudan
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
Cheng M, Liu S, Zhu M, Li M, Yu Q. Adhesin Antibody-Grafted Mesoporous Silica Nanoparticles Suppress Immune Escape for Treatment of Fungal Systemic Infection. Molecules 2024; 29:4547. [PMID: 39407477 PMCID: PMC11478059 DOI: 10.3390/molecules29194547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Life-threatening systemic fungal infections caused by Candida albicans are significant contributors to clinical mortality, particularly among cancer patients and immunosuppressed individuals. The evasion of the immune response facilitated by fungal surface components enables fungal pathogens to evade macrophage attacks and to establish successful infections. This study developed a mesoporous silica nanoplatform, i.e., MSNP-EAP1Ab, which is composed of mesoporous silica nanoparticles grafted with the antibody of C. albicans surface adhesin Eap1. The activity of MSNP-EAP1Ab against C. albicans immune escape and infection was then evaluated by using the cell interaction model and the mouse systemic infection model. During interaction between C. albicans cells and macrophages, MSNP-EAP1Ab significantly inhibited fungal immune escape, leading to the enhanced phagocytosis of fungal cells by macrophages, with phagocytosis rates increasing from less than 8% to 14%. Furthermore, after treatment of the C. albicans-infected mice, MSNP-EAP1Ab drastically prolonged the mouse survival time and decreased the kidney fungal burden from >30,0000 CFU/g kidney to <100 CFU/g kidney, indicating the rapid recognition and killing of the pathogens by immune cells. Moreover, MSNP-EAP1Ab attenuated kidney tissue inflammation, with remarkable attenuation of renal immune cell accumulation. This study presents an innovative nanoplatform that targets the C. albicans adhesin, offering a promising approach for combatting systemic fungal infections.
Collapse
Affiliation(s)
- Mengjuan Cheng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.C.)
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Suke Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.C.)
| | - Mengsen Zhu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.C.)
| | - Mingchun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.C.)
| | - Qilin Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.C.)
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Budiman A, Rusdin A, Wardhana YW, Puluhulawa LE, Cindana Mo’o FR, Thomas N, Gazzali AM, Aulifa DL. Exploring the Transformative Potential of Functionalized Mesoporous Silica in Enhancing Antioxidant Activity: A Comprehensive Review. Antioxidants (Basel) 2024; 13:936. [PMID: 39199182 PMCID: PMC11352074 DOI: 10.3390/antiox13080936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Antioxidants are essential for reducing oxidative stress, protecting cells from damage, and supporting overall well-being. Functionalized mesoporous silica materials have garnered interest due to their flexible uses in diverse domains, such as drug delivery systems. This review aims to thoroughly examine and evaluate the progress made in utilizing functionalized mesoporous silica materials as a possible approach to enhancing antioxidant activity. The authors performed a thorough search of reliable databases, including Scopus, PubMed, Google Scholar, and Clarivate Web of Science, using precise keywords linked to functionalized mesoporous silica nanoparticles and antioxidants. The identified journals serve as the major framework for the main discussion in this study. Functionalized mesoporous silica nanoparticles have been reported to greatly enhance antioxidant activity by allowing for an increased loading capacity, controlled release behavior, the targeting of specific drugs, improved biocompatibility and safety, and enhanced penetration. The results emphasize the significant capacity of functionalized mesoporous silica (FSM) to bring about profound changes in a wide range of applications. FSM materials can be designed as versatile nanocarriers, integrating intrinsic antioxidant capabilities and augmenting the efficacy of current drugs, offering substantial progress in antioxidant therapies and drug delivery systems, as well as enhanced substance properties in the pharmaceutical field. Functionalized mesoporous silica materials are a highly effective method for enhancing antioxidant activity. They provide new opportunities for the advancement of cutting-edge treatments and materials in the field of antioxidant research. The significant potential of FSM materials to change drug delivery methods and improve substance properties highlights their crucial role in future breakthroughs in the pharmaceutical field and antioxidant applications.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.R.); (Y.W.W.)
| | - Agus Rusdin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.R.); (Y.W.W.)
| | - Yoga Windhu Wardhana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.R.); (Y.W.W.)
| | - Lisa Efriani Puluhulawa
- Department of Pharmacy, Faculty of Sport and Health, Universitas Negeri Gorontalo, Jl. Jenderal Sudirman No. 6, Gorontalo 96128, Indonesia; (L.E.P.); (F.R.C.M.); (N.T.)
| | - Faradila Ratu Cindana Mo’o
- Department of Pharmacy, Faculty of Sport and Health, Universitas Negeri Gorontalo, Jl. Jenderal Sudirman No. 6, Gorontalo 96128, Indonesia; (L.E.P.); (F.R.C.M.); (N.T.)
| | - Nurain Thomas
- Department of Pharmacy, Faculty of Sport and Health, Universitas Negeri Gorontalo, Jl. Jenderal Sudirman No. 6, Gorontalo 96128, Indonesia; (L.E.P.); (F.R.C.M.); (N.T.)
| | - Amirah Mohd Gazzali
- Department Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, P. Penang, Malaysia;
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia;
| |
Collapse
|
5
|
Kim T, Kim D. Mesoporous silica-supported platinum nanocatalysts for colorimetric detection of glucose, cholesterol, and C-reactive protein. Dalton Trans 2024; 53:12649-12661. [PMID: 39012273 DOI: 10.1039/d4dt01534g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Noble metal nanoparticles decorated on a catalyst support with a large specific surface area can exhibit enhanced catalytic activity. To this end, a synthetic method to heterogeneously and evenly nucleate platinum nanoparticles (Pt NPs) onto mesoporous silica nanoparticles (MSNs) is developed. The obtained Pt NP-modified MSNs (Pt-MSNs) are characterized as a thin layer of 3 nm-sized Pt NPs densely assembled on the MSN surface, by which the throughput of the peroxidase-like activity of Pt-MSNs is greatly improved. The utility of Pt-MSNs in colorimetric detection of analytes is validated for two different assay schemes. Firstly, colloidally dispersed Pt-MSNs are employed as a peroxidase-mimic in a two-step cascade reaction to quantitate glucose/cholesterol based on the amount of H2O2 produced by glucose/cholesterol oxidase. Secondly, detection of C-reactive protein (CRP) is conducted on a solid substrate by adopting a sandwich immunoassay format. Detection limits are estimated to be 20 μM, 55 μM, and 3.9 pM for glucose, cholesterol, and CRP, respectively.
Collapse
Affiliation(s)
- Taehyeong Kim
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea.
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Dokyoon Kim
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea.
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
6
|
Pires ICB, Shuchi SI, Tostes BDVA, Santos DKDDN, Burnett WL, Leonce BC, Harvey OR, Coffer JL, de Sousa Filho IA, de Athayde-Filho PF, Junior SA, Mathis JM. Theranostics Using MCM-41-Based Mesoporous Silica Nanoparticles: Integrating Magnetic Resonance Imaging and Novel Chemotherapy for Breast Cancer Treatment. Int J Mol Sci 2024; 25:8097. [PMID: 39125669 PMCID: PMC11311303 DOI: 10.3390/ijms25158097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Advanced breast cancer remains a significant oncological challenge, requiring new approaches to improve clinical outcomes. This study investigated an innovative theranostic agent using the MCM-41-NH2-DTPA-Gd3⁺-MIH nanomaterial, which combined MRI imaging for detection and a novel chemotherapy agent (MIH 2.4Bl) for treatment. The nanomaterial was based on the mesoporous silica type, MCM-41, and was optimized for drug delivery via functionalization with amine groups and conjugation with DTPA and complexation with Gd3+. MRI sensitivity was enhanced by using gadolinium-based contrast agents, which are crucial in identifying early neoplastic lesions. MIH 2.4Bl, with its unique mesoionic structure, allows effective interactions with biomolecules that facilitate its intracellular antitumoral activity. Physicochemical characterization confirmed the nanomaterial synthesis and effective drug incorporation, with 15% of MIH 2.4Bl being adsorbed. Drug release assays indicated that approximately 50% was released within 8 h. MRI phantom studies demonstrated the superior imaging capability of the nanomaterial, with a relaxivity significantly higher than that of the commercial agent Magnevist. In vitro cellular cytotoxicity assays, the effectiveness of the nanomaterial in killing MDA-MB-231 breast cancer cells was demonstrated at an EC50 concentration of 12.6 mg/mL compared to an EC50 concentration of 68.9 mg/mL in normal human mammary epithelial cells (HMECs). In vivo, MRI evaluation in a 4T1 syngeneic mouse model confirmed its efficacy as a contrast agent. This study highlighted the theranostic capabilities of MCM-41-NH2-DTPA-Gd3⁺-MIH and its potential to enhance breast cancer management.
Collapse
Affiliation(s)
- Indira C. B. Pires
- Department of Chemistry, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (I.C.B.P.); (B.d.V.A.T.); (D.K.D.d.N.S.)
| | - Samia I. Shuchi
- School of Biomedical Sciences, Departments of Microbiology, Immunology, and Genetics and Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Braulio de V. A. Tostes
- Department of Chemistry, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (I.C.B.P.); (B.d.V.A.T.); (D.K.D.d.N.S.)
| | - Dayane K. D. do N. Santos
- Department of Chemistry, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (I.C.B.P.); (B.d.V.A.T.); (D.K.D.d.N.S.)
| | - William L. Burnett
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76109, USA (B.C.L.); (O.R.H.); (J.L.C.)
| | - Burke C. Leonce
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76109, USA (B.C.L.); (O.R.H.); (J.L.C.)
| | - Omar R. Harvey
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76109, USA (B.C.L.); (O.R.H.); (J.L.C.)
| | - Jeffery L. Coffer
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76109, USA (B.C.L.); (O.R.H.); (J.L.C.)
| | - Idio Alves de Sousa Filho
- Institute of Chemistry, Federal Rural University of Rio de Janeiro, Rio de Janeiro 23890-000, RJ, Brazil;
| | | | - Severino A. Junior
- Department of Chemistry, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (I.C.B.P.); (B.d.V.A.T.); (D.K.D.d.N.S.)
| | - J. Michael Mathis
- School of Biomedical Sciences, Departments of Microbiology, Immunology, and Genetics and Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| |
Collapse
|
7
|
Duncan AM, Ellis CM, Levingston H, Kerckhoffs A, Mózes FE, Langton MJ, Davis JJ. Ion carrier modulated MRI contrast. Chem Sci 2024; 15:d3sc03466f. [PMID: 39129769 PMCID: PMC11310829 DOI: 10.1039/d3sc03466f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/17/2024] [Indexed: 08/13/2024] Open
Abstract
An ion-responsive MRI contrast agent based on a POPC liposomal scaffold is generated that displays a large amplitude relaxivity switch. Entrapment of MR active Gd-DOTA within cholesterol-doped, i.e., membrane rigidified, liposomes dampens the MR response through diminished water exchange across the lipid bilayer. Relaxivity is re-established by integration of ion carriers in the liposome membrane to mediate solvated ion flux.
Collapse
Affiliation(s)
- Anna M Duncan
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK +44(0)1865272690 +44(0)1865275914
| | - Connor M Ellis
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK +44(0)1865272690 +44(0)1865275914
| | - Hannah Levingston
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK +44(0)1865272690 +44(0)1865275914
| | - Aidan Kerckhoffs
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK +44(0)1865272690 +44(0)1865275914
| | - Ferenc E Mózes
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital Oxford OX3 9DU UK
| | - Matthew J Langton
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK +44(0)1865272690 +44(0)1865275914
| | - Jason J Davis
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK +44(0)1865272690 +44(0)1865275914
| |
Collapse
|
8
|
Dhingra S, Goyal S, Thirumal D, Sharma P, Kaur G, Mittal N. Mesoporous silica nanoparticles: a versatile carrier platform in lung cancer management. Nanomedicine (Lond) 2024; 19:1331-1346. [PMID: 39105754 PMCID: PMC11318747 DOI: 10.1080/17435889.2024.2348438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 08/07/2024] Open
Abstract
Mesoporous silica nanoparticles (MSNPs) are inorganic nanoparticles that have been comprehensively investigated and are intended to deliver therapeutic agents. MSNPs have revolutionized the therapy for various conditions, especially cancer and infectious diseases. In this article, the viability of MSNPs' administration for lung cancer therapy has been reviewed. However, certain challenges lay ahead in the successful translation such as toxicology, immunology, large-scale production, and regulatory matters have made it extremely difficult to translate such discoveries from the bench to the bedside. This review highlights recent developments, characteristics, mechanism of action and customization for targeted delivery. This review also covers the most recent data that sheds light on MSNPs' extraordinary therapeutic potential in fighting lung cancer as well as future hurdles.
Collapse
Affiliation(s)
- Smriti Dhingra
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Shuchi Goyal
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Divya Thirumal
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104,India
| | - Preety Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Gurpreet Kaur
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Neeraj Mittal
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| |
Collapse
|
9
|
Garifo S, Vangijzegem T, Stanicki D, Laurent S. A Review on the Design of Carbon-Based Nanomaterials as MRI Contrast Agents. Molecules 2024; 29:1639. [PMID: 38611919 PMCID: PMC11013788 DOI: 10.3390/molecules29071639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The administration of magnetic resonance imaging (MRI) contrast agents (CAs) has been conducted since 1988 by clinicians to enhance the clarity and interpretability of MR images. CAs based on gadolinium chelates are the clinical standard used worldwide for the diagnosis of various pathologies, such as the detection of brain lesions, the visualization of blood vessels, and the assessment of soft tissue disorders. However, due to ongoing concerns associated with the safety of gadolinium-based contrast agents, considerable efforts have been directed towards developing contrast agents with better relaxivities, reduced toxicity, and eventually combined therapeutic modalities. In this context, grafting (or encapsulating) paramagnetic metals or chelates onto (within) carbon-based nanoparticles is a straightforward approach enabling the production of contrast agents with high relaxivities while providing extensive tuneability regarding the functionalization of the nanoparticles. Here, we provide an overview of the parameters defining the efficacy of lanthanide-based contrast agents and the subsequent developments in the field of nanoparticular-based contrast agents incorporating paramagnetic species.
Collapse
Affiliation(s)
- Sarah Garifo
- NMR and Molecular Imaging Laboratory, General, Organic and Biomedical Chemistry Unit, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (T.V.); (D.S.)
| | - Thomas Vangijzegem
- NMR and Molecular Imaging Laboratory, General, Organic and Biomedical Chemistry Unit, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (T.V.); (D.S.)
| | - Dimitri Stanicki
- NMR and Molecular Imaging Laboratory, General, Organic and Biomedical Chemistry Unit, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (T.V.); (D.S.)
| | - Sophie Laurent
- NMR and Molecular Imaging Laboratory, General, Organic and Biomedical Chemistry Unit, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (T.V.); (D.S.)
- Center for Microscopy and Molecular Imaging (CMMI), 8 Rue Adrienne Boland, 6041 Gosselies, Belgium
| |
Collapse
|
10
|
Ma R, Hao L, Cheng J, He J, Yin Q, Li Z, Qi G, Zheng X, Wang D, Zhang T, Cong H, Li Z, Hu H, Wang Y. Hyaluronic acid-modified mesoporous silica nanoprobes for target identification of atherosclerosis. Biochem Biophys Res Commun 2024; 702:149627. [PMID: 38340655 DOI: 10.1016/j.bbrc.2024.149627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Rupture of vulnerable plaque and secondary thrombosis caused by atherosclerosis are one of the main causes of acute cardiovascular and cerebrovascular events, and it is urgent to develop an in-situ, noninvasive, sensitive and targeted detection method at molecular level. We chose CD44, a specific receptor highly expressed on the surface of macrophages, as the target of the molecular probe, and modified the CD44 ligand HA onto the surface of Gd2O3@MSN, constructing the MRI imaging nanoprobe HA-Gd2O3@MSN for targeted recognition of atherosclerosis. The fundamental properties of HA-Gd2O3@MSN were initially investigated. The CCK-8, hemolysis, hematoxylin-eosin staining tests and blood biochemical assays confirmed that HA-Gd2O3@MSN possessed excellent biocompatibility. Laser confocal microscopy, cellular magnetic resonance imaging, flow cytometry and immunohistochemistry were used to verify that the nanoprobes had good targeting properties. The in vivo targeting performance of the nanoprobes was further validated by employing a rabbit atherosclerosis animal model. In summary, the synthesized HA-Gd2O3@MSN nanoprobes have excellent biocompatibility properties as well as good targeting properties. It could provide a new technical tool for early identification of atherosclerosis.
Collapse
Affiliation(s)
- Ruifan Ma
- Department of Molecular Imagine, School of Medical Technology, Qiqihar Medical University, Qiqihar, 161006, China
| | - Liguo Hao
- Department of Molecular Imagine, School of Medical Technology, Qiqihar Medical University, Qiqihar, 161006, China
| | - Jianing Cheng
- Department of Molecular Imagine, School of Medical Technology, Qiqihar Medical University, Qiqihar, 161006, China
| | - Jun He
- Department of Anatomy, School of Medical Technology, Qiqihar Medical University, Qiqihar, 161006, China
| | - Qiangqiang Yin
- Department of Molecular Imagine, School of Medical Technology, Qiqihar Medical University, Qiqihar, 161006, China
| | - Zhongtao Li
- Department of Molecular Imagine, School of Medical Technology, Qiqihar Medical University, Qiqihar, 161006, China
| | - Guiqiang Qi
- Department of Molecular Imagine, School of Medical Technology, Qiqihar Medical University, Qiqihar, 161006, China
| | - Xiaoyang Zheng
- Department of Image Center, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Dongxu Wang
- Department of Image Center, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Tianyu Zhang
- Department of Image Center, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Houyi Cong
- Department of Image Center, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Zheng Li
- Department of Image Center, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Haifeng Hu
- Department of Image Center, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Yuguang Wang
- Department of Image Center, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China.
| |
Collapse
|
11
|
Nicolae CL, Pîrvulescu DC, Antohi AM, Niculescu AG, Grumezescu AM, Croitoru GA. Silica nanoparticles in medicine: overcoming pathologies through advanced drug delivery, diagnostics, and therapeutic strategies. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:173-184. [PMID: 39020531 PMCID: PMC11384868 DOI: 10.47162/rjme.65.2.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Over the last decades, silica nanoparticles (SiNPs) have been studied for their applications in biomedicine as an alternative used for conventional diagnostics and treatments. Since their properties can be modified and adjusted for the desired use, they have many different potential applications in medicine: they can be used in diagnosis because of their ability to be loaded with dyes and their increased selectivity and sensitivity, which can improve the quality of the diagnostic process. SiNPs can be functionalized by targeting ligands or molecules to detect certain cellular processes or biomarkers with better precision. Targeted delivery is another fundamental use of SiNPs. They could be used as drug delivery systems (DDS) since their structure allows the loading of therapeutic agents or other compounds, and studies have demonstrated their biocompatibility. When SiNPs are used as DDS, the drug's toxicity and the off-target effects are reduced significantly, and they can be used to treat conditions like cancer and neurological diseases and even aid in regenerative processes, such as wound healing or bone repair. However, safety concerns must be considered before SiNPs can be used extensively in clinical practice because NPs can cause toxicity in certain conditions and accumulate at undesired locations. Therefore, an overview of the potential applications that SiNPs could have in medicine, as well as their safety concerns, will be covered in this review paper.
Collapse
Affiliation(s)
- Carmen Larisa Nicolae
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica, Bucharest, Romania;
| | | | | | | | | | | |
Collapse
|
12
|
Chen SY, Jian JY, Lin HM. Functionalization of rice husk-derived mesoporous silica nanoparticles for targeted and imaging in cancer drug delivery. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2120-2129. [PMID: 38009620 DOI: 10.1002/jsfa.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/03/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Rice, a pivotal global food staple, annually accumulates vast amounts of rice husks, resulting in substantial environmental impact. Exploiting the high silica content in rice husk, our research aimed to recycle this agricultural byproduct to synthesize mesoporous silica nanoparticles (rMSNs). These nanoparticles were further modified to evaluate their potential as effective carriers for cancer drug delivery. RESULTS rMSNs showed high biocompatibility, large surface area and porous structure as MSNs, making them excellent drug carriers. Further modifications were applied to rMSNs, such as the incorporation of the lanthanides europium and gadolinium into rMSNs, making them fluorescent and magnetic for detection and tracking using confocal fluorescence microscopy and magnetic resonance imaging. Additionally, folic acid and aptamer AS1411 were conjugated with rMSNs to enhance the targeting of cancer cells. HeLa cells exhibited higher uptake of camptothecin (CPT)-loaded rMSNs compared to normal fibroblast cells (L929). The linkage of disulfide bonds to rMSNs also allowed CPT to be carried by rMSNs and released intracellularly in the presence of the abundant reducing agent glutathione. The validation of rMSNs in vitro and in vivo proved their practical feasibility. CONCLUSION Our findings indicate that low-cost rMSNs, derived from recycled agricultural waste, can replace highly valuable MSNs. Functionalized rMSNs exhibit promising capabilities in transporting clinical drugs to specific aberrant tissues and offering dual-targeting and dual-imaging functionalities for enhanced cancer therapy. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shiow-Yi Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City, Taiwan
| | - Jhih-Yun Jian
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City, Taiwan
| | - Hsiu-Mei Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City, Taiwan
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City, Taiwan
| |
Collapse
|
13
|
Trucillo P. Biomaterials for Drug Delivery and Human Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:456. [PMID: 38255624 PMCID: PMC10817481 DOI: 10.3390/ma17020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Biomaterials embody a groundbreaking paradigm shift in the field of drug delivery and human applications. Their versatility and adaptability have not only enriched therapeutic outcomes but also significantly reduced the burden of adverse effects. This work serves as a comprehensive overview of biomaterials, with a particular emphasis on their pivotal role in drug delivery, classifying them in terms of their biobased, biodegradable, and biocompatible nature, and highlighting their characteristics and advantages. The examination also delves into the extensive array of applications for biomaterials in drug delivery, encompassing diverse medical fields such as cancer therapy, cardiovascular diseases, neurological disorders, and vaccination. This work also explores the actual challenges within this domain, including potential toxicity and the complexity of manufacturing processes. These challenges emphasize the necessity for thorough research and the continuous development of regulatory frameworks. The second aim of this review is to navigate through the compelling terrain of recent advances and prospects in biomaterials, envisioning a healthcare landscape where they empower precise, targeted, and personalized drug delivery. The potential for biomaterials to transform healthcare is staggering, as they promise treatments tailored to individual patient needs, offering hope for improved therapeutic efficacy, fewer side effects, and a brighter future for medical practice.
Collapse
Affiliation(s)
- Paolo Trucillo
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Piazzale V. Tecchio, 80, 80125 Naples, Italy
| |
Collapse
|
14
|
Nottelet B, Buwalda S, van Nostrum CF, Zhao X, Deng C, Zhong Z, Cheah E, Svirskis D, Trayford C, van Rijt S, Ménard-Moyon C, Kumar R, Kehr NS, de Barros NR, Khademhosseini A, Kim HJ, Vermonden T. Roadmap on multifunctional materials for drug delivery. JPHYS MATERIALS 2024; 7:012502. [PMID: 38144214 PMCID: PMC10734278 DOI: 10.1088/2515-7639/ad05e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023]
Abstract
This Roadmap on drug delivery aims to cover some of the most recent advances in the field of materials for drug delivery systems (DDSs) and emphasizes the role that multifunctional materials play in advancing the performance of modern DDSs in the context of the most current challenges presented. The Roadmap is comprised of multiple sections, each of which introduces the status of the field, the current and future challenges faced, and a perspective of the required advances necessary for biomaterial science to tackle these challenges. It is our hope that this collective vision will contribute to the initiation of conversation and collaboration across all areas of multifunctional materials for DDSs. We stress that this article is not meant to be a fully comprehensive review but rather an up-to-date snapshot of different areas of research, with a minimal number of references that focus upon the very latest research developments.
Collapse
Affiliation(s)
- Benjamin Nottelet
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, Univ Montpellier, 30900 Nimes, France
| | - Sytze Buwalda
- MINES Paris, PSL University, Center for Materials Forming, 06904 Sophia Antipolis, France
| | | | - Xiaofei Zhao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Ernest Cheah
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Ravi Kumar
- Physikalisches Institute and Center of Soft Nanoscience, University of Münster, Münster, Germany
| | - Nermin Seda Kehr
- Physikalisches Institute and Center of Soft Nanoscience, University of Münster, Münster, Germany
- Department of Chemistry, Izmir Institute of Technology, Izmir, Turkey
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Tina Vermonden
- Utrecht Institute for Pharmaceutical Sciences, Utrecht,The Netherlands
| |
Collapse
|
15
|
Heidari R, Assadollahi V, Khosravian P, Mirzaei SA, Elahian F. Engineered mesoporous silica nanoparticles, new insight nanoplatforms into effective cancer gene therapy. Int J Biol Macromol 2023; 253:127060. [PMID: 37774811 DOI: 10.1016/j.ijbiomac.2023.127060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
The use of nucleic acid to control the expression of genes relevant to tumor progression is a key therapeutic approach in cancer research. Therapeutics based on nucleic acid provide novel concepts for untreatable targets. Nucleic acids as molecular medications must enter the target cell to be effective and obstacles in the systemic delivery of DNA or RNA limit their use in a clinical setting. The creation of nucleic acid delivery systems based on nanoparticles in order to circumvent biological constraints is advancing quickly. The ease of synthesis and surface modification, biocompatibility, biodegradability, cost-effectiveness and high loading capability of nucleic acids have prompted the use of mesoporous silica nanoparticles (MSNs) in gene therapy. The unique surface features of MSNs facilitate their design and decoration for high loading of nucleic acids, immune system evasion, cancer cell targeting, controlled cargo release, and endosomal escape. Reports have demonstrated successful therapeutic outcomes with the administration of a variety of engineered MSNs capable of delivering genes to tumor sites in laboratory animals. This comprehensive review of studies about siRNA, miRNA, shRNA, lncRNA and CRISPR/Cas9 delivery by MSNs reveals engineered MSNs as a safe and efficient system for gene transfer to cancer cells and cancer mouse models.
Collapse
Affiliation(s)
- Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahideh Assadollahi
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Pegah Khosravian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Human Stem Cells and Neuronal Differentiation Core, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
16
|
Vyas J, Singh S, Shah I, Prajapati BG. Potential Applications and Additive Manufacturing Technology-Based Considerations of Mesoporous Silica: A Review. AAPS PharmSciTech 2023; 25:6. [PMID: 38129697 DOI: 10.1208/s12249-023-02720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Nanoporous materials are categorized as microporous (pore sizes 0.2-2 nm), mesoporous (pore sizes 2-50 nm), and macroporous (pore sizes 50-1000 nm). Mesoporous silica (MS) has gained a significant interest due to its notable characteristics, including organized pore networks, specific surface areas, and the ability to be integrated in a variety of morphologies. Recently, MS has been widely accepted by range of manufacturer and as drug carrier. Moreover, silica nanoparticles containing mesopores, also known as mesoporous silica nanoparticles (MSNs), have attracted widespread attention in additive manufacturing (AM). AM commonly known as three-dimensional printing is the formalized rapid prototyping (RP) technology. AM techniques, in comparison to conventional methods, aid in reducing the necessity for tooling and allow versatility in product and design customization. There are generally several types of AM processes reported including VAT polymerization (VP), powder bed fusion (PBF), sheet lamination (SL), material extrusion (ME), binder jetting (BJ), direct energy deposition (DED), and material jetting (MJ). Furthermore, AM techniques are utilized in fabrication of various classified fields such as architectural modeling, fuel cell manufacturing, lightweight machines, medical, and fabrication of drug delivery systems. The review concisely elaborates on applications of mesoporous silica as versatile material in fabrication of various AM-based pharmaceutical products with an elaboration on various AM techniques to reduce the knowledge gap.
Collapse
Affiliation(s)
- Jigar Vyas
- Sigma Institute of Pharmacy, Vadodara, Gujarat, 390019, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Office of Research Administration, Chiang mai University, Chiang Mai, 50200, Thailand.
| | - Isha Shah
- Sigma Institute of Pharmacy, Vadodara, Gujarat, 390019, India
| | - Bhupendra G Prajapati
- Office of Research Administration, Chiang mai University, Chiang Mai, 50200, Thailand.
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India.
| |
Collapse
|
17
|
Kan A, Ding S, Ouyang A, Zhang N, Jiang W. Magnetic separation-assisted cluster-amplified versatile fluorescent aptasensors for the sensitive detection of target biomolecules. Analyst 2023; 148:5972-5979. [PMID: 37869770 DOI: 10.1039/d3an01535a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
A sensitive and versatile platform for detecting diverse target biomolecules was developed by combining a magnetic separation module and a fluorescence amplification module in a plug-and-play manner. The magnetic separation module was constructed using magnetic beads (MBs), whose surfaces were modified with aptamer-blocked captor DNAs. The fluorescence amplification module was constructed by loading the fluorescent dye rhodamine 6G (Rh6G) into the pores of mesoporous silica nanoparticles (MSNs). The MSN surfaces were modified with prey DNAs, of which the MSN-near ends hybridized with complementary DNAs (sealing DNAs) to form duplexes to seal the pores, and the free ends were designed to be single-stranded that were complementary to the captor DNAs. Upon binding of targets to their aptamers, the captor DNAs were unblocked and thus were able to hybridize with the prey DNAs, to capture Rh6G-laden MSNs, forming MB-MSN clusters. The clusters were isolated by magnetic separation and heated to dissociate the DNA duplexes, to unseal the MSN pores and release the inner Rh6G; thus a target was converted into a cluster of Rh6G dyes. By simply changing the target aptamers and related DNA connectors, this strategy detected ATP, thrombin, and platelet-derived growth factor BB with detection limits of 2.1 nM, 4.1 pM, and 2.4 pM, respectively. A wide range of targets, high amplification efficiency and universal functional modules endow the aptasensors with good potential as versatile platforms for detecting target molecules in vitro and in medical research.
Collapse
Affiliation(s)
- Ailing Kan
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P. R. China.
- Research Center of Basic Medicine, Breast Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, P. R. China.
| | - Shengyong Ding
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P. R. China.
| | - Aimei Ouyang
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, 250013 Jinan, P. R. China
| | - Nan Zhang
- Research Center of Basic Medicine, Breast Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, P. R. China.
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P. R. China.
| |
Collapse
|
18
|
Brief History, Preparation Method, and Biological Application of Mesoporous Silica Molecular Sieves: A Narrative Review. Molecules 2023; 28:molecules28052013. [PMID: 36903259 PMCID: PMC10004212 DOI: 10.3390/molecules28052013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
It has been more than 30 years since the first ordered mesoporous silica molecular sieve (MCM-41) was reported, but the enthusiasm for exploiting mesoporous silica is still growing due to its superior properties, such as its controllable morphology, excellent hosting capability, easy functionalization, and good biocompatibility. In this narrative review, the brief history of the discovery of mesoporous silica and several important mesoporous silica families are summarized. The development of mesoporous silica microspheres with nanoscale dimensions, hollow mesoporous silica microspheres, and dendritic mesoporous silica nanospheres is also described. Meanwhile, common synthesis methods for traditional mesoporous silica, mesoporous silica microspheres, and hollow mesoporous silica microspheres are discussed. Then, we introduce the biological applications of mesoporous silica in fields such as drug delivery, bioimaging, and biosensing. We hope this review will help people to understand the history of the development of mesoporous silica molecular sieves and become familiar with their synthesis methods and applications in biology.
Collapse
|
19
|
Shaffer CC, Zhai C, Chasteen JL, Orlova T, Zhukovskyi M, Smith BD. Silica nanoparticle remodeling under mild conditions: versatile one step conversion of mesoporous to hollow nanoparticles with simultaneous payload loading. NANOSCALE 2022; 14:17514-17518. [PMID: 36408868 PMCID: PMC9970696 DOI: 10.1039/d2nr05528g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A binary mixture of mesoporous silica nanoparticles plus organic polyammonium additive (dye or drug) is cleanly converted upon mild heating into hollow nanoparticles. The remodeled nanoparticle shell is an organized nanoscale assembly of globular additive/silica subunits and cancer cell assays show that a loaded drug additive is bioavailable.
Collapse
Affiliation(s)
- Cassandra C Shaffer
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jordan L Chasteen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Tatyana Orlova
- Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maksym Zhukovskyi
- Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
20
|
Mesoporous silicas in materials engineering: Nanodevices for bionanotechnologies. Mater Today Bio 2022; 17:100472. [PMCID: PMC9627595 DOI: 10.1016/j.mtbio.2022.100472] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
|
21
|
Fang B, Xiong Q, Duan H, Xiong Y, Lai W. Tailored quantum dots for enhancing sensing performance of lateral flow immunoassay. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Ahmadi F, Sodagar-Taleghani A, Ebrahimnejad P, Pouya Hadipour Moghaddam S, Ebrahimnejad F, Asare-Addo K, Nokhodchi A. A review on the latest developments of mesoporous silica nanoparticles as a promising platform for diagnosis and treatment of cancer. Int J Pharm 2022; 625:122099. [PMID: 35961417 DOI: 10.1016/j.ijpharm.2022.122099] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/24/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Cancer is the second cause of human mortality after cardiovascular disease around the globe. Conventional cancer therapies are chemotherapy, radiation, and surgery. In fact, due to the lack of absolute specificity and high drug concentrations, early recognition and treatment of cancer with conventional approaches have become challenging issues in the world. To mitigate against the limitations of conventional cancer chemotherapy, nanomaterials have been developed. Nanomaterials exhibit particular properties that can overcome the drawbacks of conventional therapies such as lack of specificity, high drug concentrations, and adverse drug reactions. Among nanocarriers, mesoporous silica nanoparticles (MSNs) have gained increasing attention due to their well-defined pore size and structure, high surface area, good biocompatibility and biodegradability, ease of surface modification, and stable aqueous dispersions. This review highlights the current progress with the use of MSNs for the delivery of chemotherapeutic agents for the diagnosis and treatment of cancer. Various stimuli-responsive gatekeepers, which endow the MSNs with on-demand drug delivery, surface modification strategies for targeting purposes, and multifunctional MSNs utilized in drug delivery systems (DDSs) are also addressed. Also, the capability of MSNs as flexible imaging platforms is considered. In addition, physicochemical attributes of MSNs and their effects on cancer therapy with a particular focus on recent studies is emphasized. Moreover, major challenges to the use of MSNs for cancer therapy, biosafety and cytotoxicity aspects of MSNs are discussed.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arezoo Sodagar-Taleghani
- Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Seyyed Pouya Hadipour Moghaddam
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA; Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Farzam Ebrahimnejad
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA
| | - Kofi Asare-Addo
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK; Lupin Pharmaceutical Research Inc., Coral Springs, FL, USA.
| |
Collapse
|
23
|
Mehta S, Suresh A, Nayak Y, Narayan R, Nayak UY. Hybrid nanostructures: Versatile systems for biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Wang T, Zhang Z, Xie M, Li S, Zhang J, Zhou J. Apigenin Attenuates Mesoporous Silica Nanoparticles-Induced Nephrotoxicity by Activating FOXO3a. Biol Trace Elem Res 2022; 200:2793-2806. [PMID: 34448149 DOI: 10.1007/s12011-021-02871-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) are widely used in many biomedical applications and clinical fields. However, the applications of MSNs are limited by their severe toxicity. Apigenin (AG) has demonstrated pharmacological effects with low toxicity. The aim of this study was to clarify the role of AG in the progression of MSNs-induced renal injury. BALB/c mice and NRK-52E cells were exposed to MSNs with or without AG. AG protected mice and NRK-52E cells from the MSNs-induced pathological variations in renal tissues and decreased cell viability. AG significantly reduced the levels of serum blood urea nitrogen (BUN) and serum creatinine (Scr), upregulated the levels of superoxide dismutase (SOD), glutathione (GSH) and catalase (CAT), and improved the pathological changes of the kidney in MSNs-treated mice. The protective effects of AG were associated with its ability to increase the levels of antioxidants, reduce the accumulation of ROS, and inhibit the expression of the inflammatory mediators (TNF-α, IL-6). In addition, AG treatment upregulated the activity of FOXO3a, increased the level of IkBα, and reduced the nuclear translocation of NF-κB, which ultimately alleviated MSNs-induced inflammation. Nuclear FOXO3a translocation also triggered antioxidant gene transcription and protected nephrocyte from oxidative damage. However, knockdown of FOXO3a significantly blocked the protective effects of AG. These findings suggested that AG could be a promising therapeutic strategy for MSNs-induced nephrotoxicity, and this protective effect might be related to the suppression of oxidative stress and inflammation via the FOXO3a/NF-κB pathway.
Collapse
Affiliation(s)
- Tianyang Wang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Ziwen Zhang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Minjuan Xie
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Saifeng Li
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Jian Zhang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China.
| |
Collapse
|
25
|
Kumarage S, Munaweera I, Kottegoda N. Contemporary, Multidisciplinary Roles of Mesoporous Silica Nanohybrids/Nanocomposites. ChemistrySelect 2022. [DOI: 10.1002/slct.202200574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Senuri Kumarage
- Department of Chemistry Faculty of Applied Sciences University of Sri Jayewardenepura Gangodawila Nugegoda Sri Lanka
| | - Imalka Munaweera
- Department of Chemistry Faculty of Applied Sciences University of Sri Jayewardenepura Gangodawila Nugegoda Sri Lanka
| | - Nilwala Kottegoda
- Department of Chemistry Faculty of Applied Sciences University of Sri Jayewardenepura Gangodawila Nugegoda Sri Lanka
- Centre for Advanced Materials Research (CAMR) Faculty of Applied Sciences University of Sri Jayewardenepura Gangodawila Nugegoda Sri Lanka
| |
Collapse
|
26
|
|
27
|
Li Z, Guo J, Zhang M, Li G, Hao L. Gadolinium-Coated Mesoporous Silica Nanoparticle for Magnetic Resonance Imaging. Front Chem 2022; 10:837032. [PMID: 35242742 PMCID: PMC8885602 DOI: 10.3389/fchem.2022.837032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance molecular imaging can provide anatomic, functional and molecular information. However, because of the intrinsically low sensitivity of magnetic resonance imaging (MRI), high-performance MRI contrast agents are required to generate powerful image information for image diagnosis. Herein, we describe a novel T 1 contrast agent with magnetic-imaging properties facilitated by the gadolinium oxide (Gd2O3) doping of mesoporous silica nanoparticles (MSN). The size, morphology, composition, MRI relaxivity (r 1 ), surface area and pore size of these nanoparticles were evaluated following their conjugation with Gd2O3 to produce Gd2O3@MSN. This unique structure led to a significant enhancement in T 1 contrast with longitudinal relaxivity (r 1 ) as high as 51.85 ± 1.38 mM-1s-1. Gd2O3@MSN has a larger T 1 relaxivity than commercial gadolinium diethylene triamine pentaacetate (Gd-DTPA), likely due to the geometrical confinement effect of silica nanoparticles. These results suggest that we could successfully prepare a novel high-performance T 1 contrast agent, which may be a potential candidate for in-vivo MRI.
Collapse
Affiliation(s)
- Zhongtao Li
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Jing Guo
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Mengmeng Zhang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Guohua Li
- Department of Radiology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Liguo Hao
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
- Department of Molecular Imaging, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
28
|
Ellis CM, Pellico J, Young LAJ, Miller J, Davis JJ. Promoting high T2 contrast in Dy-doped MSNs through Curie effects. J Mater Chem B 2021; 10:302-305. [PMID: 34914815 DOI: 10.1039/d1tb01894a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Contrast agents retaining high relaxivities at ultrahigh magnetic fields underpin an enhanced image sensitivity within derived MRI scans. By varying the Dy3+ loading density inside a mesoporous silica architecture the dominant Curie effect can be effectively tuned so as to optimise T2 contrast at magnetic fields as high as 11.7 T.
Collapse
Affiliation(s)
- Connor M Ellis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Juan Pellico
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK. .,School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Liam A J Young
- Department of Physiology, Anatomy & Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK.,Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Jack Miller
- Department of Physiology, Anatomy & Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK.,Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Department of Physics, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| |
Collapse
|
29
|
Şen Karaman D, Pamukçu A, Karakaplan MB, Kocaoglu O, Rosenholm JM. Recent Advances in the Use of Mesoporous Silica Nanoparticles for the Diagnosis of Bacterial Infections. Int J Nanomedicine 2021; 16:6575-6591. [PMID: 34602819 PMCID: PMC8478671 DOI: 10.2147/ijn.s273062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Public awareness of infectious diseases has increased in recent months, not only due to the current COVID-19 outbreak but also because of antimicrobial resistance (AMR) being declared a top-10 global health threat by the World Health Organization (WHO) in 2019. These global issues have spiked the realization that new and more efficient methods and approaches are urgently required to efficiently combat and overcome the failures in the diagnosis and therapy of infectious disease. This holds true not only for current diseases, but we should also have enough readiness to fight the unforeseen diseases so as to avoid future pandemics. A paradigm shift is needed, not only in infection treatment, but also diagnostic practices, to overcome the potential failures associated with early diagnosis stages, leading to unnecessary and inefficient treatments, while simultaneously promoting AMR. With the development of nanotechnology, nanomaterials fabricated as multifunctional nano-platforms for antibacterial therapeutics, diagnostics, or both (known as "theranostics") have attracted increasing attention. In the research field of nanomedicine, mesoporous silica nanoparticles (MSN) with a tailored structure, large surface area, high loading capacity, abundant chemical versatility, and acceptable biocompatibility, have shown great potential to integrate the desired functions for diagnosis of bacterial infections. The focus of this review is to present the advances in mesoporous materials in the form of nanoparticles (NPs) or composites that can easily and flexibly accommodate dual or multifunctional capabilities of separation, identification and tracking performed during the diagnosis of infectious diseases together with the inspiring NP designs in diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Didem Şen Karaman
- Biomedical Engineering Department, Faculty of Engineering and Architecture, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Ayşenur Pamukçu
- İzmir Kâtip Çelebi University, Graduate School of Natural and Applied Sciences, Department of Biomedical Technologies, İzmir, Turkey
| | - M Baran Karakaplan
- İzmir Kâtip Çelebi University, Graduate School of Natural and Applied Sciences, Department of Biomedical Engineering, İzmir, Turkey
| | - Ozden Kocaoglu
- Biomedical Engineering Department, Faculty of Engineering and Architecture, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
| |
Collapse
|
30
|
SBA-15 with Crystalline Walls Produced via Thermal Treatment with the Alkali and Alkali Earth Metal Ions. MATERIALS 2021; 14:ma14185270. [PMID: 34576497 PMCID: PMC8466871 DOI: 10.3390/ma14185270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Crystalline walled SBA-15 with large pore size were prepared using alkali and alkali earth metal ions (Na+, Li+, K+ and Ca2+). For this work, the ratios of alkali metal ions (Si/metal ion) ranged from 2.1 to 80, while the temperatures tested ranged from 500 to 700 °C. The SBA-15 prepared with Si/Na+ ratios ranging from 2.1 to 40 at 700 °C exhibited both cristobalite and quartz SiO2 structures in pore walls. When the Na+ amount increased (i.e., Si/Na increased from 80 to 40), the pore size was increased remarkably but the surface area and pore volume of the metal ion-based SBA-15 were decreased. When the SBA-15 prepared with Li+, K+ and Ca2+ ions (Si/metal ion = 40) was thermally treated at 700 °C, the crystalline SiO2 of quartz structure with large pore diameter (i.e., 802.5 Å) was observed for Ca+2 ion-based SBA-15, while no crystalline SiO2 structures were observed in pore walls for both the K+ and Li+ ions treated SBA-15. The crystalline SiO2 structures may be formed by the rearrangement of silica matrix when alkali or alkali earth metal ions are inserted into silica matrix at elevated temperature.
Collapse
|