1
|
Rajendran DS, Venkataraman S, Jha SK, Chakrabarty D, Kumar VV. A review on bio-based polymer polylactic acid potential on sustainable food packaging. Food Sci Biotechnol 2024; 33:1759-1788. [PMID: 38752115 PMCID: PMC11091039 DOI: 10.1007/s10068-024-01543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 05/18/2024] Open
Abstract
Poly(lactic acid) (PLA) stands as a compelling alternative to conventional plastic-based packaging, signifying a notable shift toward sustainable material utilization. This comprehensive analysis illuminates the manifold applications of PLA composites within the realm of the food industry, emphasizing its pivotal role in food packaging and preservation. Noteworthy attributes of PLA composites with phenolic active compounds (phenolic acid and aldehyde, terpenes, carotenoid, and so on) include robust antimicrobial and antioxidant properties, significantly enhancing its capability to bolster adherence to stringent food safety standards. The incorporation of microbial and synthetic biopolymers, polysaccharides, oligosaccharides, oils, proteins and peptides to PLA in packaging solutions arises from its inherent non-toxicity and outstanding mechanical as well as thermal resilience. Functioning as a proficient film producer, PLA constructs an ideal preservation environment by merging optical and permeability traits. Esteemed as a pioneer in environmentally mindful packaging, PLA diminishes ecological footprints owing to its innate biodegradability. Primarily, the adoption of PLA extends the shelf life of products and encourages an eco-centric approach, marking a significant stride toward the food industry's embrace of sustainable packaging methodologies. Graphical abstract
Collapse
Affiliation(s)
- Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Satyendra Kumar Jha
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Disha Chakrabarty
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
2
|
Wu CS, Wang SS, Wu DY, Ke CY. A sustainable packaging composite of waste paper and poly(butylene succinate-co-lactate) with high biodegradability. Int J Biol Macromol 2024; 262:129911. [PMID: 38320640 DOI: 10.1016/j.ijbiomac.2024.129911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
The challenge of global climate change has drawn people's attention to the issue of carbon emissions. Reducing the use of petroleum-derived materials and increasing the use of biodegradable materials is a current focus of research, especially in the packaging materials industry. This study focused on the use of environmentally friendly plastics and waste paper as the main materials for packaging films. Poly(butylene succinate-co-lactate) (PBSL) was modified with maleic anhydride (MA) to form a biobased compatibilizer (MPBSL), which was then blended with a mixture (WPS) of waste-paper powder (WP) and silica aerogel powder (SP) to form the designed composite (MPBSL/WPS). The modification of PBSL with MA improved interfacial adhesion between PBSL and WPS. The structure, thermal, and mechanical properties, water vapor/oxygen barrier, toxicity, freshness, and biodegradability of MPBSL/WPS films were evaluated. Compared with the PBSL/WP film, the MPBSL/WPS film exhibited increased tensile strength at break of 4-13.5 MPa, increased initial decomposition loss at 5 wt% of 14-35 °C, and decreased water/oxygen permeabilities of 18-105 cm3/m2·d·Pa. In the water absorption test, the MPBSL/WPS film displayed about 2-6 % lower water absorption than that of the PBSL/WP film. In the cytocompatibility test, both MPBSL/WPS and PBSL/WP membrane were nontoxic. In addition, compared with PBSL/WP film and the control, the MPBSL/WPS film significantly reduced moisture loss, extended the shelf life, and prevented microbial growth in vegetable and meat preservation tests. Both MPBSL/WPS and PBSL/WP films were biodegradable in a 60-day soil biodegradation test; the degradation rate was 50 % when the WP or WPS content was 40 wt%. Our findings indicate that the composites would be suitable for environmentally sustainable packaging materials.
Collapse
Affiliation(s)
- Chin-San Wu
- Department of Cosmetology and Health Care, Kao Yuan University, Kaohsiung County 82101, Taiwan.
| | - Shan-Shue Wang
- Department of Cosmetology and Health Care, Kao Yuan University, Kaohsiung County 82101, Taiwan
| | - Dung-Yi Wu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chu-Yun Ke
- Department of Chemical Engineering, I Shou University, Kaohsiung County 84001, Taiwan
| |
Collapse
|
3
|
Barandiaran A, Lascano D, Montanes N, Balart R, Selles MA, Moreno V. Improvement of the Ductility of Environmentally Friendly Poly(lactide) Composites with Posidonia oceanica Wastes Plasticized with an Ester of Cinnamic Acid. Polymers (Basel) 2023; 15:4534. [PMID: 38231960 PMCID: PMC10708467 DOI: 10.3390/polym15234534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
New composite materials were developed with poly(lactide) (PLA) and Posidonia oceanica fibers through reactive extrusion in the presence of dicumyl peroxide (DCP) and subsequent injection molding. The effect of different amounts of methyl trans-cinnamate (MTC) on the mechanical, thermal, thermomechanical, and wettability properties was studied. The results showed that the presence of Posidonia oceanica fibers generated disruptions in the PLA matrix, causing a decrease in the tensile mechanical properties and causing an impact on the strength due to the stress concentration phenomenon. Reactive extrusion with DCP improved the PO/PLA interaction, diminishing the gap between the fibers and the surrounding matrix, as corroborated by field emission scanning electron microscopy (FESEM). It was observed that 20 phr (parts by weight of the MTC, per one hundred parts by weight of the PO/PLA composite) led to a noticeable plasticizing effect, significantly increasing the elongation at break from 7.1% of neat PLA to 31.1%, which means an improvement of 338%. A considerable decrease in the glass transition temperature, from 61.1 °C of neat PLA to 41.6 °C, was also observed. Thermogravimetric analysis (TGA) showed a loss of thermal stability of the plasticized composites, mainly due to the volatility of the cinnamate ester, leading to a decrease in the onset degradation temperature above 10 phr MTC.
Collapse
Affiliation(s)
| | - Diego Lascano
- Institute of Materials Technology (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (A.B.); (N.M.); (R.B.); (M.A.S.)
| | | | | | | | - Virginia Moreno
- Institute of Materials Technology (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (A.B.); (N.M.); (R.B.); (M.A.S.)
| |
Collapse
|
4
|
Capuano R, Avolio R, Castaldo R, Cocca M, Dal Poggetto G, Gentile G, Errico ME. Poly(lactic acid)/Plasticizer/Nano-Silica Ternary Systems: Properties Evolution and Effects on Degradation Rate. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1284. [PMID: 37049377 PMCID: PMC10097254 DOI: 10.3390/nano13071284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/24/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Plasticized nanocomposites based on poly(lactic acid) have been prepared by melt mixing following a two-step approach, adding two different oligomeric esters of lactic acid (OLAs) as plasticizers and fumed silica nanoparticles. The nanocomposites maintained a remarkable elongation at break in the presence of the nanoparticles, with no strong effects on modulus and strength. Measuring thermo-mechanical properties as a function of aging time revealed a progressive deterioration of properties, with the buildup of phase separation, related to the nature of the plasticizer. Materials containing hydroxyl-terminated OLA showed a higher stability of properties upon aging. On the contrary, a synergistic effect of the acid-terminated plasticizer and silica nanoparticles was pointed out, inducing an accelerated hydrolytic degradation of PLA: materials at high silica content exhibited a marked brittleness and a dramatic decrease of molecular weight after 16 weeks of aging.
Collapse
Affiliation(s)
- Roberta Capuano
- Institute for Polymers, Composites and Biomaterials—IPCB, National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (R.C.); (R.C.); (M.C.); (G.D.P.); (G.G.)
- Department of Mechanical and Industrial Engineering—DIMI, University of Brescia, Via Branze 38, 25121 Brescia, Italy
| | - Roberto Avolio
- Institute for Polymers, Composites and Biomaterials—IPCB, National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (R.C.); (R.C.); (M.C.); (G.D.P.); (G.G.)
| | - Rachele Castaldo
- Institute for Polymers, Composites and Biomaterials—IPCB, National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (R.C.); (R.C.); (M.C.); (G.D.P.); (G.G.)
| | - Mariacristina Cocca
- Institute for Polymers, Composites and Biomaterials—IPCB, National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (R.C.); (R.C.); (M.C.); (G.D.P.); (G.G.)
| | - Giovanni Dal Poggetto
- Institute for Polymers, Composites and Biomaterials—IPCB, National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (R.C.); (R.C.); (M.C.); (G.D.P.); (G.G.)
| | - Gennaro Gentile
- Institute for Polymers, Composites and Biomaterials—IPCB, National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (R.C.); (R.C.); (M.C.); (G.D.P.); (G.G.)
| | - Maria Emanuela Errico
- Institute for Polymers, Composites and Biomaterials—IPCB, National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (R.C.); (R.C.); (M.C.); (G.D.P.); (G.G.)
| |
Collapse
|
5
|
Zaharescu T. Synergistic effect of silica nanoparticles assisted by rosemary powder in the stabilization of styrene-isoprene-styrene triblock copolymer. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Song Q. Thermal and mechanical properties of poly(lactic acid)/poly(butylene adipate- co-terephthalate)/calcium carbonate composite with single continuous morphology. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-8097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Poly(lactic acid)/poly(butylene adipate-co-terephthalate) with a content ratio of 90/10, and its calcium carbonate (CaCO3) composites with nano- and micro-sized particles were prepared by melt mixing. The dependence of thermal and mechanical properties of the composites on the particle size and addition content of the CaCO3 filler was investigated. The composite containing five parts micro-sized filler (abbreviated as 90L10B5mC, similarly hereinafter) exhibited α and α′ crystallines on cooling as 90L10B without fillers. 90L10B11mC and 90L10B11n5mC exhibited only α′ crystalline, and the others exhibited no discernible crystalline. Jeziorny method showed that the crystallization mode of poly(lactic acid) chains in different composites was close, and Mo method showed that the crystal growth mode in 90L10B11n5mC was different from others. Changes in thermal and mechanical properties were attributed to the overall connection strength which was dependent on the particle size and addition content of the CaCO3 filler. From the perspective of industrialization, 90L10B5n11mC was preferred.
Collapse
Affiliation(s)
- Qinghuan Song
- Department of Basic Medicine, Luohe Medical College , Luohe , Henan 462002 , China
| |
Collapse
|
7
|
Hevilla V, Sonseca Á, Gimenez E, Echeverría C, Muñoz-Bonilla A, Fernández-García M. The Incorporation of Low-Molecular Weight Poly(Mannitol Sebacate)s on PLA Electrospun Fibers: Effects on the Mechanical Properties and Surface Chemistry. Polymers (Basel) 2022; 14:polym14163342. [PMID: 36015598 PMCID: PMC9414317 DOI: 10.3390/polym14163342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/25/2022] Open
Abstract
We offer a report on the synthesis of low-molecular weight biobased poly(mannitol sebacate) (PMS) and its functionalization with acrylate groups (PMSAc). These synthesized polyesters were blended at a low level (10 wt%) with poly (lactic acid) PLA to prepare aligned fibers by electrospinning, coupled with a rotatory collector. The obtained fibers were extensively studied by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and wide-angle X-ray diffraction (WAXS), employing synchrotron radiation. The incorporation of the PMSs on the PLA fibers did not significantly affect the fiber diameters, whereas the alignment was almost maintained. The crystallinity and thermal properties were also slightly modified with the addition of PMSs, and an increase in the degree of crystallinity and in the glass transition temperature of the blend compared to PLA was observed. Remarkably, the PLA/PMSs fibers were more ductile due to the elastomeric character of PMS, with higher values of elongation at break and tensile strengths, and a smaller Young modulus in comparison with the PLA fibers. These modifications of the properties were more noticeable in the case of the acrylated PMS, which also provided readily available functional groups at the surface for further chemical reactions, such as the Michael addition or crosslinking processes.
Collapse
Affiliation(s)
- Víctor Hevilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Águeda Sonseca
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
| | - Enrique Gimenez
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
| | - Coro Echeverría
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
- Correspondence:
| |
Collapse
|
8
|
He H, Liu Q, Gao B, Zhang S, Chen H. Hydrophobic transition of soluble polymer aerogel composites. J Appl Polym Sci 2022. [DOI: 10.1002/app.52937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hao He
- Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics Mianyang China
- College of Mechanical and Automotive South China University of Technology Guangzhou Guangdong China
| | - Qiang Liu
- Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics Mianyang China
| | - Bing‐Bing Gao
- College of Mechanical and Automotive South China University of Technology Guangzhou Guangdong China
| | - Shui‐Dong Zhang
- College of Mechanical and Automotive South China University of Technology Guangzhou Guangdong China
| | - Hong‐Bing Chen
- Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics Mianyang China
| |
Collapse
|
9
|
Lupu (Luchian) AM, Mariş M, Zaharescu T, Marinescu VE, Iovu H. Stability Study of the Irradiated Poly(lactic acid)/Styrene Isoprene Styrene Reinforced with Silica Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5080. [PMID: 35888545 PMCID: PMC9319368 DOI: 10.3390/ma15145080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
In this paper, the stability improvement of poly(lactic acid) (PLA)/styrene-isoprene block copolymer (SIS) loaded with silica nanoparticles is characterized. The protection efficiency in the material of thermal stability is mainly studied by means of high accurate isothermal and nonisothermal chemiluminescence procedures. The oxidation induction times obtained in the isothermal CL determinations increase from 45 min to 312 min as the polymer is free of silica or the filler loading is about 10%, respectively. The nonisothermal measurements reveal the values of onset oxidation temperatures with about 15% when the concentration of SiO2 particles is enhanced from none to 10%. The curing assay and Charlesby-Pinner representation as well as the modifications that occurred in the FTIR carbonyl band at 1745 cm-1 are appropriate proofs for the delay of oxidation in hybrid samples. The improved efficiency of silica during the accelerated degradation of PLA/SIS 30/n-SiO2 composites is demonstrated by means of the increased values of activation energy in correlation with the augmentation of silica loading. While the pristine material is modified by the addition of 10% silica nanoparticles, the activation energy grows from 55 kJ mol-1 to 74 kJ mol-1 for nonirradiated samples and from 47 kJ mol-1 to 76 kJ mol-1 for γ-processed material at 25 kGy. The stabilizer features are associated with silica nanoparticles due to the protection of fragments generated by the scission of hydrocarbon structure of SIS, the minor component, whose degradation fragments are early converted into hydroperoxides rather than influencing depolymerization in the PLA phase. The reduction of the transmission values concerning the growing reinforcement is evidence of the capacity of SiO2 to minimize the changes in polymers subjected to high energy sterilization. The silica loading of 10 wt% may be considered a proper solution for attaining an extended lifespan under the accelerated degradation caused by the intense transfer of energy, such as radiation processing on the polymer hybrid.
Collapse
Affiliation(s)
- Ana Maria Lupu (Luchian)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.M.L.); (H.I.)
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), 077125 Magurele, Romania
| | - Marius Mariş
- Dental Medicine Faculty, University Titu Maiorescu, 22 Dâmbovnicului Tineretului St., 040441 Bucharest, Romania
| | - Traian Zaharescu
- INCDIE ICPE CA, Radiochemistry Center, 313 Splaiul Unirii, 030138 Bucharest, Romania;
| | | | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.M.L.); (H.I.)
- Academy of Romanian Scientists, 050094 Bucharest, Romania
| |
Collapse
|
10
|
Wu Z, Li Y, Tang J, Lin D, Qin W, Loy DA, Zhang Q, Chen H, Li S. Ultrasound-assisted preparation of chitosan/nano-silica aerogel/tea polyphenol biodegradable films: Physical and functional properties. ULTRASONICS SONOCHEMISTRY 2022; 87:106052. [PMID: 35660275 PMCID: PMC9168617 DOI: 10.1016/j.ultsonch.2022.106052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
In this study, chitosan(CS), nano-silicon aerogels(nSA) and tea polyphenols(TP) were used as film-forming materials and processed with ultrasonication to form films using the tape-casting method. The effects of ultrasonication time, temperature and frequency on the properties of CS/nSA/TP film were explored via material property testing. The results of response surface showed that the maximum tensile strength of the film was 4.036 MPa at ultrasonication time(57.97 min), temperature(37.26 °C) and frequency(30 kHz). The maximum elongation at break of the film was 279.42 % at ultrasonication time(60.88 min), temperature(39.93 °C) and frequency(30 kHz). Due to cavitation and super-mixing effects, ultrasonication may make the surface of the film smoother and easier to degrade. After ultrasonication, TPs were protected by the 3D network structure composed of CS and nSA. Ultrasonication improved the antioxidant and antibacterial properties of the film. These results show that ultrasonication is an effective method to improve the properties of films.
Collapse
Affiliation(s)
- Zhijun Wu
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Yang Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jing Tang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Derong Lin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Douglas A Loy
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
11
|
Alhanish A, Abu Ghalia M. Developments of biobased plasticizers for compostable polymers in the green packaging applications: A review. Biotechnol Prog 2021; 37:e3210. [PMID: 34499430 DOI: 10.1002/btpr.3210] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
The demand for biobased materials for various end-uses in the bioplastic industry is substantially growing due to increasing awareness of health and environmental concerns, along with the toxicity of synthetic plasticizers such as phthalates. This fact has stimulated new regulations requiring the replacement of synthetic conventional plasticizers, particularly for packaging applications. Biobased plasticizers have recently been considered as essential additives, which may be used during the processing of compostable polymers to enormously boost biobased packaging applications. The development and utilization of biobased plasticizers derived from epoxidized soybean oil, castor oil, cardanol, citrate, and isosorbide have been broadly investigated. The synthesis of biobased plasticizers derived from renewable feedstocks and their impact on packaging material performance have been emphasized. Moreover, the effect of biobased plasticizer concentration, interaction, and compatibility on the polymer properties has been examined. Recent developments have resulted in the replacement of synthetic plasticizers by biobased counterparts. Particularly, this has been the case for some biodegradable thermoplastics-based packaging applications.
Collapse
Affiliation(s)
- Atika Alhanish
- Department of Chemical Engineering, Faculty of Petroleum and Natural Gas Engineering, University of Zawia, Zawia, Libya
| | | |
Collapse
|
12
|
Balla E, Daniilidis V, Karlioti G, Kalamas T, Stefanidou M, Bikiaris ND, Vlachopoulos A, Koumentakou I, Bikiaris DN. Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties-From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers (Basel) 2021; 13:1822. [PMID: 34072917 PMCID: PMC8198026 DOI: 10.3390/polym13111822] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Environmental problems, such as global warming and plastic pollution have forced researchers to investigate alternatives for conventional plastics. Poly(lactic acid) (PLA), one of the well-known eco-friendly biodegradables and biobased polyesters, has been studied extensively and is considered to be a promising substitute to petroleum-based polymers. This review gives an inclusive overview of the current research of lactic acid and lactide dimer techniques along with the production of PLA from its monomers. Melt polycondensation as well as ring opening polymerization techniques are discussed, and the effect of various catalysts and polymerization conditions is thoroughly presented. Reaction mechanisms are also reviewed. However, due to the competitive decomposition reactions, in the most cases low or medium molecular weight (MW) of PLA, not exceeding 20,000-50,000 g/mol, are prepared. For this reason, additional procedures such as solid state polycondensation (SSP) and chain extension (CE) reaching MW ranging from 80,000 up to 250,000 g/mol are extensively investigated here. Lastly, numerous practical applications of PLA in various fields of industry, technical challenges and limitations of PLA use as well as its future perspectives are also reported in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (E.B.); (V.D.); (G.K.); (T.K.); (M.S.); (N.D.B.); (A.V.); (I.K.)
| |
Collapse
|
13
|
Improvement of PBAT Processability and Mechanical Performance by Blending with Pine Resin Derivatives for Injection Moulding Rigid Packaging with Enhanced Hydrophobicity. Polymers (Basel) 2020; 12:polym12122891. [PMID: 33276625 PMCID: PMC7761566 DOI: 10.3390/polym12122891] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 01/06/2023] Open
Abstract
Polybutylene adipate-co-terephthalate (PBAT) is a biodegradable polymer with good features for packaging applications. However, the mechanical performance and high prices of PBAT limit its current usage at the commercial level. To improve the properties and reduce the cost of PBAT, pine resin derivatives, gum rosin (GR) and pentaerythritol ester of GR (UT), were proposed as sustainable additives. For this purpose, PBAT was blended with 5, 10, and 15 wt.% of additives by melt-extrusion followed by injection moulding. The overall performance of the formulations was assessed by tensile test, microstructural, thermal, and dynamic mechanical thermal analysis. The results showed that although good miscibility of both resins with PBAT matrix was achieved, GR in 10 wt.% showed better interfacial adhesion with the PBAT matrix than UT. The thermal characterization suggested that GR and UT reduce PBAT melting enthalpy and enhance its thermal stability, improving PBAT processability. A 10 wt.% of GR significantly increased the tensile properties of PBAT, while a 15 wt.% of UT maintained PBAT tensile performance. The obtained materials showed higher hydrophobicity than neat PBAT. Thus, GR and UT demonstrated that they are advantageous additives for PBAT–resin compounding for rigid food packaging which are easy to process and adequate for industrial scalability. At the same time, they enhance its mechanical and hydrophobic performance.
Collapse
|