1
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Upoma MA, He Z, Tran H, Sivells T, Cyran JD, Pack MY. Effects of Dye Addition on the Rheological Properties of Aqueous Polymer Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19377-19387. [PMID: 39226404 DOI: 10.1021/acs.langmuir.4c01533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
In many commercial applications, polymer-dye interactions are frequently encountered from food to wastewater treatment, and while shear rheology has been well characterized, the extensional properties are not well known. The extensional viscosity ηE and relaxation time λE are the extensional rheological parameters that provide valuable insights into how aqueous polymers respond during deformation, and this study investigated the effect of dyes on the extensional rheology of three different aqueous polymer solutions (e.g., anionic, cationic, and neutral) paired with two different dye salts (e.g., anionic and cationic) using drop pinch-off experiments. We have found that the influence of dyes on the pinch-off dynamics is complex but generally leads to a decrease in, for example, the apparent extensional relaxation time. We have utilized the dripping-onto-substrate method to probe the uniaxial deformation of widely used polymers such as xanthan gum (XG), poly(diallyldimethylammonium chloride) (PDADMAC), and poly(ethylene oxide) (PEO) as the anionic, cationic, and neutral polymers, respectively, paired with either fluorescein (Fl) or methylene blue (MB) as the anionic and cationic dyes, respectively. Polymer-dye pairs with opposite charges (e.g., XG-MB and PDADMAC-Fl) displayed a pronounced decrease in pinch-off times, but even PEO, which is a neutral polymer, resulted in decreased pinch-off times, which was restored by the addition of NaCl. The pinch-off times for the Boger fluid (mixture of poly(ethylene glycol) and PEO), however, were surprisingly uninfluenced by dyes. These results showed that not only did the small addition of dyes strongly decrease the polymer relaxation times, but the relative importance of the dye salts on the polymer pinch-off dynamics was also different from that of pure salts such as NaCl.
Collapse
Affiliation(s)
- Marufa Akter Upoma
- Department of Mechanical Engineering, Baylor University, Waco 76798, Texas, United States
| | - Ziwen He
- Department of Mechanical Engineering, Baylor University, Waco 76798, Texas, United States
| | - Huy Tran
- Department of Mechanical Engineering, Baylor University, Waco 76798, Texas, United States
| | - Tiara Sivells
- Department of Chemistry, Boise State University, Boise 83725, Idaho, United States
| | - Jenée D Cyran
- Department of Chemistry, Boise State University, Boise 83725, Idaho, United States
| | - Min Young Pack
- Department of Mechanical Engineering, Baylor University, Waco 76798, Texas, United States
| |
Collapse
|
3
|
Maitra J, Bhardwaj N. Development of bio-based polymeric blends - a comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-35. [PMID: 39250518 DOI: 10.1080/09205063.2024.2394300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024]
Abstract
The current impetus to develop bio-based polymers for greater sustainability and lower carbon footprint is necessitated due to the alarming depletion of fossil resources, concurrent global warming, and related environmental issues. This article reviews the development of polymeric blends based on bio-based polymers. The focus on bio-based polymers is due to their greater 'Sustainability factor' as they are derived from renewable resources. The article delves into the synthesis of both conventional and highly biodegradable bio-based polymers, each crafted from feedstocks derived from nature's bounty. What sets this work apart is the exploration of blending existing bio-based polymers, culminating in the birth of entirely new materials. This review provides a comprehensive overview of the recent advancements in the development of bio-based polymeric blends, covering their synthesis, properties, applications, and potential contributions to a more sustainable future. Despite their potential benefits, bio-based materials face obstacles such as miscibility, processability issues and disparities in physical properties compared to conventional counterparts. The paper also discusses significance of compatibilizers, additives and future directions for the further advancement of these bio-based blends. While bio-based polymer blends hold promise for environmentally benign applications, many are still in the research phase. Ongoing research and technological innovations are driving the evolution of these blends as viable alternatives, but continued efforts are needed to ensure their successful integration into mainstream industrial practices. Concerted efforts from both researchers and industry stakeholders are essential to realize the full potential of bio-based polymers and accelerate their adoption on a global scale.
Collapse
Affiliation(s)
- Jaya Maitra
- Department of Applied Chemistry, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Nikita Bhardwaj
- Department of Applied Chemistry, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
4
|
Dang C, Wang Z, Hughes-Riley T, Dias T, Qian S, Wang Z, Wang X, Liu M, Yu S, Liu R, Xu D, Wei L, Yan W, Zhu M. Fibres-threads of intelligence-enable a new generation of wearable systems. Chem Soc Rev 2024; 53:8790-8846. [PMID: 39087714 DOI: 10.1039/d4cs00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fabrics represent a unique platform for seamlessly integrating electronics into everyday experiences. The advancements in functionalizing fabrics at both the single fibre level and within constructed fabrics have fundamentally altered their utility. The revolution in materials, structures, and functionality at the fibre level enables intimate and imperceptible integration, rapidly transforming fibres and fabrics into next-generation wearable devices and systems. In this review, we explore recent scientific and technological breakthroughs in smart fibre-enabled fabrics. We examine common challenges and bottlenecks in fibre materials, physics, chemistry, fabrication strategies, and applications that shape the future of wearable electronics. We propose a closed-loop smart fibre-enabled fabric ecosystem encompassing proactive sensing, interactive communication, data storage and processing, real-time feedback, and energy storage and harvesting, intended to tackle significant challenges in wearable technology. Finally, we envision computing fabrics as sophisticated wearable platforms with system-level attributes for data management, machine learning, artificial intelligence, and closed-loop intelligent networks.
Collapse
Affiliation(s)
- Chao Dang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Theodore Hughes-Riley
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Tilak Dias
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Shengtai Qian
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xingbei Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Mingyang Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Rongkun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Dewen Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Wei Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
5
|
Rosenbaum C, Gerds N, Hack L, Weitschies W. Scalability of API-Loaded Multifilament Yarn Production by Hot-Melt Extrusion and Evaluation of Fiber-Based Dosage Forms. Pharmaceutics 2024; 16:1103. [PMID: 39204448 PMCID: PMC11360357 DOI: 10.3390/pharmaceutics16081103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Fiber-based technologies are widely used in various industries, but their use in pharmaceuticals remains limited. While melt extrusion is a standard method for producing medical fibers such as sutures, it is rarely used for pharmaceutical fiber-based dosage forms. The EsoCap system is a notable exception, using a melt-extruded water-soluble filament as the drug release trigger mechanism. The challenge of producing drug-loaded fibers, particularly due to the use of spinning oils, and the processing of the fibers are addressed in this work using other approaches. The aim of this study was to develop processes for the production and processing of pharmaceutical fibers for targeted drug delivery. Fibers loaded with polyvinyl alcohol and fluorescein sodium as a model drug were successfully prepared by a continuous melt extrusion process and directly spun. These fibers exhibited uniform surface smoothness and consistent tensile strength. In addition, the fibers were further processed into tubular dosage forms using a modified knitting machine and demonstrated rapid drug release in a flow cell.
Collapse
Affiliation(s)
- Christoph Rosenbaum
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany
| | | | | | | |
Collapse
|
6
|
Wurst K, Birkle M, Scherer KJ, Mecking S. Circular Melt-Spun Textile Fibers from Polyethylene-like Long-Chain Polyesters. ACS APPLIED POLYMER MATERIALS 2024; 6:9219-9225. [PMID: 39144276 PMCID: PMC11320378 DOI: 10.1021/acsapm.4c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
As textiles contribute considerably to overall anthropogenic pollution and resource consumption, increasing their circularity is essential. We report the melt-spinning of long-chain polyesters, materials recently shown to be fully chemically recyclable under mild conditions, as well as biodegradable. High-quality uniform fibers are enabled by the polymers' favorable combination of thermal stability, crystallization ability, melt strength, and homogeneity. The polyethylene-like crystalline structure endows these fibers with mechanical strength, which is further enhanced by its orientation upon drawing (tensile strength of up to 270 MPa). In vitro depolymerization by high concentrations of Humicola insolens cutinase underlines the accessibility of the fibers for enzymatic degradation, which can proceed from the surface and through the entire fiber within days, depending on the choice of the fiber material. Fibers and knitted fabrics withstand stress, as encountered in machine washing.
Collapse
Affiliation(s)
- Katrin Wurst
- Department of Chemistry, University
of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Melissa Birkle
- Department of Chemistry, University
of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Katharina J. Scherer
- Department of Chemistry, University
of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Stefan Mecking
- Department of Chemistry, University
of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
7
|
Rakkan T, Zhang S, Lehner S, Hufenus R, Sangkharak K, Ren Q. Bio-based modification of polyhydroxyalkanoates (PHA) towards increased antimicrobial activities and reduced cytotoxicity. Int J Biol Macromol 2024; 275:133132. [PMID: 38945725 DOI: 10.1016/j.ijbiomac.2024.133132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
With the increased occurrence of bacteria resistance to conventional antibiotics, the development of novel antimicrobials is urgently needed. Traditional biomaterials used for delivering these agents often struggle to achieve sustained release while maintaining non-cytotoxic properties. In this study, we present an innovative approach using bacterial polyhydroxyalkanoates (PHA) as a carrier for antimicrobial delivery, specifically designed for wound healing applications. Octenidine dihydrochloride (OCT), a widely used antimicrobial agent, served as our model drug. To achieve the desired balance of OCT release and low cytotoxicity, we introduced a novel bio-derived additive, 3-hydroxy-pentadecanoic acid (3OHC15), extracted from bacteria. This additive significantly improved the hydrophilicity of PHA films, resulting in enhanced and sustained release of OCT. Importantly, the additive did not adversely affect the material's tensile strength or thermal properties. The increased OCT release led to improved antibacterial activity against both Gram-negative and -positive strains. Most notably, the incorporation of 3OHC15 in PHA mitigated the cytotoxic effects of the released drug on human fibroblasts, ensuring biocompatibility. This work represents a novel strategy in the design of biomaterials for the delivery of bioactive compounds, achieving a critical balance between efficacy and cytocompatibility, and marks a significant advancement in the field of antimicrobial delivery systems.
Collapse
Affiliation(s)
- Thanaphorn Rakkan
- Department of Biology, Faculty of Science, Thaksin University, Phatthalung, Thailand; Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland; Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sixuan Zhang
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland.
| | - Sandro Lehner
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland.
| | - Rudolf Hufenus
- Laboratory for Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland.
| | - Kanokphorn Sangkharak
- Department of Chemistry, Faculty of Science, Thaksin University, Phatthalung, Thailand.
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland.
| |
Collapse
|
8
|
Ludaš Dujmić A, Radičić R, Ercegović Ražić S, Cingesar IK, Glogar M, Jurov A, Krstulović N. Characterization of Melt-Spun Recycled PA 6 Polymer by Adding ZnO Nanoparticles during the Extrusion Process. Polymers (Basel) 2024; 16:1883. [PMID: 39000738 PMCID: PMC11244155 DOI: 10.3390/polym16131883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
With recent technological advances and the growing interest in environmentally friendly fiber production processes, the textile industry is increasingly turning to the spinning of filaments from recycled raw materials in the melt spinning process as the simplest method of chemical spinning of fibers. Such processes are more efficient because the desired active particles are melt-spun together with the polymer. The study investigates the melt spinning of recycled polyamide 6 (PA 6) fibers modified with zinc oxide nanoparticles (ZnO NPs) in concentrations ranging from 0.1 to 2.0 wt% of the polymer. The extrusion process was optimized under laboratory conditions. An analysis of the effectiveness of the nanoparticle distribution and chemical composition was performed using scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). The results of the thermal analysis show an increase in the glass transition temperature of the extruded material from 50.97 °C (raw polymer) to 51.40 °C to 57.98 °C (polymer modified with ZnO NPs) and an increase in the crystallization point from 148.19 °C to a temperature between 175.61 °C and 178.16 °C, while the molar enthalpy (ΔHm) shows a decreasing trend from 65.66 Jg-1 (raw polymer) to 48.23 Jg-1 (PA 6 2.0% ZnO). The FTIR spectra indicate PA 6 polymer, with a characteristic peak at the wavelength 1466 cm-1, but pure ZnO and PA 6 blended with ZnO show a characteristic peak at 2322 cm-1. The distribution of nanoparticles on the fiber surface is more or less randomly distributed and the different size of NPs is visible. These results are confirmed by the EDS results, which show that different concentrations of Zn are present. The mechanical stability of the extruded polymer modified with NPs is not affected by the addition of ZnO NPs, although the overall results of strength (2.56-3.22 cN/tex) and modulus of elasticity of the polymer (28.83-49.90 cN/tex) are lower as there is no drawing process at this stage of the experiment, which certainly helps to increase the final strength of the fibers. The results indicate the potential of modification with ZnO NPs for further advances in sustainable fiber production.
Collapse
Affiliation(s)
- Anja Ludaš Dujmić
- Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, HR-10000 Zagreb, Croatia; (A.L.D.); (M.G.)
| | - Rafaela Radičić
- Institute of Physics, Bijenička cesta 46, HR-10000 Zagreb, Croatia; (R.R.); (N.K.)
| | - Sanja Ercegović Ražić
- Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, HR-10000 Zagreb, Croatia; (A.L.D.); (M.G.)
| | - Ivan Karlo Cingesar
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia;
| | - Martinia Glogar
- Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, HR-10000 Zagreb, Croatia; (A.L.D.); (M.G.)
| | - Andrea Jurov
- Department of Gaseous Electronics, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
| | - Nikša Krstulović
- Institute of Physics, Bijenička cesta 46, HR-10000 Zagreb, Croatia; (R.R.); (N.K.)
| |
Collapse
|
9
|
Var C, Palamutcu S. Diverse Approaches in Wet-Spun Alginate Filament Production from the Textile Industry Perspective: From Process Optimization to Composite Filament Production. Polymers (Basel) 2024; 16:1817. [PMID: 39000672 PMCID: PMC11244114 DOI: 10.3390/polym16131817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024] Open
Abstract
Alginate, categorized as a natural-based biodegradable polymer, stands out for its inherently exclusive properties. Although this unique polymer is widely processed using film, coating, and membrane technologies for different usage areas, textile applications are still limited. This study aims to compile promising approaches that will pave the way for the use of wet-spun alginate filaments in textile applications. In this regard, this study provides information about the molecular structure of alginate, the gel formation mechanism, and cross-linking using different techniques. Our literature review categorizes parameters affecting the mechanical properties of wet-spun alginate filaments, such as the effect of ion source and spinning dope concentration, needle diameter, temperature, and coagulants. Following this, a detailed and comprehensive literature review of the various approaches, such as use of additives, preparation of blended filaments, and grafted nanocrystal addition, developed by researchers to produce composite alginate filaments is presented. Additionally, studies concerning the use of different cations in the coagulation phase are reported. Moreover, studies about the functionalism of wet-spun alginate filaments have been offered.
Collapse
Affiliation(s)
- Cansu Var
- Department of Textile Engineering, Engineering Faculty, Pamukkale University, 20160 Denizli, Türkiye
| | - Sema Palamutcu
- Department of Textile Engineering, Engineering Faculty, Pamukkale University, 20160 Denizli, Türkiye
| |
Collapse
|
10
|
Kopf S, Root A, Heinmaa I, Aristéia de Lima J, Åkesson D, Skrifvars M. Production and Characterization of Melt-Spun Poly(3-hydroxybutyrate)/Poly(3-hydroxybutyrate- co-4-hydroxybutyrate) Blend Monofilaments. ACS OMEGA 2024; 9:27415-27427. [PMID: 38947777 PMCID: PMC11209910 DOI: 10.1021/acsomega.4c02241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024]
Abstract
We investigated the melt-spinning potential of a poly(3-hydroxybutyrate)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blend using a piston spinning machine with two different spinneret diameters (0.2 and 0.5 mm). Results from the differential scanning calorimetry, dynamic mechanical thermal analysis, and tensile testing showed distinct filament properties depending on the monofilaments' cross-sectional area. Finer filaments possessed different melting behaviors compared to the coarser filaments and the neat polymer, indicating the formation of a different type of polymer crystal. Additionally, the mechanical properties of the finer filament (tensile strength: 21.5 MPa and elongation at break: 341%) differed markedly from the coarser filament (tensile strength: 11.7 MPa, elongation at break: 12.3%). The hydrolytic stability of the filaments was evaluated for 7 weeks in a phosphate-buffered saline solution and showed a considerably reduced elongation at break of the thinner filaments. Overall, the results indicate considerable potential for further filament improvements to facilitate textile processing.
Collapse
Affiliation(s)
- Sabrina Kopf
- Swedish
Centre for Resource Recovery, Faculty of Textiles, Engineering and
Business, University of Borås, 501 90 Borås, Sweden
| | - Andrew Root
- MagSol, Tuhkanummenkuja 2, 00970 Helsinki, Finland
| | - Ivo Heinmaa
- National
Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | - Juliana Aristéia de Lima
- Swedish
Centre for Resource Recovery, Faculty of Textiles, Engineering and
Business, University of Borås, 501 90 Borås, Sweden
- Department
of Polymer, Fibre and Composite, RISE Research
Institutes of Sweden, 504
62 Borås, Sweden
| | - Dan Åkesson
- Swedish
Centre for Resource Recovery, Faculty of Textiles, Engineering and
Business, University of Borås, 501 90 Borås, Sweden
| | - Mikael Skrifvars
- Swedish
Centre for Resource Recovery, Faculty of Textiles, Engineering and
Business, University of Borås, 501 90 Borås, Sweden
| |
Collapse
|
11
|
Garg A, Alfatease A, Hani U, Haider N, Akbar MJ, Talath S, Angolkar M, Paramshetti S, Osmani RAM, Gundawar R. Drug eluting protein and polysaccharides-based biofunctionalized fabric textiles- pioneering a new frontier in tissue engineering: An extensive review. Int J Biol Macromol 2024; 268:131605. [PMID: 38641284 DOI: 10.1016/j.ijbiomac.2024.131605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
In the ever-evolving landscape of tissue engineering, medicated biotextiles have emerged as a game-changer. These remarkable textiles have garnered significant attention for their ability to craft tissue scaffolds that closely mimic the properties of natural tissues. This comprehensive review delves into the realm of medicated protein and polysaccharide-based biotextiles, exploring a diverse array of fabric materials. We unravel the intricate web of fabrication methods, ranging from weft/warp knitting to plain/stain weaving and braiding, each lending its unique touch to the world of biotextiles creation. Fibre production techniques, such as melt spinning, wet/gel spinning, and multicomponent spinning, are demystified to shed light on the magic behind these ground-breaking textiles. The biotextiles thus crafted exhibit exceptional physical and chemical properties that hold immense promise in the field of tissue engineering (TE). Our review underscores the myriad applications of drug-eluting protein and polysaccharide-based textiles, including TE, tissue repair, regeneration, and wound healing. Additionally, we delve into commercially available products that harness the potential of medicated biotextiles, paving the way for a brighter future in healthcare and regenerative medicine. Step into the world of innovation with medicated biotextiles-where science meets the art of healing.
Collapse
Affiliation(s)
- Ankitha Garg
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Adel Alfatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammad J Akbar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
12
|
Xu F, Sun W, Ma W, Wang W, Kong D, Chan YK, Ma Q. All-aqueous microfluidic printing of multifunctional bioactive microfibers promote whole-stage wound healing. Colloids Surf B Biointerfaces 2024; 234:113720. [PMID: 38157763 DOI: 10.1016/j.colsurfb.2023.113720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Wound healing involves multi-stages of physiological responses, including hemostasis, inflammation, cell proliferation, and tissue remodeling. Satisfying all demands throughout different stages remains a rarely addressed challenge. Here we introduce an innovative all-aqueous microfluidic printing technique for fabricating multifunctional bioactive microfibers, effectively contributing to all four phases of the healing process. The distinctive feature of the developed microfibers lies in their capacity to be printed in a free-form manner in the aqueous-two phase system (ATPS). This is achieved through interfacial coacervation between alkyl-chitosan and alginate, with enhanced structural integrity facilitated by simultaneous crosslinking with calcium ions and alginate. The all-aqueous printed microfibers exhibit exceptional performance in terms of cell recruitment, blood cell coagulation, and hemostasis. The inclusion of a dodecyl carbon chain and amino groups in alkyl-chitosan imparts remarkable antimicrobial properties by anchoring to bacteria, complemented by potent antibacterial effects of encapsulated silver nanoparticles. Moreover, microfibers can load bioactive drugs like epidermal growth factor (EGF), preserving their activity and enhancing therapeutic effects during cell proliferation and tissue remodeling. With these sequential functions to guide the whole-stage wound healing, this work offers a versatile and robust paradigm for comprehensive wound treatment, holding great potential for optimal healing outcomes.
Collapse
Affiliation(s)
- Fenglan Xu
- Department of Clinical Pharmacy, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Wenyuan Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University, Qingdao 266071, China; The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University, Qingdao 266071, China
| | - Dejuan Kong
- Tongliao market detection and Testing Center, Tongliao 028000, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, 999077 the Hong Kong Special Administrative Region of China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China; The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
13
|
Rist M, Löcken H, Ortega M, Greiner A. Toughening of Bio-Based PA 6.19 by Copolymerization with PA 6.6 - Synthesis and Production of Melt-Spun Monofilaments and Knitted Fabrics. Macromol Rapid Commun 2023; 44:e2300256. [PMID: 37220654 DOI: 10.1002/marc.202300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/09/2023] [Indexed: 05/25/2023]
Abstract
This work reports on the synthesis of statistical copolymers of bio-based PA 6.19 and PA 6.6 together with the production of melt-spun monofilaments for the production of sustainable textile fibers. The plant oil-based 1.19-nonadecanedioic acid is synthesized from bio-derived oleic acid via isomerizing methoxycarbonylation. The homopolymer PA 6.19 with a carbon-based bio-content of 72% shows a good elongation at break of 166%, but lower tensile strength than commercial PA 6 (43 MPa versus 82 MPa). Addition of adipic acid to form statistical PA 6.6/6.19 copolymers improves toughness while maintaining the high elongation at break. Two PA 6.6/6.19 copolymers with a carbon-based bio-content of 26% and 33% are successfully synthesized and exhibited comparable toughness (94 ± 6 MPa and 92 ± 2 MPa) to the commercial PA 6 (92 ± 15 MPa). The bio-based copolymers also exhibit a much lower water uptake than PA 6 and PA 6.6, resulting in a higher dimensional stability. Melt spinning of the oleic acid-based polyamides is successfully carried out to produce monofilaments with sufficient properties for further processing in a knitting process, demonstrating the capabilities of the bio-based PA 6.6/6.19 copolymers for use in the textile industry.
Collapse
Affiliation(s)
- Maximilian Rist
- University of Bayreuth, Macromolecular Chemistry and Bavarian Polymer Institute, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Henning Löcken
- RWTH Aachen University, Institut fuer Textiltechnik, Otto-Blumenthal-Strasse 1, 52074, Aachen, Germany
| | - Mathias Ortega
- RWTH Aachen University, Institut fuer Textiltechnik, Otto-Blumenthal-Strasse 1, 52074, Aachen, Germany
| | - Andreas Greiner
- University of Bayreuth, Macromolecular Chemistry and Bavarian Polymer Institute, Universitätsstrasse 30, 95440, Bayreuth, Germany
| |
Collapse
|
14
|
Li Y, Meng Q, Chen S, Ling P, Kuss MA, Duan B, Wu S. Advances, challenges, and prospects for surgical suture materials. Acta Biomater 2023; 168:78-112. [PMID: 37516417 DOI: 10.1016/j.actbio.2023.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
As one of the long-established and necessary medical devices, surgical sutures play an essentially important role in the closing and healing of damaged tissues and organs postoperatively. The recent advances in multiple disciplines, like materials science, engineering technology, and biomedicine, have facilitated the generation of various innovative surgical sutures with humanization and multi-functionalization. For instance, the application of numerous absorbable materials is assuredly a marvelous progression in terms of surgical sutures. Moreover, some fantastic results from recent laboratory research cannot be ignored either, ranging from the fiber generation to the suture structure, as well as the suture modification, functionalization, and even intellectualization. In this review, the suture materials, including natural or synthetic polymers, absorbable or non-absorbable polymers, and metal materials, were first introduced, and then their advantages and disadvantages were summarized. Then we introduced and discussed various fiber fabrication strategies for the production of surgical sutures. Noticeably, advanced nanofiber generation strategies were highlighted. This review further summarized a wide and diverse variety of suture structures and further discussed their different features. After that, we covered the advanced design and development of surgical sutures with multiple functionalizations, which mainly included surface coating technologies and direct drug-loading technologies. Meanwhile, the review highlighted some smart and intelligent sutures that can monitor the wound status in a real-time manner and provide on-demand therapies accordingly. Furthermore, some representative commercial sutures were also introduced and summarized. At the end of this review, we discussed the challenges and future prospects in the field of surgical sutures in depth. This review aims to provide a meaningful reference and guidance for the future design and fabrication of innovative surgical sutures. STATEMENT OF SIGNIFICANCE: This review article introduces the recent advances of surgical sutures, including material selection, fiber morphology, suture structure and construction, as well as suture modification, functionalization, and even intellectualization. Importantly, some innovative strategies for the construction of multifunctional sutures with predetermined biological properties are highlighted. Moreover, some important commercial suture products are systematically summarized and compared. This review also discusses the challenges and future prospects of advanced sutures in a deep manner. In all, this review is expected to arouse great interest from a broad group of readers in the fields of multifunctional biomaterials and regenerative medicine.
Collapse
Affiliation(s)
- Yiran Li
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Qi Meng
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Peixue Ling
- Shandong Academy of Pharmaceutical Science, Jinan, 250101, China
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China; Shandong Academy of Pharmaceutical Science, Jinan, 250101, China.
| |
Collapse
|
15
|
Li J, Qiao Y, Zhang H, Zheng Y, Tang Z, Zeng Z, Yao P, Bao F, Liu H, Yu J, Zhu C, Xu J. Microstructure and Tensile Properties of Melt-Spun Filaments of Polybutene-1 and Butene-1/Ethylene Copolymer. Polymers (Basel) 2023; 15:3729. [PMID: 37765582 PMCID: PMC10536619 DOI: 10.3390/polym15183729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Polybutene-1 with form I crystals exhibits excellent creep resistance and environmental stress crack resistance. The filaments of polybutene-1 and its random copolymer with 4 mol% ethylene co-units were produced via extrusion melt spinning, which are expected to be in form I states and show outstanding mechanical properties. The variances in microstructure, crystallization-melting behavior, and mechanical properties between homopolymer and copolymer filaments were analyzed using SEM, SAXS/WAXD, DSC, and tensile tests. The crystallization of form II and subsequent phase transition into form I finished after the melt-spinning process in the copolymer sample while small amounts of form II crystals remained in homopolymer filaments. Surprisingly, copolymer filaments exhibited higher tensile strength and Young's modulus than homopolymer filaments, while the homopolymer films showed better mechanical properties than copolymer films. The high degree of orientation and long fibrous crystals play a critical role in the superior properties of copolymer filaments. The results indicate that the existence of ethylene increases the chain flexibility and benefits the formation of intercrystalline links during spinning, which contributes to an enhancement of mechanical properties. The structure-property correlation of melt-spun PB-1 filaments provides a reference for the development of polymer fibers with excellent creep resistance.
Collapse
Affiliation(s)
- Jianrong Li
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yongna Qiao
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hao Zhang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yifei Zheng
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zheng Tang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhenye Zeng
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Pingping Yao
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Feng Bao
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Huichao Liu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiali Yu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Caizhen Zhu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
16
|
Latko-Durałek P, Rzempołuch J, Staniszewska M, Rosłoniec K, Bil M, Kozera R, Boczkowska A. The Antifungal Fibers of Polyamide 12 Containing Silver and Metal Oxides. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5837. [PMID: 37687530 PMCID: PMC10488922 DOI: 10.3390/ma16175837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023]
Abstract
The textile market is a vast industry that utilizes antimicrobial polymeric materials, including various types of fabrics, for medical and personal protection applications. Therefore, this study focused on examining four types of antimicrobial fillers, namely, metal oxides (zinc, titanium, copper) and nanosilver, as fillers in Polyamide 12 fibers. These fillers can be applied in the knitting or weaving processes to obtain woven polymeric fabrics for medical applications. The production of the fibers in this study involved a two-step approach: twin-screw extrusion and melt spinning. The resulting fibers were then characterized for their thermal properties (TGA, DSC), mechanical performance (tensile test, DMA), and antifungal activity. The findings of the study indicated that all of the fibers modified with fillers kill Candida albicans. However, the fibers containing a combination of metal oxides and silver showed significantly higher antifungal activity (reduction rate % R = 86) compared to the fibers with only a mixture of metal oxides (% R = 21). Furthermore, the inclusion of metal oxides and nanosilver in the Polyamide 12 matrix hindered the formation of the crystal phase and decreased slightly the thermal stability and mechanical properties, especially for the composites with nanosilver. It was attributed to their worse dispersion and the presence of agglomerates.
Collapse
Affiliation(s)
- Paulina Latko-Durałek
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Street, 02-507 Warsaw, Poland; (J.R.); (R.K.); (A.B.)
| | - Józef Rzempołuch
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Street, 02-507 Warsaw, Poland; (J.R.); (R.K.); (A.B.)
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19 Street, 02-822 Warsaw, Poland; (M.S.); (K.R.); (M.B.)
| | - Karina Rosłoniec
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19 Street, 02-822 Warsaw, Poland; (M.S.); (K.R.); (M.B.)
| | - Monika Bil
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19 Street, 02-822 Warsaw, Poland; (M.S.); (K.R.); (M.B.)
| | - Rafał Kozera
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Street, 02-507 Warsaw, Poland; (J.R.); (R.K.); (A.B.)
| | - Anna Boczkowska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Street, 02-507 Warsaw, Poland; (J.R.); (R.K.); (A.B.)
| |
Collapse
|
17
|
Guo Y, Kangwa M, Ali W, Mayer-Gall T, Gutmann JS, Zenneck C, Winter M, Jungbauer A, Fernandez Lahore HM. Moving adsorption belt system for continuous bioproduct recovery utilizing composite fibrous adsorbents. Front Bioeng Biotechnol 2023; 11:1135447. [PMID: 37324416 PMCID: PMC10267413 DOI: 10.3389/fbioe.2023.1135447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
A continuous protein recovery and purification system based on the true moving bed concept is presented. A novel adsorbent material, in the form of an elastic and robust woven fabric, served as a moving belt following the general designs observed in known belt conveyors. The composite fibrous material that forms the said woven fabric showed high protein binding capacity, reaching a static binding capacity equal to 107.3 mg/g, as determined via isotherm experiments. Moreover, testing the same cation exchange fibrous material in a packed bed format resulted in excellent dynamic binding capacity values (54.5 mg/g) even when operating at high flow rates (480 cm/h). In a subsequent step, a benchtop prototype was designed, constructed, and tested. Results indicated that the moving belt system could recover a model protein (hen egg white lysozyme) with a productivity up to 0.5 mg/cm2/h. Likewise, a monoclonal antibody was directly recovered from unclarified CHO_K1 cell line culture with high purity, as judged by SDS-PAGE, high purification factor (5.8), and in a single step, confirming the suitability and selectivity of the purification procedure.
Collapse
Affiliation(s)
- Yijia Guo
- School of Science, Jacobs University Bremen gGmbH, Bremen, Germany
| | - Martin Kangwa
- School of Science, Jacobs University Bremen gGmbH, Bremen, Germany
| | - Wael Ali
- Deutschen Textilforschungszentrum Nord-West gGmbH, Krefeld, Germany
- Department of Physical Chemistry, Center for Nanointegration (CENIDE), University of Duisburg-Essen, Essen, Germany
| | - Thomas Mayer-Gall
- Deutschen Textilforschungszentrum Nord-West gGmbH, Krefeld, Germany
- Department of Physical Chemistry, Center for Nanointegration (CENIDE), University of Duisburg-Essen, Essen, Germany
| | - Jochen S. Gutmann
- Deutschen Textilforschungszentrum Nord-West gGmbH, Krefeld, Germany
- Department of Physical Chemistry, Center for Nanointegration (CENIDE), University of Duisburg-Essen, Essen, Germany
| | - Claus Zenneck
- MDX Biotechnik International GmbH, Nörten-Hardenberg, Germany
| | - Martina Winter
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alois Jungbauer
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hector Marcelo Fernandez Lahore
- School of Science, Jacobs University Bremen gGmbH, Bremen, Germany
- Unit Biotechnologies, Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
18
|
Roungpaisan N, Srisawat N, Rungruangkitkrai N, Chartvivatpornchai N, Boonyarit J, Kittikorn T, Chollakup R. Effect of Recycling PET Fabric and Bottle Grade on r-PET Fiber Structure. Polymers (Basel) 2023; 15:polym15102330. [PMID: 37242906 DOI: 10.3390/polym15102330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
PET knitted fabric was melted and cooled by hot pressing at 250 °C to obtain a compacted sheet. Only white PET fabric (WF_PET) was used to study the recycling process by compression and grinding to powder and then melt spinning at different take-up speeds compared to PET bottle grade (BO_PET). PET knitted fabric had good fiber formability and was better suited for melt spinning of recycled PET (r-PET) fibers than the bottle grade. Thermal and mechanical properties of r-PET fibers improved in terms of crystallinity and tensile strength with increasing take-up speed (500 to 1500 m/min). Fading and color changes from the original fabric were relatively small compared with PET bottle grade. Results indicated that fiber structure and properties can be used as a guideline for improving and developing r-PET fibers from textile waste.
Collapse
Affiliation(s)
- Nanjaporn Roungpaisan
- Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand
| | - Natee Srisawat
- Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand
| | - Nattadon Rungruangkitkrai
- Department of Textile Science, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | | | - Jirachaya Boonyarit
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok 10900, Thailand
| | - Thorsak Kittikorn
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Rungsima Chollakup
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
19
|
Periyasamy AP. Microfiber Emissions from Functionalized Textiles: Potential Threat for Human Health and Environmental Risks. TOXICS 2023; 11:toxics11050406. [PMID: 37235219 DOI: 10.3390/toxics11050406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023]
Abstract
The growing worldwide population is directly responsible for the increased production and consumption of textile products. One of the key reasons for the generation of microfibers is the use of textiles and garment materials, which is expected to increase. The textile industry is responsible for the invisible pollution that is created by textile microfibers, which have been detected in marine sediments and organisms. The present review paper demonstrates that the microfibers discharged from functionalized textiles exhibit non-biodegradable characteristics and that a considerable proportion of them possess toxic properties. This is primarily attributed to the impact of textiles' material functionalization on their biodegradability. The potential for these microfibers, which are released from textiles that contain a variety of dyes, toxic chemicals, and nanomaterials, to pose a variety of health risks to both humans and other living organisms is discussed in this paper. In addition, this paper covers a wide variety of preventative and minimizing measures for reduction, which are discussed in terms of several phases ranging from sustainable production through the consumer, end of life, domestic washing, and wastewater treatment phases.
Collapse
Affiliation(s)
- Aravin Prince Periyasamy
- Textile and Nonwoven Materials, VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
| |
Collapse
|
20
|
Hou W, Wang J, Lv JA. Bioinspired Liquid Crystalline Spinning Enables Scalable Fabrication of High-Performing Fibrous Artificial Muscles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211800. [PMID: 36812485 DOI: 10.1002/adma.202211800] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Leveraging liquid crystal elastomers (LCEs) to realize scalable fabrication of high-performing fibrous artificial muscles is of particular interest because these active soft materials can provide large, reversible, programmable deformations upon environmental stimuli. High-performing fibrous LCEs require the used processing technology to enable shaping LCEs into micro-scale fine fibers as thin as possible while achieving macroscopic LC orientation, which however remains a daunting challenge. Here, a bioinspired spinning technology is reported that allows for continuous, high-speed production (fabrication speed up to 8400 m h-1 ) of thin and aligned LCE microfibers combined with rapid deformation (actuation strain rate up to 810% s-1 ), powerful actuation (actuation stress up to 5.3 MPa), high response frequency (50 Hz), and long cycle life (250 000 cycles without obvious fatigue). Inspired by liquid crystalline spinning of spiders that takes advantage of multiple drawdowns to thin and align their dragline silks, internal drawdown via tapered-wall-induced-shearing and external drawdown via mechanical stretching are employed to shape LCEs into long, thin, aligned microfibers with the desirable actuation performances, which few processing technologies can achieve. This bioinspired processing technology capable of scalable production of high-performing fibrous LCEs would benefit the development of smart fabrics, intelligent wearable devices, humanoid robotics, and other areas.
Collapse
Affiliation(s)
- Wenhao Hou
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
| | - Jiao Wang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
| | - Jiu-An Lv
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
| |
Collapse
|
21
|
Schick S, Groten R, Seide GH. Performance Spectrum of Home-Compostable Biopolymer Fibers Compared to a Petrochemical Alternative. Polymers (Basel) 2023; 15:polym15061372. [PMID: 36987153 PMCID: PMC10056001 DOI: 10.3390/polym15061372] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Manufacturers of technical polymers must increasingly consider the degradability of their products due to the growing public interest in topics such as greenhouse gas emissions and microplastic pollution. Biobased polymers are part of the solution, but they are still more expensive and less well characterized than conventional petrochemical polymers. Therefore, few biobased polymers with technical applications have reached the market. Polylactic acid (PLA) is the most widely-used industrial thermoplastic biopolymer and is mainly found in the areas of packaging and single-use products. It is classed as biodegradable but only breaks down efficiently above the glass transition temperature of ~60 °C, so it persists in the environment. Some commercially available biobased polymers can break down under normal environmental conditions, including polybutylene succinate (PBS), polybutylene adipate terephthalate (PBAT) and thermoplastic starch (TPS), but they are used far less than PLA. This article compares polypropylene, a petrochemical polymer and benchmark for technical applications, with the commercially available biobased polymers PBS, PBAT and TPS, all of which are home-compostable. The comparison considers processing (using the same spinning equipment to generate comparable data) and utilization. Draw ratios ranged from 29 to 83, with take-up speeds from 450 to 1000 m/min. PP achieved benchmark tenacities over 50 cN/tex with these settings, while PBS and PBAT achieved over 10cN/tex. By comparing the performance of biopolymers to petrochemical polymers in the same melt-spinning setting, it is easier to decide which polymer to use in a particular application. This study shows the possibility that home-compostable biopolymers are suitable for products with lower mechanical properties. Only spinning the materials on the same machine with the same settings produces comparable data. This research, therefore, fills the niche and provides comparable data. To our knowledge, this report is the first direct comparison of polypropylene and biobased polymers in the same spinning process with the same parameter settings.
Collapse
Affiliation(s)
- Simon Schick
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Robert Groten
- Department of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Campus Mönchengladbach, Webschulstrasse 31, 41065 Mönchengladbach, Germany
| | - Gunnar H. Seide
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
- Correspondence:
| |
Collapse
|
22
|
Marjuban SMH, Rahman M, Duza SS, Ahmed MB, Patel DK, Rahman MS, Lozano K. Recent Advances in Centrifugal Spinning and Their Applications in Tissue Engineering. Polymers (Basel) 2023; 15:polym15051253. [PMID: 36904493 PMCID: PMC10007050 DOI: 10.3390/polym15051253] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Over the last decade, researchers have investigated the potential of nano and microfiber scaffolds to promote wound healing, tissue regeneration, and skin protection. The centrifugal spinning technique is favored over others due to its relatively straightforward mechanism for producing large quantities of fiber. Many polymeric materials have yet to be investigated in search of those with multifunctional properties that would make them attractive in tissue applications. This literature presents the fundamental process of fiber generation, and the effects of fabrication parameters (machine, solution) on the morphologies such as fiber diameter, distribution, alignment, porous features, and mechanical properties. Additionally, a brief discussion is presented on the underlying physics of beaded morphology and continuous fiber formation. Consequently, the study provides an overview of the current advancements in centrifugally spun polymeric fiber-based materials and their morphological features, performance, and characteristics for tissue engineering applications.
Collapse
Affiliation(s)
- Shaik Merkatur Hakim Marjuban
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Musfira Rahman
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Syeda Sharmin Duza
- Microbiology & Immunology Department, Holy Family Red Crescent Medical College & Hospital, Dhaka 1000, Bangladesh
| | - Mohammad Boshir Ahmed
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Dinesh K. Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Correspondence: (D.K.P.); (M.S.R.)
| | - Md Saifur Rahman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Correspondence: (D.K.P.); (M.S.R.)
| | - Karen Lozano
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
23
|
Huang H, Trentle M, Liu Z, Xiang K, Higgins W, Wang Y, Xue B, Yang S. Polymer Complex Fiber: Property, Functionality, and Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7639-7662. [PMID: 36719982 DOI: 10.1021/acsami.2c19583] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polymer complex fibers (PCFs) are a novel kind of fiber material processed from polymer complexes that are assembled through noncovalent interactions. These can realize the synergy of functional components and miscibility on the molecular level. The dynamic character of noncovalent interactions endows PCFs with remarkable properties, such as reversibility, stimuli responsiveness, self-healing, and recyclability, enabling them to be applied in multidisciplinary fields. The objective of this article is to provide a review of recent progress in the field of PCFs. The classification based on chain interactions will be first introduced followed by highlights of the fabrication technologies and properties of PCFs. The effects of composition and preparation method on fiber properties are also discussed, with some emphasis on utilizing these for rational design. Finally, we carefully summarize recent advanced applications of PCFs in the fields of energy storage and sensors, water treatment, biomedical materials, artificial actuators, and biomimetic platforms. This review is expected to deepen the comprehension of PCF materials and open new avenues for developing PCFs with tailor-made properties for advanced application.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Miranda Trentle
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama35294, United States
| | - Zexin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Kehui Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - William Higgins
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama35294, United States
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu610064, P. R. China
| | - Bing Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| |
Collapse
|
24
|
Sun F, Jiang H, Wang H, Zhong Y, Xu Y, Xing Y, Yu M, Feng LW, Tang Z, Liu J, Sun H, Wang H, Wang G, Zhu M. Soft Fiber Electronics Based on Semiconducting Polymer. Chem Rev 2023; 123:4693-4763. [PMID: 36753731 DOI: 10.1021/acs.chemrev.2c00720] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Fibers, originating from nature and mastered by human, have woven their way throughout the entire history of human civilization. Recent developments in semiconducting polymer materials have further endowed fibers and textiles with various electronic functions, which are attractive in applications such as information interfacing, personalized medicine, and clean energy. Owing to their ability to be easily integrated into daily life, soft fiber electronics based on semiconducting polymers have gained popularity recently for wearable and implantable applications. Herein, we present a review of the previous and current progress in semiconducting polymer-based fiber electronics, particularly focusing on smart-wearable and implantable areas. First, we provide a brief overview of semiconducting polymers from the viewpoint of materials based on the basic concepts and functionality requirements of different devices. Then we analyze the existing applications and associated devices such as information interfaces, healthcare and medicine, and energy conversion and storage. The working principle and performance of semiconducting polymer-based fiber devices are summarized. Furthermore, we focus on the fabrication techniques of fiber devices. Based on the continuous fabrication of one-dimensional fiber and yarn, we introduce two- and three-dimensional fabric fabricating methods. Finally, we review challenges and relevant perspectives and potential solutions to address the related problems.
Collapse
Affiliation(s)
- Fengqiang Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Hao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoyu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yueheng Zhong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiman Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yi Xing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Muhuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Key Laboratory of Lightweight Structural Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Jun Liu
- National Key Laboratory on Electromagnetic Environment Effects and Electro-Optical Engineering, Nanjing 210007, China
| | - Hengda Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
25
|
Schippers C, Gutmann JS, Tsarkova LA. Revisiting the Contribution of Additives to the Long-Term Mechanical Stability and Hydrolytic Resistance of Highly Crystalline Polylactide Fibers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1984-1995. [PMID: 36573577 DOI: 10.1021/acsami.2c16159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Additives are widely used to improve the processability, toughness, and hydrolytic resistance of poly(lactic acid) (PLA)-based materials. This study compares neat PLA fibers and fibers made from PLA blends with either poly(butylene succinate) (PBS) as a plasticizer or poly(d-lactic acid) (PDLA) as a nucleating agent. The fibers have been characterized with regard to their physical and structural properties after fabrication as well as after artificial aging at elevated temperature and humidity conditions. All samples have been fabricated using industrial melt-spinning equipment, resulting in a high crystallinity of about XC = 80% and a good initial toughness. Long-term relaxation behavior has been assessed with a self-developed lifetime prediction model, which is successfully verified for semicrystalline blended fibers. Despite slight improvement of the fiber elasticity and ductility, both types of blended fibers demonstrated a reduced hydrolytic resistance. These results suggest a design strategy for neat durable PLA fibers through processing-induced high crystallinity and orientation, which provide improved hydrolytic stability while preserving tough mechanical performance.
Collapse
Affiliation(s)
| | - Jochen S Gutmann
- German Textile Research Center North-West (DTNW), 47798Krefeld, Germany
- Department of Physical Chemistry, University Duisburg-Essen and CENIDE, 45141Essen, Germany
| | - Larisa A Tsarkova
- German Textile Research Center North-West (DTNW), 47798Krefeld, Germany
| |
Collapse
|
26
|
Yang B, Yang Z, Tang L. Recent progress in fiber-based soft electronics enabled by liquid metal. Front Bioeng Biotechnol 2023; 11:1178995. [PMID: 37187888 PMCID: PMC10175636 DOI: 10.3389/fbioe.2023.1178995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Soft electronics can seamlessly integrate with the human skin which will greatly improve the quality of life in the fields of healthcare monitoring, disease treatment, virtual reality, and human-machine interfaces. Currently, the stretchability of most soft electronics is achieved by incorporating stretchable conductors with elastic substrates. Among stretchable conductors, liquid metals stand out for their metal-grade conductivity, liquid-grade deformability, and relatively low cost. However, the elastic substrates usually composed of silicone rubber, polyurethane, and hydrogels have poor air permeability, and long-term exposure can cause skin redness and irritation. The substrates composed of fibers usually have excellent air permeability due to their high porosity, making them ideal substrates for soft electronics in long-term applications. Fibers can be woven directly into various shapes, or formed into various shapes on the mold by spinning techniques such as electrospinning. Here, we provide an overview of fiber-based soft electronics enabled by liquid metals. An introduction to the spinning technology is provided. Typical applications and patterning strategies of liquid metal are presented. We review the latest progress in the design and fabrication of representative liquid metal fibers and their application in soft electronics such as conductors, sensors, and energy harvesting. Finally, we discuss the challenges of fiber-based soft electronics and provide an outlook on future prospects.
Collapse
Affiliation(s)
- Bowen Yang
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Zihan Yang
- Fashion Accessory Art and Engineering College, Beijing Institute of Fashion Technology, Beijing, China
- *Correspondence: Zihan Yang, ; Lixue Tang,
| | - Lixue Tang
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
- *Correspondence: Zihan Yang, ; Lixue Tang,
| |
Collapse
|
27
|
Yang Q, Zhang R, Liu M, Xue P, Liu L. Effect of Nano-SiO 2 on Different Stages of UHMWPE/HDPE Fiber Preparation via Melt Spinning. Polymers (Basel) 2022; 15:polym15010186. [PMID: 36616538 PMCID: PMC9823883 DOI: 10.3390/polym15010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Ultra-high molecular weight polyethylene (UHMWPE)/high-density polyethylene (HDPE) blend with lower viscosity is more suitable for melt spinning compared to pure UHMWPE; however, the mechanical property of the blend fiber is hard to dramatically improve (the maximum tensile strength of 998.27 MPa). Herein, different content modified-nano-SiO2 is incorporated to UHMWPE/HDPE blend fiber. After adding 0.5 wt% nano-SiO2, the tensile strength and initial modulus of UHMWPE/HDPE/nano-SiO2 fiber are increased to 1211 MPa and 12.81 GPa, respectively, 21.57% and 43.32% higher than that of UHMWPE/HDPE fiber. Meanwhile, the influence of the nano-SiO2 content on the performance for as-spun filament and fiber are emphatically analyzed. The crystallinity and molecular chain orientation of as-spun filament reduces with the addition of nano-SiO2. On the contrary, for fiber, the addition of nano-SiO2 promoted the crystallinity, molecular chain orientation and grain refinement more obvious at a lower content. Furthermore, the possible action mechanism of nano-SiO2 in the as-spun filament extrusion and fiber hot drawing stage is explained.
Collapse
Affiliation(s)
| | | | | | - Ping Xue
- Correspondence: ; Tel.: +86-10-6442-6911
| | | |
Collapse
|
28
|
Dulal M, Afroj S, Ahn J, Cho Y, Carr C, Kim ID, Karim N. Toward Sustainable Wearable Electronic Textiles. ACS NANO 2022; 16:19755-19788. [PMID: 36449447 PMCID: PMC9798870 DOI: 10.1021/acsnano.2c07723] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/10/2022] [Indexed: 06/06/2023]
Abstract
Smart wearable electronic textiles (e-textiles) that can detect and differentiate multiple stimuli, while also collecting and storing the diverse array of data signals using highly innovative, multifunctional, and intelligent garments, are of great value for personalized healthcare applications. However, material performance and sustainability, complicated and difficult e-textile fabrication methods, and their limited end-of-life processability are major challenges to wide adoption of e-textiles. In this review, we explore the potential for sustainable materials, manufacturing techniques, and their end-of-the-life processes for developing eco-friendly e-textiles. In addition, we survey the current state-of-the-art for sustainable fibers and electronic materials (i.e., conductors, semiconductors, and dielectrics) to serve as different components in wearable e-textiles and then provide an overview of environmentally friendly digital manufacturing techniques for such textiles which involve less or no water utilization, combined with a reduction in both material waste and energy consumption. Furthermore, standardized parameters for evaluating the sustainability of e-textiles are established, such as life cycle analysis, biodegradability, and recyclability. Finally, we discuss the current development trends, as well as the future research directions for wearable e-textiles which include an integrated product design approach based on the use of eco-friendly materials, the development of sustainable manufacturing processes, and an effective end-of-the-life strategy to manufacture next generation smart and sustainable wearable e-textiles that can be either recycled to value-added products or decomposed in the landfill without any negative environmental impacts.
Collapse
Affiliation(s)
- Marzia Dulal
- Centre
for Print Research (CFPR), University of
the West of England, Frenchay Campus, BristolBS16 1QY, United
Kingdom
| | - Shaila Afroj
- Centre
for Print Research (CFPR), University of
the West of England, Frenchay Campus, BristolBS16 1QY, United
Kingdom
| | - Jaewan Ahn
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Yujang Cho
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Chris Carr
- Clothworkers’
Centre for Textile Materials Innovation for Healthcare, School of
Design, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Nazmul Karim
- Centre
for Print Research (CFPR), University of
the West of England, Frenchay Campus, BristolBS16 1QY, United
Kingdom
| |
Collapse
|
29
|
Abrishamkar A, Nilghaz A, Saadatmand M, Naeimirad M, deMello AJ. Microfluidic-assisted fiber production: Potentials, limitations, and prospects. BIOMICROFLUIDICS 2022; 16:061504. [PMID: 36406340 PMCID: PMC9674390 DOI: 10.1063/5.0129108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 11/02/2022] [Indexed: 05/24/2023]
Abstract
Besides the conventional fiber production methods, microfluidics has emerged as a promising approach for the engineered spinning of fibrous materials and offers excellent potential for fiber manufacturing in a controlled and straightforward manner. This method facilitates low-speed prototype synthesis of fibers for diverse applications while providing superior control over reaction conditions, efficient use of precursor solutions, reagent mixing, and process parameters. This article reviews recent advances in microfluidic technology for the fabrication of fibrous materials with different morphologies and a variety of properties aimed at various applications. First, the basic principles, as well as the latest developments and achievements of microfluidic-based techniques for fiber production, are introduced. Specifically, microfluidic platforms made of glass, polymers, and/or metals, including but not limited to microfluidic chips, capillary-based devices, and three-dimensional printed devices are summarized. Then, fiber production from various materials, such as alginate, gelatin, silk, collagen, and chitosan, using different microfluidic platforms with a broad range of cross-linking agents and mechanisms is described. Therefore, microfluidic spun fibers with diverse diameters ranging from submicrometer scales to hundreds of micrometers and structures, such as cylindrical, hollow, grooved, flat, core-shell, heterogeneous, helical, and peapod-like morphologies, with tunable sizes and mechanical properties are discussed in detail. Subsequently, the practical applications of microfluidic spun fibers are highlighted in sensors for biomedical or optical purposes, scaffolds for culture or encapsulation of cells in tissue engineering, and drug delivery. Finally, different limitations and challenges of the current microfluidic technologies, as well as the future perspectives and concluding remarks, are presented.
Collapse
Affiliation(s)
| | - Azadeh Nilghaz
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 11155-9465 Tehran, Iran
| | - Mohammadreza Naeimirad
- Department of Materials and Textile Engineering, Faculty of Engineering, Razi University, 67144-14971 Kermanshah, Iran
| | - Andrew J. deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg1, 8049 Zurich, Switzerland
| |
Collapse
|
30
|
Chernikova EV, Osipova NI, Plutalova AV, Toms RV, Gervald AY, Prokopov NI, Kulichikhin VG. Melt-Spinnable Polyacrylonitrile-An Alternative Carbon Fiber Precursor. Polymers (Basel) 2022; 14:5222. [PMID: 36501614 PMCID: PMC9738362 DOI: 10.3390/polym14235222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
The review summarizes recent advances in the production of carbon fiber precursors based on melt-spun acrylonitrile copolymers. Approaches to decrease the melting point of polyacrylonitrile and acrylonitrile copolymers are analyzed, including copolymerization with inert comonomers, plasticization by various solvents and additives, among them the eco-friendly ways to use the carbon dioxide and ionic liquids. The methods for preliminary modification of precursors that provides the thermal oxidative stabilization of the fibers without their melting and the reduction in the stabilization duration without the loss of the mechanical characteristics of the fibers are discussed. Special attention is paid to different ways of crosslinking by irradiation with different sources. Examples of the carbon fibers preparation from melt-processable acrylonitrile copolymers are considered in detail. A patent search was carried out and the information on the methods for producing carbon fibers from precursors based on melt-spun acrylonitrile copolymers are summarized.
Collapse
Affiliation(s)
- Elena V. Chernikova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 3, 119991 Moscow, Russia
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii Pr. 29, 119991 Moscow, Russia
| | - Natalia I. Osipova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 3, 119991 Moscow, Russia
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii Pr. 29, 119991 Moscow, Russia
| | - Anna V. Plutalova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 3, 119991 Moscow, Russia
| | - Roman V. Toms
- Institute of Fine Chemical Technologies Named by M.V. Lomonosov, MIREA—Russian Technological University, 119571 Moscow, Russia
| | - Alexander Y. Gervald
- Institute of Fine Chemical Technologies Named by M.V. Lomonosov, MIREA—Russian Technological University, 119571 Moscow, Russia
| | - Nickolay I. Prokopov
- Institute of Fine Chemical Technologies Named by M.V. Lomonosov, MIREA—Russian Technological University, 119571 Moscow, Russia
| | - Valery G. Kulichikhin
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii Pr. 29, 119991 Moscow, Russia
| |
Collapse
|
31
|
Motloung MP, Mofokeng TG, Mokhena TC, Ray SS. Recent advances on melt-spun fibers from biodegradable polymers and their composites. INT POLYM PROC 2022. [DOI: 10.1515/ipp-2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Biodegradable polymers have become important in different fields of application, where biodegradability and biocompatibility are required. Herein, the melt spinning of biodegradable polymers including poly(lactic acid), poly(butylene succinate), polyhydroxyalkanoate (PHA), poly(ɛ-caprolactone) and their biocomposites is critically reviewed. Biodegradable polymer fibers with added functionalities are in high demand for various applications, including biomedical, textiles, and others. Melt spinning is a suitable technique for the development of biodegradable polymer fibers in a large-scale quantity, and fibers with a high surface area can be obtained with this technique. The processing variables during spinning have a considerable impact on the resulting properties of the fibers. Therefore, in this review, the processing-property relationship in biodegradable polymers, blends, and their composites is provided. The morphological characteristics, load-bearing properties, and the potential application of melt-spun biodegradable fibers in various sectors are also provided.
Collapse
Affiliation(s)
- Mpho Phillip Motloung
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre , Council for Scientific and Industrial Research , Pretoria 0001 , South Africa
- Department of Chemical Sciences , University of Johannesburg , Doornfontein 2028 , Johannesburg , South Africa
| | - Tladi Gideon Mofokeng
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre , Council for Scientific and Industrial Research , Pretoria 0001 , South Africa
| | - Teboho Clement Mokhena
- Nanotechnology Innovation Centre (NIC), Advanced Materials Division , Mintek , Randburg 2125 , South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre , Council for Scientific and Industrial Research , Pretoria 0001 , South Africa
- Department of Chemical Sciences , University of Johannesburg , Doornfontein 2028 , Johannesburg , South Africa
| |
Collapse
|
32
|
Martin AMV, Flores DC, Siacor FDC, Taboada EB, Tan NPB. Preparation of mango peel-waste pectin-based nanofibers by solution blow spinning (SBS). NANOTECHNOLOGY 2022; 33:495602. [PMID: 35994941 DOI: 10.1088/1361-6528/ac8b8b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
An essential prerequisite for successful solution blow spinning (SBS) is the presence of effective molecular entanglements of polymers in the solution. However, the fabrication of biopolymer fibers is not as straightforward as synthetic polymers. Particularly for biopolymers such as pectin, molecular entanglements are essential but insufficient for successful spinning through the SBS production method. Such a challenge is due to the biopolymer's complex nature. However, incorporating an easily spinnable polymer precursor, such as polyacrylonitrile (PAN), to pectin effectively enabled the production of fibers from the SBS process. In this process, PAN-assisted pectin nanofibers are produced with average diameters ranging from 410.75 ± 3.73 to 477.09 ± 6.60 nm using a feed flow rate of 5 ml h-1, air pressure of 3 bars, syringe tip to collector distance at 30 cm, and spinning time of 10 min. PAN in DMSO solvent at different volume ratios (i.e. 35%-55% v/v) was critical in assisting pectin to produce nanofibers. The addition of a high molecular weight polymer, PAN, to pectin also improved the viscoelasticity of the solution, eventually contributing to its successful SBS process. Furthermore, the composite SBS-spun fibers obtained suggest that its formation is concentration-dependent.
Collapse
Affiliation(s)
- Alvin Mar V Martin
- Department of Chemical Engineering, University of San Carlos, Nasipit, Talamban, Cebu City, 6000, The Philippines
| | - Dharyl C Flores
- Department of Chemical Engineering, University of San Carlos, Nasipit, Talamban, Cebu City, 6000, The Philippines
| | - Francis Dave C Siacor
- Department of Chemical Engineering, University of San Carlos, Nasipit, Talamban, Cebu City, 6000, The Philippines
| | - Evelyn B Taboada
- Department of Chemical Engineering, University of San Carlos, Nasipit, Talamban, Cebu City, 6000, The Philippines
| | - Noel Peter B Tan
- Department of Chemical Engineering, College of Technology, University of San Agustin, Iloilo City, 5000, The Philippines
- Center for Advanced New Materials, Engineering, and Emerging Technologies (CANMEET), University of San Agustin, Iloilo City, 5000, The Philippines
| |
Collapse
|
33
|
Quan Q, Zhang Y, Piao H, Zhang H, Zhao J. Polybutyrolactam (PBY) fiber: A promising biobased and biodegradable fiber fabricated by dry-jet-wet spinning. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Wang Z, Song M, Li X, Chen J, Liang T, Chen X, Yan Y. Copolymerization-Regulated Hydrogen Bonds: A New Routine for High-Strength Copolyamide 6/66 Fibers. Polymers (Basel) 2022; 14:polym14173517. [PMID: 36080592 PMCID: PMC9460282 DOI: 10.3390/polym14173517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Hydrogen bond interactions are important for nylon fibers, which improve its mechanical properties and crystallization behavior, while hindering the movement and orientation of the molecular chain during the drawn process. In this study, hexamethylene adipamide was used as the second monomer in copolymerization with ε-caprolactam to obtain copolyamide 6/66 (CoPA), and high-tenacity fibers with a maximum value up to 8.0 cN/dtex were achieved by a multi-step drawn and thermal setting process. Results show that the hexamethylene–adipamide ratio affected the draw ratio (DR) of the as-spun fiber, on the tenacity of final high-performance fiber, and on crystalline. Both DR and tenacity showed evident increases with the hexamethylene–adipamide ratio up to 6% in CoPA and then changed smoothly. However, XRD and DSC results illustrate a decreased tendency with regard to crystallinity. The attenuated in-site total reflection Fourier transform infrared (ATR-FTIR) spectra were used to study the hydrogen bond interaction between the C=O group and N–H group and the crystal form of the fiber. Results show that the copolymerization destroyed the regularity of the main chain of CoPA and reduces the interaction of interstrand hydrogen bonds, facilitating the formation of the γ-crystalline form in as-spun fibers, fulfilling the transition from the γ to α crystalline form during the fiber-drawing step because of the release of the C=O group and N–H group from the hydrogen bond interaction at an elevated temperature close to the molten temperature of CoPA, and then reforming during the thermal-setting step which soiled the crystalline and improved the tenacity of the fiber. The copolymerization with a homologous monomer regulates the hydrogen bond interaction, fulfills the high drawn ratio and high tenacity fiber, and provides a new route for high-performance fiber preparation using traditional fiber formation of polymers.
Collapse
Affiliation(s)
- Zichao Wang
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ming Song
- Guangdong Xinhui Meida Nylon Co., Ltd., Jiangmen 529100, China
| | - Xilin Li
- Guangdong Xinhui Meida Nylon Co., Ltd., Jiangmen 529100, China
| | - Jizong Chen
- Guangdong Xinhui Meida Nylon Co., Ltd., Jiangmen 529100, China
| | - Tiexian Liang
- Guangdong Xinhui Meida Nylon Co., Ltd., Jiangmen 529100, China
| | - Xin Chen
- Guangdong Xinhui Meida Nylon Co., Ltd., Jiangmen 529100, China
| | - Yurong Yan
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Key Lab of Guangdong High Property & Functional Polymer Materials, Guangzhou 510640, China
- Correspondence:
| |
Collapse
|
35
|
Effects of Nanoscale Morphology on Optical Properties of Photoluminescent Polymer Optical Fibers. Polymers (Basel) 2022; 14:polym14163262. [PMID: 36015517 PMCID: PMC9412683 DOI: 10.3390/polym14163262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Bicomponent photoluminescent polymer optical fibers (PL-POFs) have been melt-spun and in-situ drawn to different extents. The results suggest that scattering in the sheath can effectively increase the photoluminescent dye excitation probability in the fiber core. The core/sheath PL-POFs are made of a semi-crystalline fluoropolymer sheath of low refractive index (RI) and an amorphous cycloolefin polymeric core of high RI, which is doped with a luminescent dye. The axial light emission, as well as the guiding attenuation coefficients of the core/sheath PL-POFs, have been measured using a side-illumination set-up. The incident blue laser is down-converted to red light, which is re-emitted and partially guided by the core. The axial light emission is measured at the fiber tip as a function of the distance of the illumination position to the integrating sphere. It is demonstrated that the presence of a semi-crystalline sheath significantly enhances the axial light emission and that it also lowers the attenuation coefficient, compared to the emission and guiding properties of PL core-only fibers. Additionally, the attenuation coefficient has been found to be lower in more strongly drawn PL-POFs. Wide-angle X-ray diffraction and small-angle X-ray scattering experiments reveal structural differences in differently drawn PL-POFs that can be linked to the observed differences in the optical properties.
Collapse
|
36
|
Rajak DK, Wagh PH, Linul E. A Review on Synthetic Fibers for Polymer Matrix Composites: Performance, Failure Modes and Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4790. [PMID: 35888257 PMCID: PMC9321205 DOI: 10.3390/ma15144790] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 01/24/2023]
Abstract
In the last decade, synthetic fiber, as a reinforcing specialist, has been mainly used in polymer matrix composites (PMC's) to provide lightweight materials with improved stiffness, modulus, and strength. The significant feature of PMC's is their reinforcement. The main role of the reinforcement is to withstand the load applied to the composite. However, in order to fulfill its purpose, the reinforcements must meet some basic criteria such as: being compatible with the matrix, making chemical or adhesion bonds with the matrix, having properties superior to the matrix, presenting the optimal orientation in composite and, also, having a suitable shape. The current review reveals a detailed study of the current progress of synthetic fibers in a variety of reinforced composites. The main properties, failure modes, and applications of composites based on synthetic fibers are detailed both according to the mentioned criteria and according to their types (organic or inorganic fibers). In addition, the choice of classifications, applications, and properties of synthetic fibers is largely based on their physical and mechanical characteristics, as well as on the synthesis process. Finally, some future research directions and challenges are highlighted.
Collapse
Affiliation(s)
- Dipen Kumar Rajak
- Department of Mechanical Engineering, G. H. Raisoni Institute of Business Management, Jalgaon 425002, MH, India
| | - Pratiksha H. Wagh
- Department of Mechanical Engineering, G. H. Raisoni Institute of Engineering and Technology, Pune 412207, MH, India;
| | - Emanoil Linul
- Department of Mechanics and Strength of Materials, Politehnica University Timisoara, 300 222 Timisoara, Romania
| |
Collapse
|
37
|
Approaches to Preceramic Polymer Fiber Fabrication and On-Demand Applications. MATERIALS 2022; 15:ma15134546. [PMID: 35806670 PMCID: PMC9267150 DOI: 10.3390/ma15134546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022]
Abstract
The demand for lightweight, high-modulus, and temperature-resistant materials for aerospace and other high-temperature applications has contributed to the development of ceramic fibers that exhibit most of the favorable properties of monolithic ceramics. This review demonstrates preceramic-based polymer fiber spinning and fiber classifications. We discuss different types of fiber spinning and the advantages of each. Tuning the preceramic polymer chemical properties, molar mass, functional chemistry influences, and incorporation with fillers are thoroughly investigated. Further, we present the applications of preceramic-based polymer fibers in different fields including aerospace, biomedical, and sensor applications. This concise review summarizes recent developments in preceramic fiber chemistry and essential applications.
Collapse
|
38
|
Insect antennae: Coupling blood pressure with cuticle deformation to control movement. Acta Biomater 2022; 147:102-119. [PMID: 35649508 DOI: 10.1016/j.actbio.2022.05.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/13/2023]
Abstract
Insect antennae are hollow, blood-filled fibers with complex shape. Muscles in the two basal segments control antennal movement, but the rest (flagellum) is muscle-free. The insect can controllably flex, twist, and maneuver its antennae laterally. To explain this behavior, we performed a comparative study of structural and tensile properties of the antennae of Periplaneta americana (American cockroach), Manduca sexta (Carolina hawkmoth), and Vanessa cardui (painted lady butterfly). These antennae demonstrate a range of distinguishable tensile properties, responding either as brittle or strain-adaptive fibers that stiffen when stretched. Scanning electron microscopy and high-speed imaging of antennal breakup during stretching revealed complex coupling of blood pressure and cuticle deformation in antennae. A generalized Lamé theory of solid mechanics was developed to include the force-driven deformation of blood-filled antennal tubes. We validated the theory against experiments with artificial antennae with no adjustable parameters. Blood pressure increased when the insect inflated its antennae or decreased below ambient pressure when an external tensile load was applied to the antenna. The pressure-cuticle coupling can be controlled through changes of the blood volume in the antennal lumen. In insects that do not fill the antennal lumen with blood, this blood pressure control is lacking, and the antennae react only by muscular activation. We suggest that the principles we have discovered for insect antennae apply to other appendages that share a leg-derived ancestry. Our work offers promising new applications for multifunctional fiber-based microfluidics that could transport fluids and be manipulated by the same fluid on demand. STATEMENT OF SIGNIFICANCE: Insect antennae are blood-filled, segmented fibers with muscles in the two basal segments. The long terminal segment is muscle-free but can be flexed. To explain this behavior, we examined structure-function relationships of antennae of cockroaches, hawkmoths, and butterflies. Hawkmoth antennae behaved as brittle fibers, but butterfly and cockroach antennae showed strain-adaptive behavior like fibers that stiffen when stretched. Videomicroscopy of antennal breakup during stretching revealed complex coupling of blood pressure and cuticle deformation. Our solid mechanics model explains this behavior. Because antennae are leg-derived appendages, we suggest that the principles we found apply to other appendages of leg-derived ancestry. Our work offers new applications for multifunctional fiber-based microfluidics that could transport fluids and be manipulated by the fluid on demand.
Collapse
|
39
|
Kopf S, Åkesson D, Skrifvars M. Textile Fiber Production of Biopolymers – A Review of Spinning Techniques for Polyhydroxyalkanoates in Biomedical Applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2076693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sabrina Kopf
- Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, Borås, Sweden
| | - Dan Åkesson
- Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, Borås, Sweden
| | - Mikael Skrifvars
- Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, Borås, Sweden
| |
Collapse
|
40
|
Fabrication and Performance of Phase Change Thermoregulated Fiber from Bicomponent Melt Spinning. Polymers (Basel) 2022; 14:polym14091895. [PMID: 35567064 PMCID: PMC9101289 DOI: 10.3390/polym14091895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 12/04/2022] Open
Abstract
High thermostability of phase change materials is the critical factor for producing phase change thermoregulated fiber (PCTF) by melt spinning. To achieve the production of PCTF from melt spinning, a composite phase change material with high thermostability was developed, and a sheath-core structure of PCTF was also developed from bicomponent melt spinning. The sheath layer was polyamide 6, and the core layer was made from a composite of polyethylene and paraffin. The PCTF was characterized by scanning electron microscopy (SEM), thermal analysis (TG), Fourier Transform Infra-Red (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and fiber strength tester. The results showed that the core material had a very high thermostability at a volatilization temperature of 235 °C, the PCTF had an endothermic and exothermic process in the temperature range of 20–30 °C, and the maximum latent heat of the PCTF reached 20.11 J/g. The tenacity of the PCTF gradually decreased and then reached a stable state with the increase of temperature from −25 °C to 80 °C. The PCTF had a tenacity of 343.59 MPa at 0 °C, and of 254.63 MPa at 25 °C, which fully meets the application requirements of fiber in textiles.
Collapse
|
41
|
Analysis of Factors Affecting Field Applicability and Long-Term Performance Analysis of LCP Woven Geotextile for Soft Ground Reinforcement. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In recent years, natural disasters have been increasing worldwide due to rapid climate change, and the damage to ground structures is increasing due to the destruction of the ground. Damage to the ground structure can be reduced or eliminated by using LCP woven geotextiles as ground reinforcement. Therefore, in this study, the tensile properties, reduction factor affecting long-term performance, creep behavior, and fatigue properties of LCP woven geotextile were tested and analyzed. As a result, in the case of tensile properties, the maximum tensile strength of the LCP woven geotextile was 192.94 kN/m2 in the MD direction, and it was generally constructed so that the load was transmitted. The total reduction factor is 1.86, which could be applied within 53.8% of the design strength when applied to the field. In addition, it was considered that the effect of the reduction factor for creep deformation on the long-term performance was dominant. Through the analysis of the creep behavior and fatigue characteristics, considering that the creep limit strain was 10%, if an earthquake occurred after 50 years of construction, it can be predicted that up to 90% of UTS would exhibit seismic performance. When LCP woven geotextile was applied as reinforcement, if the cyclic load due to fatigue failure was less than 478,000 times per year, it was considered that there was little possibility of the collapse of the ground structure.
Collapse
|
42
|
Bolskis E, Adomavičiūtė E, Griškonis E. Formation and Investigation of Mechanical, Thermal, Optical and Wetting Properties of Melt-Spun Multifilament Poly(lactic acid) Yarns with Added Rosins. Polymers (Basel) 2022; 14:polym14030379. [PMID: 35160368 PMCID: PMC8839943 DOI: 10.3390/polym14030379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/18/2022] Open
Abstract
One method for adding enhancing properties to textile materials is the insertion of natural ingredients into the textile products during the manufacturing or finishing process. The aim of this research is to investigate the formation of biodegradable melt-spun multifilament Poly(lactic acid) (PLA) yarns with different contents (i.e., 5%, 10%, and 15%) of natural material–rosin, also known as colophony. In this study, multifilament yarns were successfully formed from PLA and a natural substance–pine rosin by melt-spinning them at two different draw ratios (i.e., 1.75 and 2.75). The results indicated that a 1.75 draw ratio caused the formation of PLA and PLA/rosin yarns that were brittle. The presence of rosin (i.e., 5% and 10%) in multifilament yarns decreased the mechanical properties of the PLA/rosin melt-spun multifilament yarns’ tenacity (cN/tex), breaking tenacity (cN/tex), and tensile strain (%) and elongation at break (%) and increased absorbance in the entire UV region spectra. In addition, the melting point and degree of crystallinity decreased and there was an increase in the wetting angle compared with pure PLA multifilament. The investigation of melt-spun yarns with Raman spectroscopy proved the presence of rosin in PLA melt-spun yarns.
Collapse
Affiliation(s)
- Evaldas Bolskis
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 51424 Kaunas, Lithuania;
- Correspondence:
| | - Erika Adomavičiūtė
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 51424 Kaunas, Lithuania;
| | - Egidijus Griškonis
- Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19, 50254 Kaunas, Lithuania;
| |
Collapse
|
43
|
Cellulose-Based Nanofibers Processing Techniques and Methods Based on Bottom-Up Approach-A Review. Polymers (Basel) 2022; 14:polym14020286. [PMID: 35054691 PMCID: PMC8781687 DOI: 10.3390/polym14020286] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/27/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
In the past decades, cellulose (one of the most important natural polymers), in the form of nanofibers, has received special attention. The nanofibrous morphology may provide exceptional properties to materials due to the high aspect ratio and dimensions in the nanometer range of the nanofibers. The first feature may lead to important consequences in mechanical behavior if there exists a particular orientation of fibers. On the other hand, nano-sizes provide a high surface-to-volume ratio, which can have important consequences on many properties, such as the wettability. There are two basic approaches for cellulose nanofibers preparation. The top-down approach implies the isolation/extraction of cellulose nanofibrils (CNFs) and nanocrystals (CNCs) from a variety of natural resources, whereby dimensions of isolates are limited by the source of cellulose and extraction procedures. The bottom-up approach can be considered in this context as the production of nanofibers using various spinning techniques, resulting in nonwoven mats or filaments. During the spinning, depending on the method and processing conditions, good control of the resulting nanofibers dimensions and, consequently, the properties of the produced materials, is possible. Pulp, cotton, and already isolated CNFs/CNCs may be used as precursors for spinning, alongside cellulose derivatives, namely esters and ethers. This review focuses on various spinning techniques to produce submicrometric fibers comprised of cellulose and cellulose derivatives. The spinning of cellulose requires the preparation of spinning solutions; therefore, an overview of various solvents is presented showing their influence on spinnability and resulting properties of nanofibers. In addition, it is shown how bottom-up spinning techniques can be used for recycling cellulose waste into new materials with added value. The application of produced cellulose fibers in various fields is also highlighted, ranging from drug delivery systems, high-strength nonwovens and filaments, filtration membranes, to biomedical scaffolds.
Collapse
|
44
|
Selli F, Hufenus R, Gooneie A, Erdoğan UH, Perret E. Structure-Property Relationship in Melt-Spun Poly(hydroxybutyrate-co-3-hexanoate) Monofilaments. Polymers (Basel) 2022; 14:200. [PMID: 35012222 PMCID: PMC8747132 DOI: 10.3390/polym14010200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Poly(hydroxybutyrate-co-3-hexanoate) (PHBH) is a biodegradable thermoplastic polyester with the potential to be used in textile and medical applications. We have aimed at developing an upscalable melt-spinning method to produce fine biodegradable PHBH filaments without the use of an ice water bath or offline drawing techniques. We have evaluated the effect of different polymer grades (mol% 3-hydroxy hexanoate, molecular weight etc.) and production parameters on the tensile properties of melt-spun filaments. PHBH monofilaments (diameter < 130 µm) have been successfully melt-spun and online drawn from three different polymer grades. We report thermal and rheological properties of the polymer grades as well as morphological, thermal, mechanical, and structural properties of the melt-spun filaments thereof. Tensile strengths up to 291 MPa have been achieved. Differences in tensile performance have been correlated to structural differences with wide-angle X-ray diffraction and small-angle X-ray scattering. The measurements obtained have revealed that a synergetic interaction of a highly oriented non-crystalline mesophase with highly oriented α-crystals leads to increased tensile strength. Additionally, the effect of aging on the structure and tensile performance has been investigated.
Collapse
Affiliation(s)
- Figen Selli
- Department of Textile Engineering, Dokuz Eylul University, Izmir 35397, Turkey; (F.S.); (U.H.E.)
- Laboratory for Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; (R.H.); (A.G.)
| | - Rudolf Hufenus
- Laboratory for Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; (R.H.); (A.G.)
| | - Ali Gooneie
- Laboratory for Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; (R.H.); (A.G.)
| | - Umit Halis Erdoğan
- Department of Textile Engineering, Dokuz Eylul University, Izmir 35397, Turkey; (F.S.); (U.H.E.)
| | - Edith Perret
- Laboratory for Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; (R.H.); (A.G.)
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
45
|
Bascucci C, Duretek I, Lehner S, Holzer C, Gaan S, Hufenus R, Gooneie A. Investigating thermomechanical recycling of poly(ethylene terephthalate) containing phosphorus flame retardants. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2021.109783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Perret E, Chen K, Braun O, Muff R, Hufenus R. Radial gradients in PET monofilaments: A Raman mapping and SAXS tomography study. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Ewaldz E, Randrup J, Brettmann B. Solvent Effects on the Elasticity of Electrospinnable Polymer Solutions. ACS POLYMERS AU 2021; 2:108-117. [PMID: 36855340 PMCID: PMC9954283 DOI: 10.1021/acspolymersau.1c00041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultrafine fibers manufactured through electrospinning are a frontrunner for advanced fiber applications, but transitioning from potential to commercial applications for ultrafine fibers requires a better understanding of the behavior of polymer solutions in electrospinning to enable the design of more complex spinning dopes. In complex fluids, there are viscoelastic stresses and microstructural transitions that alter free surface flows. These may not be seen in shear rheology; therefore, an in-depth analysis of the extensional rheological behavior must be performed. In this work, we use dripping-onto-substrate rheometry to characterize the extensional viscosities of electrospinning dopes from four polymer solutions commonly used in electrospinning (low- and high-molecular-weight polyvinylpyrrolidone in methanol and water as well as poly(ethylene oxide) and poly(vinyl alcohol) in water). We link the electrospinnability, characterized through fiber morphology, to the extensional rheological properties for semidilute and entangled polymer solutions and show that high-surface-tension solvents require higher extensional viscosities and relaxation times to form smooth fibers and that the Deborah and Ohnesorge numbers are a promising method of determining electrospinnability. Through this tie between solvent characteristics, viscoelasticity, and electrospinnability, we will enable the design of more complex spinning dopes amenable to applications in wearable electronics, pharmaceuticals, and more.
Collapse
Affiliation(s)
- Elena Ewaldz
- Materials
Science and Engineering, Georgia Institute
of Technology, 711 Ferst Drive, Atlanta, Georgia 30332, United
States
| | - Joshua Randrup
- Chemical
and Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United
States
| | - Blair Brettmann
- Materials
Science and Engineering, Georgia Institute
of Technology, 711 Ferst Drive, Atlanta, Georgia 30332, United
States,Chemical
and Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United
States,
| |
Collapse
|
48
|
The new generation fibers: a review of high performance and specialty fibers. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Ivan’kova E, Vaganov G, Didenko A, Popova E, Elokhovskiy V, Bugrov A, Svetlichnyi V, Kasatkin I, Yudin V. Investigation of Polyetherimide Melt-Extruded Fibers Modified by Carbon Nanoparticles. MATERIALS 2021; 14:ma14237251. [PMID: 34885406 PMCID: PMC8658288 DOI: 10.3390/ma14237251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022]
Abstract
The fibers based on thermoplastic partially crystalline polyetherimide R-BAPB modified by vapor grown carbon nanofibers (VGCF) were prepared by melt extrusion, exposed to orientational drawing, and crystallized. All of the samples were examined by scanning electron microscopy, X-ray scattering, and differential scanning calorimetry to study how the carbon nanofiller influences on the internal structure and crystallization behavior of the obtained R-BAPB fibers. The mechanical properties of the composite R-BAPB fibers were also determined. It was found that VGCF nanoparticles introduced into R-BAPB polyimide can act as a nucleating agent that leads, in turn, to significant changes in the composite fibers morphology as well as thermal and mechanical characteristics. VGCF are able to improve an orientation degree of the R-BAPB macromolecules along the fiber direction, accelerate crystallization rate of the polymer, and enhance the fiber stability during crystallization process.
Collapse
Affiliation(s)
- Elena Ivan’kova
- Institute of Macromolecular Compounds of Russian Academy of Sciences, V.O., Bol’shoy pr. 31, St. Petersburg 199004, Russia; (G.V.); (A.D.); (E.P.); (V.E.); (A.B.); (V.S.); (V.Y.)
- Correspondence:
| | - Gleb Vaganov
- Institute of Macromolecular Compounds of Russian Academy of Sciences, V.O., Bol’shoy pr. 31, St. Petersburg 199004, Russia; (G.V.); (A.D.); (E.P.); (V.E.); (A.B.); (V.S.); (V.Y.)
| | - Andrey Didenko
- Institute of Macromolecular Compounds of Russian Academy of Sciences, V.O., Bol’shoy pr. 31, St. Petersburg 199004, Russia; (G.V.); (A.D.); (E.P.); (V.E.); (A.B.); (V.S.); (V.Y.)
| | - Elena Popova
- Institute of Macromolecular Compounds of Russian Academy of Sciences, V.O., Bol’shoy pr. 31, St. Petersburg 199004, Russia; (G.V.); (A.D.); (E.P.); (V.E.); (A.B.); (V.S.); (V.Y.)
| | - Vladimir Elokhovskiy
- Institute of Macromolecular Compounds of Russian Academy of Sciences, V.O., Bol’shoy pr. 31, St. Petersburg 199004, Russia; (G.V.); (A.D.); (E.P.); (V.E.); (A.B.); (V.S.); (V.Y.)
| | - Alexander Bugrov
- Institute of Macromolecular Compounds of Russian Academy of Sciences, V.O., Bol’shoy pr. 31, St. Petersburg 199004, Russia; (G.V.); (A.D.); (E.P.); (V.E.); (A.B.); (V.S.); (V.Y.)
- Department of Physical Chemistry, Saint Petersburg Electrotechnical University (ETU “LETI”), ul. Professora Popova 5, St. Petersburg 197376, Russia
| | - Valentin Svetlichnyi
- Institute of Macromolecular Compounds of Russian Academy of Sciences, V.O., Bol’shoy pr. 31, St. Petersburg 199004, Russia; (G.V.); (A.D.); (E.P.); (V.E.); (A.B.); (V.S.); (V.Y.)
| | - Igor Kasatkin
- Research Centre for X-ray Diffraction Studies, Saint Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia;
| | - Vladimir Yudin
- Institute of Macromolecular Compounds of Russian Academy of Sciences, V.O., Bol’shoy pr. 31, St. Petersburg 199004, Russia; (G.V.); (A.D.); (E.P.); (V.E.); (A.B.); (V.S.); (V.Y.)
| |
Collapse
|
50
|
Fitting of 2D WAXD data: Mesophases in polymer fibers. Data Brief 2021; 39:107466. [PMID: 34703857 PMCID: PMC8521234 DOI: 10.1016/j.dib.2021.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/08/2021] [Accepted: 10/05/2021] [Indexed: 11/27/2022] Open
Abstract
This data article presents fitting results of wide-angle x-ray diffraction (WAXD) patterns of melt-spun polymer fibers from amorphous materials (polycarbonate (PC), cyclo-olefin polymer (COP), copolyamide (coPA), polyethylene terephthalate glycol (PETG)) and semi-crystalline materials (polyethylene terephthalate (PET), poly-3-hydroxybutyrate(P3HB)). The data was fit using the fitting algorithms, previously described in the publication by Perret and Hufenus ‘Insights into strain-induced solid mesophases in melt-spun polymer fibers’ [1]. Fitting results of WAXD data and details about azimuthal, equatorial, meridional or off-axis profiles are presented in sections 1.1-1.2. SAXS patterns of fibers, melt-spun from amorphous materials, are shown in section 1.3. Fiber production parameters are given in section 2.1, and a description of the WAXD measurements and fitting details, e.g., the chosen fitting parameters, are given in section 2.2.
Collapse
|