1
|
Jiang L, Weng L, Yu X, Lin J. The morphology of alveolar bone of the mandibular second and third molars in skeletal Class III patients. Orthod Craniofac Res 2024; 27:909-916. [PMID: 39011786 DOI: 10.1111/ocr.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVES To investigate the alveolar bone morphology of the mandibular second and third molars in skeletal Class III patients from a buccolingual direction. METHODS Sixty skeletal Class III patients were recruited. The alveolar bone width, buccal cortical bone thickness and lingual cortical bone thickness were measured in five planes from mesial to distal and at five depths from gingival to root. The effects of the gender of the patients, the second molar lingual inclination and the third molar on alveolar bone width and cortical bone thickness were evaluated. To explore the effect of third molar extraction on alveolar bone morphology, the measurements before and after third molar extraction were compared. RESULTS The impacted third molar had significantly greater alveolar bone width and thicker buccal cortical bone at the cervical third of the molar, while the erupted third molar had greater alveolar bone width at the apical third. Three weeks after third molar extraction, these advantages would weaken owing to the reconstruction of the alveolar bone. Patients with lingually inclined molar were observed to own thicker lingual cortical bone. Males tended to have greater alveolar bone width, but no significant differences were shown in this study. CONCLUSIONS The growth of the third molar and the second molar lingual inclination affect the alveolar bone morphology of the mandibular second and third molars significantly, but gender has trivial effects on the morphology. The alveolar bone morphology of the mandibular second and third molars would change 3 weeks after third molar extraction.
Collapse
Affiliation(s)
- Liya Jiang
- Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Luxi Weng
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Yu
- Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Jun Lin
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Ioana TR, Boeru FG, Antoniac I, Mitruț I, Staicu IE, Rauten AM, Uriciuc WA, Manolea HO. Surface Analysis of Orthodontic Mini-Implants after Their Clinical Use. J Funct Biomater 2024; 15:244. [PMID: 39330220 PMCID: PMC11433500 DOI: 10.3390/jfb15090244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/28/2024] Open
Abstract
Temporary anchorage devices (TADs) are orthodontic mini-implants with remarkable characteristics that, once inserted, present mechanical retention (primary stability) without the process of bone osseointegration. However, interaction with the biological environment may cause changes in the morphology of the external surface of dental TADs. In this study, we used 17 TADs made of aluminum-vanadium titanium alloy, produced by two companies, which were analyzed through optical microscopy after being removed from the patients during orthodontic treatment. We evaluated the changes that appeared on the TADs' surfaces after their use in the biological environment, depending on the morphological area in which they were inserted. In our study, we found changes in the morphology of the implant surface, and especially deposits of biological material in all study groups. On all samples examined after clinical use, regardless of the period of use, corrosion surfaces in different locations were observed. Our obtained results support the idea that the biological environment is aggressive for mini-implant structures, always producing changes to their surface during their clinical use.
Collapse
Affiliation(s)
- Tamara Rahela Ioana
- Department of Orthodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (T.R.I.); (I.E.S.); (A.M.R.)
| | | | - Iulian Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Ioana Mitruț
- Department of Dental Technology, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ionela Elisabeta Staicu
- Department of Orthodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (T.R.I.); (I.E.S.); (A.M.R.)
| | - Anne Marie Rauten
- Department of Orthodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (T.R.I.); (I.E.S.); (A.M.R.)
| | - Willi Andrei Uriciuc
- Department of Oral Rehabilitation, Faculty of Dental Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Horia Octavian Manolea
- Department of Dental Materials, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
3
|
Khaled Z, Ilia G, Watz C, Macașoi I, Drăghici G, Simulescu V, Merghes PE, Varan NI, Dehelean CA, Vlaia L, Sima L. The Biological Impact of Some Phosphonic and Phosphinic Acid Derivatives on Human Osteosarcoma. Curr Issues Mol Biol 2024; 46:4815-4831. [PMID: 38785558 PMCID: PMC11120618 DOI: 10.3390/cimb46050290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Osteosarcoma malignancy currently represents a major health problem; therefore, the need for new therapy approaches is of great interest. In this regard, the current study aims to evaluate the anti-neoplastic potential of a newly developed phosphinic acid derivative (2-carboxyethylphenylphosphinic acid) and, subsequently, to outline its pharmaco-toxicological profile by employing two different in vitro human cell cultures (keratinocytes-HaCaT-and osteosarcoma SAOS-2 cells), employing different techniques (MTT assay, cell morphology assessment, LDH assay, Hoechst staining and RT-PCR). Additionally, the results obtained are compared with three commercially available phosphorus-containing compounds (P1, P2, P3). The results recorded for the newly developed compound (P4) revealed good biocompatibility (cell viability of 77%) when concentrations up to 5 mM were used on HaCaT cells for 24 h. Also, the HaCaT cultures showed no significant morphological alterations or gene modulation, thus achieving a biosafety profile even superior to some of the commercial products tested herein. Moreover, in terms of anti-osteosarcoma activity, 2-carboxyethylphenylphosphinic acid expressed promising activity on SAOS-2 monolayers, the cells showing viability of only 55%, as well as apoptosis features and important gene expression modulation, especially Bid downregulation. Therefore, the newly developed compound should be considered a promising candidate for further in vitro and in vivo research related to osteosarcoma therapy.
Collapse
Affiliation(s)
- Zakzak Khaled
- Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (Z.K.); (L.V.)
- Formulation and Technology of Drugs Research Center, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Gheorghe Ilia
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University Timisoara, 16 Pestalozzi Street, 300115 Timisoara, Romania; (G.I.); (V.S.)
| | - Claudia Watz
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy of Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (I.M.); (G.D.); (C.A.D.)
| | - Ioana Macașoi
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (I.M.); (G.D.); (C.A.D.)
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - George Drăghici
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (I.M.); (G.D.); (C.A.D.)
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Vasile Simulescu
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University Timisoara, 16 Pestalozzi Street, 300115 Timisoara, Romania; (G.I.); (V.S.)
| | - Petru Eugen Merghes
- Department of Physical Education and Sport, “King Mihai I” University of Life Sciences from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (P.E.M.); (N.I.V.)
| | - Narcis Ion Varan
- Department of Physical Education and Sport, “King Mihai I” University of Life Sciences from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (P.E.M.); (N.I.V.)
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (I.M.); (G.D.); (C.A.D.)
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Lavinia Vlaia
- Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (Z.K.); (L.V.)
- Formulation and Technology of Drugs Research Center, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Laurențiu Sima
- Department of Surgery I, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| |
Collapse
|
4
|
Cui MX, Qi Y, Xue LF, Xu YX, Yue J, Zhao JZ, Li C, Xiao WL. Comparative study of stress characteristics around the adjacent teeth tissues during insertion of mini-screws with different insertion angles: A three-dimensional finite element study. J Mech Behav Biomed Mater 2023; 142:105879. [PMID: 37141745 DOI: 10.1016/j.jmbbm.2023.105879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023]
Abstract
With a limited alveolar bone position, there is a high risk that mini-screws (MS) implants could cause damage to the adjacent teeth. To reduce this damage, the position and tilt angle of the MS must be optimized. The aim of this study was to assess the effect of MS implantation angle on the stress exerted on adjacent periodontal membrane and roots. A three-dimensional finite element model containing dentition, periodontal ligament, jaw and MS were established based on the CBCT images and MS scanning data. The MS was first inserted perpendicular to the surface of the bone at specific locations and then tilted at an angle of 10° and 20° to the mesial and distal teeth, respectively. The stress distribution in the periodontal tissue of the adjacent teeth was analyzed after MS implantation at different angles.The stress on the adjacent tooth root and periodontal ligament was most uniformly distributed when the MS was inserted vertically. It changed 9.4-97.7% when the axis of MS was tilted at 10-degree and 20-degree angles from the point of vertical insertion. The stresses experienced by the periodontal ligament and the root are similar. When the horizontal angle of the MS insertion was changed, the MS was closer to the adjacent tooth, resulting in greater stress near the PDL and root. It was recommended to insert the MS vertically into the alveolar bone surface to avoid root damage due to excessive stress.
Collapse
Affiliation(s)
- Ming-Xue Cui
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China; School of Stomatology, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yan Qi
- Department of Stomatology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, China
| | - Ling-Fa Xue
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Yao-Xiang Xu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Jin Yue
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Jin-Ze Zhao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China; School of Stomatology, Qingdao University, Qingdao, Shandong, 266071, China
| | - Cong Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China; School of Stomatology, Qingdao University, Qingdao, Shandong, 266071, China
| | - Wen-Lin Xiao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China; School of Stomatology, Qingdao University, Qingdao, Shandong, 266071, China.
| |
Collapse
|
5
|
Wang Y, Sun J, Shi Y, Li X, Wang Z. Buccal bone thickness of posterior mandible for microscrews implantation in molar distalization. Ann Anat 2022; 244:151993. [PMID: 36041697 DOI: 10.1016/j.aanat.2022.151993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/04/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND This study explored the inter-radicular space and buccal bone thickness of the posterior mandibular region to provide an appropriate miniscrew insertion site for lower dentition distalization. METHODS The cone-beam computed tomographic (CBCT) records of 63 subjects were collected. Buccal bone thickness (BBT) was measured at four sections: (I) the root of the second premolar(P1); (II) the mesial root of the first molar(P2); (III) the distal root of the first molar(P3); (IV) the mesial root of the second molar(P4). The narrowest inter-radicular space of the four sections was also detected. Both BBT and inter-radicular space were measured at 4 height levels, 2, 4, 6 and 8mm from the alveolar ridge. RESULTS The largest BBT was observed at the mesial root of the second molar at 6 and 8mm, demonstrating a thickness of 6.77±2.50mm and 7.46±1.94mm, respectively. It provided sufficient coverage for mini-implants inserted 10°-30° oblique to the root. Therefore, during distalization of the mandibular dentition, roots have sufficient space to bypass the inclined mini-implants on the lingual side, avoiding miniscrew-root contact. The width between the mesiodistal roots of the first molar was the smallest, showing 1.53±0.69mm and 2.13±0.65mm at 4 and 6mm. Miniscrews implanted in this region had an increased risk of root proximity. CONCLUSIONS The most appropriate insertion site at the mandibular buccal shelf was the mesial point of the second molar at 6-8mm from the alveolar ridge, and an insertion angle of 10°-30° was recommended to avoid miniscrew-root contact. CBCT analysis is recommended before implantation due to individual differences.
Collapse
Affiliation(s)
- Yaqi Wang
- Department of Orthodontics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, China.
| | - Jing Sun
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, China.
| | - Yanli Shi
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, China.
| | - Xin Li
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, China.
| | - Zhiqiang Wang
- Department of Orthodontics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, China; Department of Orthodontics,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324 Jingwu Road, Jinan, Shandong, China.
| |
Collapse
|
6
|
Abstract
Malocclusion and teething problems are common health problems globally, affecting people of all ages, especially children and adolescents. In addition to the pathophysiological complications associated with orthodontic problems, they also affect the well-being of the individual. Orthodontic appliances are frequently used, even from an early age, and their activity in different biological environments is very varied and incompletely described. Due to these considerations, the purpose of the study was to evaluate the toxicological profile of the biological environment (saliva at three pH values: 3, 7, and 10) of two elastodontic orthodontic appliances: Myobrace (MB) and LM TrainerTM 2 (LMD). In vitro techniques applied were conducted on human keratinocytes to evaluate cell viability (Alamar blue assay) and gene expression real-time reverse transcription–polymerase chain reaction (RT-PCR technique). In addition, it was assessed the irritating effect on the vascular plexus using as a biological model the chorioallantoic membrane of the hen’s egg by applying the hen’s egg-chorioallantoic membrane (HET-CAM) method. The obtained results showed a decrease in cell viability up to 82% in the case of LMD at pH = 3, a slight increase in mRNA expression for the anti-apoptotic marker (Bcl-2 and Bcl-xL), and a decrease in mRNA expression for the pro-apoptotic marker (Bad), and any type of toxic change at the capillary level (irritation score being below 0.9). Based on the data obtained, it can be stated that MB and LMD biological environments, at different pH values, present a safe toxicological profile.
Collapse
|
7
|
Space Maintainers Used in Pediatric Dentistry: An Insight of Their Biosecurity Profile by Applying In Vitro Methods. MATERIALS 2021; 14:ma14206215. [PMID: 34683807 PMCID: PMC8541494 DOI: 10.3390/ma14206215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/03/2021] [Accepted: 10/14/2021] [Indexed: 11/18/2022]
Abstract
Space maintainers have presented an increased interest due to their chemical composition which influences the electrochemical and electrolytic processes of the oral cavity, leading to important biological activity. The present study was purported to evaluate the biological in vitro activity of three types of space maintainers (S1, S2, and S3, differing from each other in terms of metal composition) used in pediatric dentistry, in terms of their antimicrobial effect and biosecurity profile using two types of keratinocytes (PGK: primary gingival keratinocytes, and HaCaT: human immortalized keratinocytes) by assessing the morphology, viability, cytotoxicity, and gene expression of the cells. Statistical differences were calculated by the one-way ANOVA test, followed by Tukey’s post-test. Antimicrobial screening highlighted a dilution-dependent influence that, in the case of all strains tested, did not show inhibition or stimulation of bacterial growth. The in vitro evaluations revealed that the test samples did not induce important cytotoxic potential on both keratinocyte cell lines (HaCaT and PGK), with the cells manifesting no morphological alteration, a good viability rate (above 90%: PGK–S1, * p < 0.05), and a low cytotoxic activity (less than 11%: PGK, S1 *** p < 0.001 and S3 * p < 0.05; HaCaT, S1 ** p < 0.01). The data obtained in this study highlight the fact that the samples analyzed are biocompatible and do not develop the growth of the studied bacteria or encode the gene expression of primary and immortalized keratinocytes.
Collapse
|
8
|
Pop D, Buzatu R, Moacă EA, Watz CG, Cîntă Pînzaru S, Barbu Tudoran L, Nekvapil F, Avram Ș, Dehelean CA, Crețu MO, Nicolov M, Szuhanek C, Jivănescu A. Development and Characterization of Fe 3O 4@Carbon Nanoparticles and Their Biological Screening Related to Oral Administration. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3556. [PMID: 34202095 PMCID: PMC8269588 DOI: 10.3390/ma14133556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022]
Abstract
The current study presents the effect of naked Fe3O4@Carbon nanoparticles obtained by the combustion method on primary human gingival fibroblasts (HGFs) and primary gingival keratinocytes (PGKs)-relevant cell lines of buccal oral mucosa. In this regard, the objectives of this study were as follows: (i) development via combustion method and characterization of nanosized magnetite particles with carbon on their surface, (ii) biocompatibility assessment of the obtained magnetic nanoparticles on HGF and PGK cell lines and (iii) evaluation of possible irritative reaction of Fe3O4@Carbon nanoparticles on the highly vascularized chorioallantoic membrane of a chick embryo. Physicochemical properties of Fe3O4@Carbon nanoparticles were characterized in terms of phase composition, chemical structure, and polymorphic and molecular interactions of the chemical bonds within the nanomaterial, magnetic measurements, ultrastructure, morphology, and elemental composition. The X-ray diffraction analysis revealed the formation of magnetite as phase pure without any other secondary phases, and Raman spectroscopy exhibit that the pre-formed magnetic nanoparticles were covered with carbon film, resulting from the synthesis method employed. Scanning electron microscopy shown that nanoparticles obtained were uniformly distributed, with a nearly spherical shape with sizes at the nanometric level; iron, oxygen, and carbon were the only elements detected. While biological screening of Fe3O4@Carbon nanoparticles revealed no significant cytotoxic potential on the HGF and PGK cell lines, a slight sign of irritation was observed on a limited area on the chorioallantoic membrane of the chick embryo.
Collapse
Affiliation(s)
- Daniel Pop
- Department of Prosthodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy, Revolutiei Ave. 1989, No. 9, RO-300580 Timișoara, Romania; (D.P.); (A.J.)
- TADERP Reseach Center—Advanced and Digital Techniques for Endodontic, Restorative and Prosthetic Treatment, “Victor Babeș” University of Medicine and Pharmacy, Revolutiei Ave. 1989, No. 9, RO-300041 Timişoara, Romania
| | - Roxana Buzatu
- Department of Dental Aesthetics, Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy, Revolutiei Ave. 1989, No. 9, RO-300041 Timişoara, Romania;
| | - Elena-Alina Moacă
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania;
| | - Claudia Geanina Watz
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania;
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Simona Cîntă Pînzaru
- Biomolecular Physics Department, Babes-Bolyai University, 1 Kogalniceanu Street, RO-400084 Cluj-Napoca, Romania; (S.C.P.); (F.N.)
- RDI Laboratory of Applied Raman Spectroscopy, RDI Institute of Applied Natural Sciences (IRDI-ANS), Babeş-Bolyai University, 42 Fântânele Street, RO-400293 Cluj-Napoca, Romania
| | - Lucian Barbu Tudoran
- Electron Microscopy Laboratory “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, RO-400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for R&D of Isotopic and Molecular Technologies, 67-103 Donat Street, RO-400293 Cluj-Napoca, Romania
| | - Fran Nekvapil
- Biomolecular Physics Department, Babes-Bolyai University, 1 Kogalniceanu Street, RO-400084 Cluj-Napoca, Romania; (S.C.P.); (F.N.)
- RDI Laboratory of Applied Raman Spectroscopy, RDI Institute of Applied Natural Sciences (IRDI-ANS), Babeş-Bolyai University, 42 Fântânele Street, RO-400293 Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory, National Institute for R&D of Isotopic and Molecular Technologies, 67-103 Donat Street, RO-400293 Cluj-Napoca, Romania
| | - Ștefana Avram
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania;
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy “Victor Babeș” Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania
| | - Cristina Adriana Dehelean
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania;
| | - Marius Octavian Crețu
- Department of Surgery, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Mirela Nicolov
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Camelia Szuhanek
- Department of Orthodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Revolutiei Ave. 1989, No. 9, RO-300041 Timisoara, Romania;
| | - Anca Jivănescu
- Department of Prosthodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy, Revolutiei Ave. 1989, No. 9, RO-300580 Timișoara, Romania; (D.P.); (A.J.)
- TADERP Reseach Center—Advanced and Digital Techniques for Endodontic, Restorative and Prosthetic Treatment, “Victor Babeș” University of Medicine and Pharmacy, Revolutiei Ave. 1989, No. 9, RO-300041 Timişoara, Romania
| |
Collapse
|
9
|
Choi JY, Kim MJ, Kim SH, Chung KR, Nelson G. Effect of Different Head Hole Position on the Rotational Resistance and Stability of Orthodontic Miniscrews: A Three-Dimensional Finite Element Study. SENSORS 2021; 21:s21113798. [PMID: 34070904 PMCID: PMC8198358 DOI: 10.3390/s21113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022]
Abstract
The orthodontic miniscrew is driven into bone in a clockwise direction. Counter-clockwise rotational force applied to the implanted miniscrew can degrade the stability. The purpose of this three-dimensional finite element study was to figure out the effect of shifting the miniscrew head hole position from the long axis. Two miniscrew models were developed, one with the head hole at the long axis and the other with an eccentric hole position. One degree of counter-clockwise rotation was applied to both groups, and the maximum Von-Mises stress and moment was measured under various wire insertion angles from −60° to +60°. All Von-Mises stress and moments increased with an increase in rotational angle or wire insertion angle. The increasing slope of moment in the eccentric hole group was significantly higher than that in the centric hole group. Although the maximum Von-Mises stress was higher in the eccentric hole group, the distribution of stress was not very different from the centric hole group. As the positive wire insertion angles generated a higher moment under a counter-clockwise rotational force, it is recommended to place the head hole considering the implanting direction of the miniscrew. Clinically, multidirectional and higher forces can be applied to the miniscrew with an eccentric head hole position.
Collapse
Affiliation(s)
- Jin-Young Choi
- Department of Orthodontics, Kyung Hee University Dental Hospital, Seoul 02447, Korea;
| | - Min-Jung Kim
- Department of Convergence Medicine, Asan Medical Center, Asan Medical Institute of Convergence Science and 8 Technology, Seoul 02447, Korea;
| | - Seong-Hun Kim
- Department of Orthodontics, Graduate School of Dentistry, Kyung Hee University, Seoul 02447, Korea;
- Correspondence:
| | - Kyu-Rhim Chung
- Department of Orthodontics, Graduate School of Dentistry, Kyung Hee University, Seoul 02447, Korea;
| | - Gerald Nelson
- Division of Orthodontics, Department of Orofacial Science, University of California, San Francisco, CA 94143, USA;
| |
Collapse
|
10
|
Scaffold-Type Structure Dental Ceramics with Different Compositions Evaluated through Physicochemical Characteristics and Biosecurity Profiles. MATERIALS 2021; 14:ma14092266. [PMID: 33925656 PMCID: PMC8124461 DOI: 10.3390/ma14092266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
The design and development of ceramic structures based on 3D scaffolding as dental bone substitutes has become a topic of great interest in the regenerative dentistry research area. In this regard, the present study focuses on the development of two scaffold-type structures obtained from different commercial dental ceramics by employing the foam replication method. At the same time, the study underlines the physicochemical features and the biological profiles of the newly developed scaffolds, compared to two traditional Cerabone® materials used for bone augmentation, by employing both the in vitro Alamar blue proliferation test at 24, 48 and 96 h poststimulation and the in ovo chick chorioallantoic membrane (CAM) assay. The data reveal that the newly developed scaffolds express comparable results with the traditional Cerabone® augmentation masses. In terms of network porosity, the scaffolds show higher pore interconnectivity compared to Cerabone® granules, whereas regarding the biosafety profile, all ceramic samples manifest good biocompatibility on primary human gingival fibroblasts (HGFs); however only the Cerabone® samples induced proliferation of HGF cells following exposure to concentrations of 5 and 10 µg/mL. Additionally, none of the test samples induce irritative activity on the vascular developing plexus. Thus, based on the current results, the preliminary biosecurity profile of ceramic scaffolds supports the usefulness for further testing of high relevance for their possible clinical dental applications.
Collapse
|
11
|
Szuhanek CA, Watz CG, Avram Ș, Moacă EA, Mihali CV, Popa A, Campan AA, Nicolov M, Dehelean CA. Comparative Toxicological In Vitro and In Ovo Screening of Different Orthodontic Implants Currently Used in Dentistry. MATERIALS 2020; 13:ma13245690. [PMID: 33322183 PMCID: PMC7763890 DOI: 10.3390/ma13245690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022]
Abstract
Selecting the most biocompatible orthodontic implant available on the market may be a major challenge, given the wide array of orthodontic devices currently available on the market. The latest scientific data have suggested that in vitro evaluations using oral cell lines provide reliable data regarding the toxicity of residual particles released by different types of orthodontic devices. In this regard, the in vitro biocompatibility of three different commercially available implants (stainless steel and titanium-based implants) was assessed. METHODS As an in vitro model, human gingival fibroblasts (HGFs) were employed to evaluate the cellular morphology, cell viability, and cytotoxicity by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays at 24 h and 72 h post-exposure to test implants. RESULTS The results correlate the composition and topography of the implant surface with biological experimental evaluations related to directly affected cells (gingival fibroblasts) and toxicological results on blood vessels (hen's egg test-chorioallantoic membrane (HET-CAM) assay). The stainless steel implant exhibits a relative cytotoxicity against HGF cells, while the other two samples induced no significant alterations of HGF cells. CONCLUSION Among the three test orthodontic implants, the stainless steel implant induced slight cytotoxic effects, thus increased vigilance is required in their clinical use, especially in patients with high sensitivity to nickel.
Collapse
Affiliation(s)
- Camelia A. Szuhanek
- Department of Orthodontics, Faculty of Dental Medicine, Victor Babeş University of Medicine and Pharmacy, 9 No., Revolutiei Bv., 300041 Timişoara, Romania; (C.A.S.); (A.P.)
| | - Claudia G. Watz
- Departament of Pharmaceutical Physics and Biophysics, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania;
- Correspondence: ; Tel.: +40-746-227-217
| | - Ștefana Avram
- Department of Pharmacognosy, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania;
| | - Elena-Alina Moacă
- Departament of Toxicology, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (E.-A.M.); (A.A.C.); (C.A.D.)
| | - Ciprian V. Mihali
- Department of Life Sciences, Faculty of Medicine, Vasile Goldis Western University of Arad, 86 No., Liviu Rebreanu St., 310414 Arad, Romania;
- Molecular Research Department, Research and Development Station for Bovine, 32 No., Bodrogului St., 310059 Arad, Romania
| | - Adelina Popa
- Department of Orthodontics, Faculty of Dental Medicine, Victor Babeş University of Medicine and Pharmacy, 9 No., Revolutiei Bv., 300041 Timişoara, Romania; (C.A.S.); (A.P.)
| | - Andrada A. Campan
- Departament of Toxicology, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (E.-A.M.); (A.A.C.); (C.A.D.)
| | - Mirela Nicolov
- Departament of Pharmaceutical Physics and Biophysics, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania;
| | - Cristina A. Dehelean
- Departament of Toxicology, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (E.-A.M.); (A.A.C.); (C.A.D.)
| |
Collapse
|